Construction of 3D potentials from a pre-assigned two-parametric family of orbits

Abstract

Authors

Keywords

?

Paper coordinates

M.-C. Anisiu, Th. Kotoulas, Construction of 3D potentials from a pre-assigned two-parametric family of orbits, Inverse Problems 22 (2006), 2255-2269, http://10.1088/0266-5611/22/6/021

PDF

About this paper

Journal

Inverse problems

Publisher Name

IOPscience

Print ISSN

0266-5611

Online ISSN

1361-6420

google scholar link

[1] Anisiu M-C 2004a An alternative point of view on the equations of the inverse problem of dynamics Inverse Problems 20 1865-72, IOPscience, Google Scholar
[2]  Anisiu M-C 2004b Two- and three-dimensional inverse problem of dynamics Studia Univ. Babeş-Bolyai, Math. XLIX(4) 13-26, Google Scholar
[3] Anisiu M-C 2005 The energy-free equations of the 3D inverse problem of dynamics Inverse Probl. Sci. Eng. 13 545-58, Crossref, Google Scholar, View article
[4] Binney J and Tremaine S 1987 Galactic Dynamics (Princeton, NJ: Princeton University Press), Google Scholar
[5] Boccaletti D and Puccaco G 1996 Theory of Orbits 1: Integrable Systems and Non-perturbative Methods (Berlin: Springer), Crossref, Google Scholar
[6] Bozis G 1983 Determination of autonomous three-dimensional force fields from a two-parametric family Celest. Mech. 31 43-51, Crossref, Google Scholar
[7] Bozis G 1984 Szebehely inverse problem for finite symmetrical material concentrations Astron. Astrophys. 134 360-4, Google Scholar
[8] Bozis G 1995 The inverse problem of dynamics: basic facts Inverse Problems 11 687-708, IOPscience, Google Scholar
[9] Bozis G and Anisiu M-C 2005 A solvable version of the inverse problem of dynamics Inverse Problems 21 487-97, IOPscience, Google Scholar
[10] Bozis G and Caranicolas N D 1997 Potentials creating subfamilies of Keplerian ellipses The Earth and the Universe Thessaloniki Ziti Editions ed G Asteriades, A Bantelas, M E Contadakis, K Katsambalos, A Papolimitriou and I N Tziavos (Thessaloniki: University of Thessaloniki) pp 245-52, Google Scholar
[11] Bozis G and Ichtiaroglou S 1994 Boundary curves for families of planar orbits Celest. Mech. Dyn. Astron. 58 371-85, Crossref, Google Scholar
[12] Bozis G and Kotoulas T 2004 Three-dimensional potentials producing families of straight lines (FSL) Rend. Semin. Facolta Sci. Univ. Cagliari 74 fasc. 1-2 83-99, Google Scholar
[13] Bozis G and Kotoulas T 2005 Homogeneous two-parametric families of orbits in three-dimensional homogeneous potentials Inverse Problems 21 343-56, IOPscience, Google Scholar
[14] Bozis G and Nakhla A 1986 Solution of the three-dimensional inverse problem Celest. Mech. 38 357-75, Crossref, Google Scholar
[15] Caranicolas N D 1998 Potentials for the central parts of barred galaxies Astron. Astrophys. 332 88-92, Google Scholar, Caranicolas N D 2004 Orbits in global and local potentials Astron. Astrophys. Trans. 23 241-52, Crossref, Google Scholar
[16] Contopoulos G 1960 A third integral of motion in a galaxy Z. Astrophys. 49 273-91, Google Scholar, Contopoulos G and Bozis G 2000 Complex force fields and complex orbits J. Inverse Ill-Posed Probl. 8 147-60, Crossref, Google Scholar, Érdi B 1982 A generalization of Szebehely’s equation for three dimensions Celest. Mech. 28 209-18, Crossref, Google Scholar
[17] Favard J 1963 Cours d’ Analyse de l’ Ecole Polytechnique Tome 32 (Paris: Gauthier-Villars) p 39, Google Scholar
[18] Heiss W D Nazmitdinov R G and Radu S 1994 Chaos in axially symmetric potentials with Octupole deformation Phys. Rev. Lett. 72 2351-4, Crossref, PubMed, Google Scholar
[19] Miller R H and Smith B F 1979 Dynamics of a stellar bar Astrophys. J. 227 785-97, Crossref, Google Scholar, View article
[20] Olaya-Castro A and Quiroga L 2000 Bose-Einstein condensation in an axially symmetric mesoscopic system Phys. Status Solidi b 220 761-4,  Crossref, Google Scholar
[21] Puel F 1984 Formulation intrinseque de l’equation de Szebehely Celest. Mech. 32 209-16, Crossref, Google Scholar
[22] Shorokhov S G 1988 Solution of an inverse problem of the dynamics of a particle Celest. Mech. 44 193-206, Crossref, Google Scholar
[23 Smirnov V I 1964 A Course of Higher Mathematics vol IV (Oxford: Pergamon) p 359, Google Scholar
[24] Szebehely V 1974 On the determination of the potential by satellite observations Proc. Int. Meeting on Earth’s Rotation by Satellite Observation ed G Proverbio (Bologna: The University of Cagliari) pp 31-5, Google Scholar
[25] Váradi F and Érdi B 1983 Existence of the solution of Szebehely’s equation in three dimensions using a two-parametric family of orbits Celest. Mech. 32 395-405, Crossref, Google Schola4.
[27] Anisiu M-C 2004b Two- and three-dimensional inverse problem of dynamics Studia Univ. Babeş-Bolyai, Math. XLIX(4) 13-26, Google Scholar

2006

Related Posts