## Abstract

The paper centers around a general class of discrete linear positive operators depending on a real parameter \(\alpha \geq 0\) and preserving both the constants and the polynomial \(x^{2}+\alpha x\). Under some given conditions, this sequence of operators forms an approximation process for certain real valued functions defined on an interval \(J\). Two cases are investigated: \(J=[0,1]\) and \(J=\)\([0,\infty )\), respectively. Quantitative estimates are proved in different normed spaces and some particular cases are presented.

## Authors

**Octavian Agratini**

Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

**Saddika Tarabie**

Faculty of Sciences, Tishrin University, 1267 Latakia, Syria

## Keywords

positive linear operators, Popoviciu-Bohman-Korovkin criterion, Bernstein polynomials, Szasz-Mirakjan operators, Baskakov operators, polynomial weight spaces

## Paper coordinates

O. Agratini, S. Tarabie, *On approximating operators preserving certain polynomials*, Automation, Computers, Applied Mathematics, **17** (2008) no. 2, pp. 191-199

## About this paper

##### Journal

Automation Computers Applied Mathematics

##### Publisher Name

##### DOI

##### Print ISSN

1221–437X

##### Online ISSN

google scholar link

[1] O. Agratini, *Linear operators that preserve some test functions*, International Journal of Mathematics and Mathematical Sciences, Vol. 2006, Article ID94136, pp. 11, DOI

10.1155/IJMMS.

[2] O. Agratini, *On the iterates of a class of summation-type linear positive operators,* Comput. Math. Appl., 55(2008), 1178-1180.

[3] F. Altomare, M. Campiti, Korovkin-type *Approximation Theory and its Applications*, de Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin, 1994.

[4] D. Cardenas-Morales, P. Garrancho, F.J. Munoz-Delgado, *Shape preserving approximation by Bernstein-type operators which fix polynomials*, Applied Mathematics and Computation, 182(2006), 1615-1622.

[5] O. Duman, C. Orhan, *An abstract version of the Korovkin approximation theorem,* Publ. Math. Debrecen, 69(2006), f. 1-2, 33-46.

[6] A.D. Gadjiev, C. Orhan, *Some approximation theorems via statistical convergence*, Rocky Mountain J. Math., 32(2002), 129-138.

[7] H. Gonska, P. Pitul, *Remarks on an article of J.P. King*, Schriftenreiche des Fachbereichs Mathematik, Nr. 596(2005), Universit¨at Duisburg-Essen, pp. 8.

[8] J.P. King, *Positive linear operators which preserve x²*, Acta Math. Hungar., 99(2003), no. 3, 203-208.

[9] B. Mond, *On the degree of approximation by linear positive operators,* J. Approx. Theory, 18(1976), 304-306.