[1] Babenko, V. F. and Kofanov, V. A., Nonsymmetric approximations of classes of differentiable functions by algebraic polynomials in the mean, Anal. Math., 14, no. 3, pp. 193–217, 1988.
[2] Borodin, P. A., The Banach-Mazur theorem for spaces with an asymmetric norm and its applications in convex analysis, Mat. Zametki, 69, no. 3, pp. 329–337, 2001.
[3] De Blasi, F. S. and Myjak, J., On a generalized best approximation problem, J. Approx. Theory, 94, no. 1, pp. 54–72, 1998.
[4] Dolzhenko, E. P. and Sevast0yanov, E. A., Approximations with a sign-sensitive weight (existence and uniqueness theorems), Izv. Ross. Akad. Nauk Ser. Mat., 62, no. 6, pp. 59–102, 1998.
[5]____ , Sign-sensitive approximations, J. Math. Sci. (New York), 91, no. 5, pp. 3205–3257, 1998, Analysis, 10.
[6] Ferrer, J., Gregori, V. and Alegre, C., Quasi-uniform structures in linear lattices, Rocky Mountain J. Math., 23, no. 3, pp. 877–884, 1993.
[7] Garc´ıa-Raffi, L. M., Romaguera, S., and S´anchez-P´erez, E. A., The dual space of an asymmetric normed linear space, Quaest. Math., 26, no. 1, pp. 83–96, 2003.
[8] Garc´ıa-Raffi, L. M., Romaguera, S. and S´anchez P´erez, E. A., On Hausdorff asymmetric normed linear spaces, Houston J. Math., 29, no. 3, pp. 717–728 (electronic) 2003.
[9] Kozko, A. I., On the order of best approximation in spaces with an asymmetric norm and a sign-sensitive weight in classes of differentiable functions, Izv. Ross. Akad. Nauk Ser. Mat., 66, no. 1, pp. 103–132, 2002.
[10] Krein, M. G. and Nudel0man, A. A., The Markov Moment Problem and Extremum Problems, Nauka, Moscow 1973 (in Russian). English translation: American Mathematical Society, Providence, R.I. 1977.
[11] Chong Li, On well posed generalized best approximation problems, J. Approx. Theory, 107, no. 1, pp. 96–108, 2000.
[12] Chong Li and Renxing Ni, Derivatives of generalized distance functions and existence of generalized nearest points, J. Approx. Theory, 115, no. 1, pp. 44–55, 2002.
[13] Mustata, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx., 30, no. 1, pp. 61–67, 2001.
[14] , On the extremal semi-Lipschitz functions, Rev. Anal. Numer. Theor. Approx., 31, no. 1, pp. 103–108, 2002.
[15] , A Phelps type theorem for spaces with asymmetric norms, Bul. S¸tiint¸. Univ. Baia Mare, Ser. B, Matematic˘a-Informatic˘a, 18, no. 2, pp. 275–280, 2002.
[16] , On the uniqueness of the extension and unique best approximation in the dual of an asymmetric linear space, Rev. Anal. Num´er. Th´eor. Approx., 32, no. 2, pp. 187–192, 2003.
[17] Renxing Ni, Existence of generalized nearest points, Taiwanese J. Math., 7, no. 1, pp. 115–128, 2003.
[18] Ramazanov, A.-R. K., Direct and inverse theorems in approximation theory in the metric of a sign-sensitive weight, Anal. Math., 21, no. 3, pp. 191–212, 1995.
[19] , Sign-sensitive approximations of bounded functions by polynomials, Izv. Vyssh. Uchebn. Zaved. Mat., no. 5, pp. 53–58, 1998.
[20] Simonov, B. V., On the element of best approximation in spaces with nonsymmetric quasinorm, Mat. Zametki, 74, no. 6, pp. 902–912, 2003.
[21] Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Anal. Numer. Theor. Approx., 30, no. 1, pp. 61–67, 2001.