Data dependence for the solution of a Lotka-Volterra system with two delays

Abstract

Authors

Diana Otrocol
“Babes-Bolyai” University Department of Applied Mathematics

Keywords

?

Paper coordinates

D. Otrocol, Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48(71), No. 1 (2006), 61-68 (pdf file here).

PDF

About this paper

Journal

Mathematica

Publisher Name
DOI
Print ISSN

1222-9016

Online ISSN

2601-744X

google scholar link

[1] Coman, Gh., Pavel, G., Rus, I. and Rus, I.A, Introducere in teoria ecuatiilor operatoriale, Editura Dacia, Cluj Napoca, 1976.
[2] H.I. Freedman, S. Ruan, Uniform persistence in functional differential equations, J. Differential Equations, 115, 1995.
[3] C. Iancu, A numerical method for a approximating the solution of an integral equation from biomathematics, Studia Univ. “Babes-Bolyai”, Mathematica, Vol XLIII, Nr. 4, 1998.
[4] V. Muresan, Ecuatii diferentiale cu modificarea afina a argumentului, Transilvania Press, Cluj Napoca, 1997.
[5] Y. Muroya, Uniform persistence for Lotka-Volterra-type delay differential systems, Nonlinear Analysis, 4, 2003.
[6] I. A. Rus, Principii si aplicatii ale teoriei punctului fix, Editura Dacia, Cluj Napoca, 1979.
[7] I. A. Rus, V. Darzu-Ilea, First order functional-differential equations with both advanced and retarded arguments, Sem. Fixed Point Theory, Cluj-Napoca, Vol. 5, Nr. 1, 2004
[8] Y. Saito, T. Hara, W. Ma, Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236, 1999.

DATA DEPENDENCE FOR THE SOLUTION OF A LOTKA-VOLTERRA SYSTEM WITH TWO DELAYS

DIANA OTROCOL
Abstract.

The purpose of this paper is to study a Lotka-Volterra system with two delays, by applying fixed point theory.

1. Introduction

Let t,t0,t<t0,τ1,τ2>0,τ1τ2,fiC([t0,b]×4)t,t_{0}\in\mathbb{R},\;t<t_{0},\;\tau_{1},\tau_{2}>0,\;\tau_{1}\leq\tau_{2},\;f_{i}\in C([t_{0},b]\times\mathbb{R}^{4}), i=1,2i=1,2, φC[t0τ1,t0]\varphi\in C[t_{0}-\tau_{1},t_{0}], ψC[t0τ2,t0]\psi\in C[t_{0}-\tau_{2},t_{0}] be given.

The problem is to determine

x\displaystyle x C[t0τ1,b]C1[t0,b]\displaystyle\in C[t_{0}-\tau_{1},b]\cap C^{1}[t_{0},b]
y\displaystyle y C[t0τ2,b]C1[t0,b]\displaystyle\in C[t_{0}-\tau_{2},b]\cap C^{1}[t_{0},b]

from the Lotka-Volterra systems with two delays

(1.1) {x(t)=f1(t,x(t),y(t),x(tτ1),y(tτ2))y(t)=f2(t,x(t),y(t),x(tτ1),y(tτ2)),t[t0,b],t0<b\left\{\begin{array}[c]{c}x^{\prime}(t)=f_{1}(t,x(t),y(t),x(t-\tau_{1}),y(t-\tau_{2}))\\ y^{\prime}(t)=f_{2}(t,x(t),y(t),x(t-\tau_{1}),y(t-\tau_{2}))\end{array}\right.,\;t\in[t_{0},b],\;t_{0}<b

with initial conditions

(1.2) {x(t)=φ(t),t[t0τ1,t0]y(t)=ψ(t),t[t0τ2,t0].\left\{\begin{array}[c]{c}x(t)=\varphi(t),\;t\in[t_{0}-\tau_{1},t_{0}]\\ y(t)=\psi(t),\;t\in[t_{0}-\tau_{2},t_{0}]\end{array}\right..

There have been many studies on this subject (see [2], [5], [8]). The fact that time delays are harmless for the uniform persistence of solutions, is established by Wang and Ma for a predator-prey system, by Lu and Takeuchi and Takeuchi for competitive systems.

Recently, Saito, Hara and Ma [8] have derived necessary and sufficient conditions for the permanence (uniform persistence) and global stability of a symmetrical Lotka-Volterra-type predator-prey system with two delays.

For a nonautonomous competitive Lotka-Volterra system with no delays, recently Ahmad and Lazer have established the average conditions for the persistence, which are weaker than those of Gopalsamy and Tineo and Alvarez for periodic or almost-periodic cases.

Here we study the existence and uniqueness of the solution using the contraction principle and the data dependence using Lemma 2 for the problem (1.1)+(1.2).

2. Existence and uniqueness

The purpose of this section is to find the conditions for the existence and uniqueness of the solution of problem (1.1)+(1.2).

Let (x,y)(x,y) be a solution of (1.1)+(1.2). The problem (1.1)+(1.2) is equivalent with

(2.1) x(t)={φ(t),t[t0τ1,t0]φ(t0)+t0tf1(s,x(s),y(s),x(sτ1),y(sτ2))ds,t[t0,b]x(t)=\left\{\begin{array}[]{ll}\varphi(t),&t\in[t_{0}-\tau_{1},t_{0}]\\ \varphi(t_{0})+\int_{t_{0}}^{t}f_{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s,&t\in[t_{0},b]\end{array}\right.
(2.2) y(t)={ψ(t),t[t0τ2,t0]ψ(t0)+t0tf2(s,x(s),y(s),x(sτ1),y(sτ2))ds,t[t0,b]y(t)=\left\{\begin{array}[]{ll}\psi(t),&t\in[t_{0}-\tau_{2},t_{0}]\\ \psi(t_{0})+{\int_{t_{0}}^{t}}f_{2}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s,&t\in[t_{0},b]\end{array}\right.

where xC[t0τ1,b]x\in C[t_{0}-\tau_{1},b] and yC[t0τ2,b]y\in C[t_{0}-\tau_{2},b].

We consider the operator

Af:C[t0τ1,b]×C[t0τ2,b]C[t0τ1,b]×C[t0τ2,b]A_{f}:C[t_{0}-\tau_{1},b]\times C[t_{0}-\tau_{2},b]\rightarrow C[t_{0}-\tau_{1},b]\times C[t_{0}-\tau_{2},b]

and we remark that it follows

(2.3) (x,y)=Af(x,y)(x,y)=A_{f}(x,y)

where

(2.4) Af(x,y)(t)=(φ(t0)+t0tf1(s,x(s),y(s),x(sτ1),y(sτ2))ds,ψ(t0)+t0tf2(s,x(s),y(s),x(sτ1),y(sτ2))ds)\begin{split}A_{f}(x,y)(t)&=\Bigg{(}\varphi(t_{0})+\int_{t_{0}}^{t}f_{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s,\\ &\psi(t_{0})+{\int_{t_{0}}^{t}}f_{2}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s\Bigg{)}\end{split}

Consider the Banach space C[t0,b]C[t_{0},b] with Bielecki norm B\left\|\cdot\right\|_{B} defined by

(2.5) xB=maxt0tb|x(t)|eρ(tt0),ρ>0\left\|x\right\|_{B}=\underset{t_{0}\leq t\leq b}{\max}\left|x(t)\right|e^{-\rho(t-t_{0})},\;\rho>0

For t[t0τ1,t0]t\in[t_{0}-\tau_{1},t_{0}] we have |Af(x,y)(t)Af(x¯,y¯)(t)|=0.\left|A_{f}(x,y)(t)-A_{f}(\overline{x},\overline{y})(t)\right|=0.

For t[t0τ2,t0]t\in[t_{0}-\tau_{2},t_{0}] we have |Af(x,y)(t)Af(x¯,y¯)(t)|=0.\left|A_{f}(x,y)(t)-A_{f}(\overline{x},\overline{y})(t)\right|=0.

For t[t0,b],t\in[t_{0},b], let (X,d)(X,d) be a metric space with X=(C[t0,b],B)X=(C[t_{0},b],\left\|\cdot\right\|_{B}) and (x,y),(x¯,y¯)X×X,\;(x,y),(\overline{x},\overline{y})\in X\times X, then:

(2.6) d(Af(x,y),Af(x¯,y¯))=|π1Af(x,y)(t)π1Af(x¯,y¯)(t)|=|φ(t0)+t0tf1(s,x(s),y(s),x(sτ1),y(sτ2))dsφ(t0)t0tf1(s,x¯(s),y¯(s),x¯(sτ1),y¯(sτ2))ds|L[t0t|x(s)x¯(s)|eρ(st0)eρ(st0)ds+t0t|y(s)y¯(s)|eρ(st0)eρ(st0)ds+t0t|x(sτ1)x¯(sτ1)|eρ(sτ1t0)eρ(sτ1t0)ds+t0t|y(sτ2)y¯(sτ2)|eρ(sτ2t0)eρ(sτ2t0)ds]L(2xx¯B1ρeρ(tt0)+2yy¯B1ρeρ(tt0))2Lρeρ(tt0)(xx¯B+yy¯B)\begin{split}d(A_{f}(x,y)&,A_{f}(\overline{x},\overline{y}))=\left|\pi_{1}A_{f}(x,y)(t)-\pi_{1}A_{f}(\overline{x},\overline{y})(t)\right|\\ &=\left|\varphi(t_{0})+{\displaystyle\int_{t_{0}}^{t}}f_{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s-\varphi(t_{0})\right.\\ &\left.-{\displaystyle\int_{t_{0}}^{t}}f_{1}(s,\overline{x}(s),\overline{y}(s),\overline{x}(s-\tau_{1}),\overline{y}(s-\tau_{2}))\mathrm{d}s\right|\\ &\leq L\left[{\displaystyle\int_{t_{0}}^{t}}\left|x(s)-\overline{x}(s)\right|e^{-\rho(s-t_{0})}e^{\rho(s-t_{0})}\mathrm{d}s\right.\\ &\left.+{\displaystyle\int_{t_{0}}^{t}}\left|y(s)-\overline{y}(s)\right|e^{-\rho(s-t_{0})}e^{\rho(s-t_{0})}\mathrm{d}s\right.\\ &\left.+{\displaystyle\int_{t_{0}}^{t}}\left|x(s-\tau_{1})-\overline{x}(s-\tau_{1})\right|e^{-\rho(s-\tau_{1}-t_{0})}e^{\rho(s-\tau_{1}-t_{0})}\mathrm{d}s\right.\\ &\left.+{\displaystyle\int_{t_{0}}^{t}}\left|y(s-\tau_{2})-\overline{y}(s-\tau_{2})\right|e^{-\rho(s-\tau_{2}-t_{0})}e^{\rho(s-\tau_{2}-t_{0})}\mathrm{d}s\right]\\ &\leq L\left(2\left\|x-\overline{x}\right\|_{B}\dfrac{1}{\rho}e^{\rho(t-t_{0})}+2\left\|y-\overline{y}\right\|_{B}\dfrac{1}{\rho}e^{\rho(t-t_{0})}\right)\\ &\leq\dfrac{2L}{\rho}e^{\rho(t-t_{0})}\left(\left\|x-\overline{x}\right\|_{B}+\left\|y-\overline{y}\right\|_{B}\right)\end{split}

Consequently,

π1Af(x,y)π1Af(x¯,y¯)B2Lρd((x,y),(x¯,y¯)),\left\|\pi_{1}A_{f}(x,y)-\pi_{1}A_{f}(\overline{x},\overline{y})\right\|_{B}\leq\frac{2L}{\rho}d((x,y),(\overline{x},\overline{y})),

where π1\pi_{1} is the first projection for Af(x,y)A_{f}(x,y) from (2.4).

By similar calculations we obtain

(2.7) π2Af(x,y)π2Af(x¯,y¯)B2Lρd((x,y),(x¯,y¯)),\left\|\pi_{2}A_{f}(x,y)-\pi_{2}A_{f}(\overline{x},\overline{y})\right\|_{B}\leq\frac{2L}{\rho}d((x,y),(\overline{x},\overline{y})),

where π2\pi_{2} is the second projection for Af(x,y)A_{f}(x,y) from (2.4). We deduce

(2.8) d(Af(x,y),Af(x¯,y¯))=π1A(x,y)π1A(x¯,y¯)B+π2A(x,y)π2A(x¯,y¯)B4Lρd((x,y),(x¯,y¯))\begin{split}d(A_{f}(x,y),A_{f}(\overline{x},\overline{y}))&=\left\|\pi_{1}A(x,y)-\pi_{1}A(\overline{x},\overline{y})\right\|_{B}\\ &+\left\|\pi_{2}A(x,y)-\pi_{2}A(\overline{x},\overline{y})\right\|_{B}\\ &\leq\dfrac{4L}{\rho}d((x,y),(\overline{x},\overline{y}))\end{split}

Then AfA_{f} is Lipschitz with a Lipschitz constant LAf=4LρL_{A_{f}}=\dfrac{4L}{\rho}. For ρ=4L+1,\rho=4L+1, AfA_{f} is a contraction. By the contraction principle we have:

Theorem 1.

We suppose that:

(i) fiC([t0,b]×4),i=1,2f_{i}\in C([t_{0},b]\times\mathbb{R}^{4}),\;i=1,2 ;

(ii) there is L>0L>0 such that:

|fi(t,u1,u2,u3,u4)\displaystyle|f_{i}(t,u_{1},u_{2},u_{3},u_{4}) fi(t,v1,v2,v3,v4)|\displaystyle-f_{i}(t,v_{1},v_{2},v_{3},v_{4})|
L(|u1v1|+|u2v2|+|u3v3|+|u4v4|),\displaystyle\leq L(|u_{1}-v_{1}|+|u_{2}-v_{2}|+|u_{3}-v_{3}|+|u_{4}-v_{4}|),

for all t[t0,b],ui,vi,i=1,4¯t\in[t_{0},b],\;u_{i},v_{i}\in\mathbb{R},\;i=\overline{1,4}\; ;

(iii) 4L4L+1<1.\dfrac{4L}{4L+1}<1.

Then the problem (1.1)+(1.2) has in C[t0τ1,b]×C[t0τ2,b]C[t_{0}-\tau_{1},b]\times C[t_{0}-\tau_{2},b] a unique solution. Moreover, if (x,y)(x^{*},y^{*}) the unique solution of (1.1)+(1.2), then

(x,y)=limnAfn(x,y),for all xC[t0τ1,b]yC[t0τ2,b].(x^{*},y^{*})=\underset{n\rightarrow\infty}{\lim}A_{f}^{n}(x,y),\;\text{for all }x\in C[t_{0}-\tau_{1},b]\text{, }y\in C[t_{0}-\tau_{2},b].

3. Data dependence

In this section we shall discus a theorem of data dependence for the solution of problem (1.1)+(1.2). To prove data dependence relation we need the following lemma:

Lemma 2 (I.A. Rus).

Let (X,d)(X,d) be a complete metric space and A,B:XXA,B:X\rightarrow X two operators. We suppose that:

(i) AA is an α\alpha-contraction;

(ii) there is η>0\eta>0 such that

d(A(x),B(x))η,xX,d(A(x),B(x))\leq\eta,\;\forall x\in X,

(iii) xBFBx_{B}^{*}\in F_{B}.

Then

d(xA,xB)η1αd(x_{A}^{*},x_{B}^{*})\leq\frac{\eta}{1-\alpha}

where xAx_{A}^{*} is the unique fixed point of AA.

We have

Theorem 3.

Let f11,f21,f12,f22,φ1,φ2,ψ1,ψ2f_{1}^{1},\;f_{2}^{1},\;f_{1}^{2},\;f_{2}^{2},\;\varphi^{1},\;\varphi^{2},\;\psi^{1},\;\psi^{2} under the hypothesis of Theorem 1. We suppose that there exist ηi>0,i=1,2,3,\eta_{i}>0,\;i=1,2,3, such that

|φ1(t)φ2(t)|η1,t[t0τ1,t0],\left|\varphi^{1}(t)-\varphi^{2}(t)\right|\leq\eta_{1},\;\forall t\in[t_{0}-\tau_{1},t_{0}],
|ψ1(t)ψ2(t)|η2,t[t0τ2,t0]\left|\psi^{1}(t)-\psi^{2}(t)\right|\leq\eta_{2},\;\forall t\in[t_{0}-\tau_{2},t_{0}]

and

|fi1(t,u1,u2,u3,u4)fi2(t,u1,u2,u3,u4)|η3,\left|f_{i}^{1}(t,u_{1},u_{2},u_{3},u_{4})-f_{i}^{2}(t,u_{1},u_{2},u_{3},u_{4})\right|\leq\eta_{3},

for all t[t0,b],u1,u2,u3,u4.t\in[t_{0},b],\;u_{1},u_{2},u_{3},u_{4}\in\mathbb{R}. Then

(x1,y1)(x2,y2)Bη1+η2+2η3(tt0)14L4L+1\left\|(x_{1}^{*},y_{1}^{*})-(x_{2}^{*},y_{2}^{*})\right\|_{B}\leq\frac{\eta_{1}+\eta_{2}+2\eta_{3}(t-t_{0})}{1-\dfrac{4L}{4L+1}}

where (xi,yi),i=1,2(x_{i}^{*},y_{i}^{*}),\;i=1,2 are solutions of the problems (1.1)+(1.2) with data fi1,φ1,ψ1,f_{i}^{1},\varphi^{1},\psi^{1}, respectively with data fi2,φ2,ψ2,i=1,2f_{i}^{2},\varphi^{2},\psi^{2},\;i=1,2.

  •   Proof.

    Consider that we are under the hypothesis of Theorem 1. If (x1,y1)(x_{1}^{*},y_{1}^{*}) solution of problem (1.1)+(1.2) with data fi1,φ1,ψ1,Af1,i=1,2,f_{i}^{1},\varphi^{1},\psi^{1},A_{f}^{1},\;i=1,2, and if (x2,y2)(x_{2}^{*},y_{2}^{*}) solution of problem (1.1)+(1.2) with data fi2,φ2,ψ2,Af2,i=1,2,f_{i}^{2},\varphi^{2},\psi^{2},A_{f}^{2},\;i=1,2, then it follows that

    (3.1) |π1Af1(x,y)(t)π1Af2(x,y)(t)|=|φ1(t0)+t0tf11(s,x(s),y(s),x(sτ1),y(sτ2))dsφ2(t0)t0tf12(s,x(s),y(s),x(sτ1),y(sτ2))ds||φ1(t0)φ2(t0)|+t0t|f11(s,x(s),y(s),x(sτ1),y(sτ2))f12(s,x(s),y(s),x(sτ1),y(sτ2))|dsη1+η3(tt0).\begin{split}&\left|\pi_{1}A_{f}^{1}(x,y)(t)-\pi_{1}A_{f}^{2}(x,y)(t)\right|\\ &=\left|\varphi^{1}(t_{0})+{\displaystyle\int_{t_{0}}^{t}}f_{1}^{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s\right.\\ &\left.-\varphi^{2}(t_{0})-{\displaystyle\int_{t_{0}}^{t}}f_{1}^{2}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s\right|\\ &\leq\left|\varphi^{1}(t_{0})-\varphi^{2}(t_{0})\right|+{\displaystyle\int_{t_{0}}^{t}}\left|f_{1}^{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\right.\\ &-\left.f_{1}^{2}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\right|\mathrm{d}s\leq\eta_{1}+\eta_{3}(t-t_{0}).\end{split}

    We have

    (3.2) |π1Af1(x,y)(t)π1Af2(x,y)(t)|η1+η3(tt0)\displaystyle\left|\pi_{1}A_{f}^{1}(x,y)(t)-\pi_{1}A_{f}^{2}(x,y)(t)\right|\leq\eta_{1}+\eta_{3}(t-t_{0})
    (3.3) |π1Af1(x,y)(t)π1Af2(x,y)(t)|eρ(tt0)η1+η3(tt0)\displaystyle\left|\pi_{1}A_{f}^{1}(x,y)(t)-\pi_{1}A_{f}^{2}(x,y)(t)\right|e^{-\rho(t-t_{0})}\leq\eta_{1}+\eta_{3}(t-t_{0})
    (3.4) π1Af1(x,y)(t)π1Af2(x,y)(t)Bη1+η3(tt0).\displaystyle\left\|\pi_{1}A_{f}^{1}(x,y)(t)-\pi_{1}A_{f}^{2}(x,y)(t)\right\|_{B}\leq\eta_{1}+\eta_{3}(t-t_{0}).

    Analogously

    π2Af1(x,y)(t)π2Af2(x,y)(t)η2+η3(tt0).\left\|\pi_{2}A_{f}^{1}(x,y)(t)-\pi_{2}A_{f}^{2}(x,y)(t)\right\|\leq\eta_{2}+\eta_{3}(t-t_{0}).

    Then

    Af1(x,y)Af2(x,y)Bη1+η2+2η3(tt0).\left\|A_{f}^{1}(x,y)-A_{f}^{2}(x,y)\right\|_{B}\leq\eta_{1}+\eta_{2}+2\eta_{3}(t-t_{0}).

    From Lemma 2 we have:

    (x1,y1)(x2,y2)Bη1+η2+2η3(tt0)14L4L+1\left\|(x_{1}^{*},y_{1}^{*})-(x_{2}^{*},y_{2}^{*})\right\|_{B}\leq\frac{\eta_{1}+\eta_{2}+2\eta_{3}(t-t_{0})}{1-\dfrac{4L}{4L+1}}

    So the proof is complete. ∎

4. Examples

Let μ,φC[1,0],ψC[2,0]\mu\in\mathbb{R},\;\varphi\in C[-1,0],\;\psi\in C[-2,0] be given. We consider the problem

(4.1) {x(t)=μ[x(t1)+y(t2)],t[0,2]y(t)=μ[x(t1)y(t2)],t[0,2]x(t)=φ(t),t[1,0]y(t)=ψ(t),t[2,0].\left\{\begin{array}[]{ll}x^{\prime}(t)=\mu[x(t-1)+y(t-2)],&t\in[0,2]\\ y^{\prime}(t)=\mu[-x(t-1)-y(t-2)],&t\in[0,2]\\ x(t)=\varphi(t),&t\in[-1,0]\\ y(t)=\psi(t),&t\in[-2,0].\end{array}\right.

Then

(4.2) x(t)={φ(t),t[1,0]φ(t0)+0tμ[x(s1)+y(s2)]ds,t[0,2]x(t)=\left\{\begin{array}[]{ll}\varphi(t),&t\in[-1,0]\\ \varphi(t_{0})+{\displaystyle\int_{0}^{t}}\mu[x(s-1)+y(s-2)]\mathrm{d}s,&t\in[0,2]\end{array}\right.
(4.3) y(t)={ψ(t),t[2,0]ψ(t0)+0tμ[x(s1)y(s2)]ds,t[0,2]y(t)=\left\{\begin{array}[]{ll}\psi(t),&t\in[-2,0]\\ \psi(t_{0})+{\displaystyle\int_{0}^{t}}\mu[-x(s-1)-y(s-2)]\mathrm{d}s,&t\in[0,2]\end{array}\right.

We note that if we take A:C[1,2]×[2,2]C[1,2]×[2,2]A:C[-1,2]\times[-2,2]\rightarrow C[-1,2]\times[-2,2] defined by

A(x,y)(t)\displaystyle A(x,y)(t) =(φ(t0)+0tμ[x(s1)+y(s2)]ds,\displaystyle=\left(\varphi(t_{0})+{\displaystyle\int_{0}^{t}}\mu[x(s-1)+y(s-2)]\mathrm{d}s\right.,
ψ(t0)+0tμ[x(s1)y(s2)]ds),\displaystyle\left.\psi(t_{0})+{\displaystyle\int_{0}^{t}}\mu[-x(s-1)-y(s-2)]\mathrm{d}s\right),

then the problem (4.1) is equivalent with

(x,y)=A(x,y).(x,y)=A(x,y).

From Theorem 1 the problem (4.1) has a unique solution.

In what follows we discuss the data dependence of the solution.
Let φ1,φ2,ψ1,ψ2.\varphi^{1},\;\varphi^{2},\;\psi^{1},\;\psi^{2}. We suppose that there are δi>0,i=1,2,3\delta_{i}>0,\;i=1,2,3 such that

|φ1(t)φ2(t)|<δ1\displaystyle\left|\varphi^{1}(t)-\;\varphi^{2}(t)\right|<\delta_{1}
|ψ1(t)ψ2(t)|<δ2\displaystyle\left|\psi^{1}(t)-\;\psi^{2}(t)\right|<\delta_{2}
|μ1μ2||x(t1)+y(t2)|<δ3\displaystyle\left|\mu^{1}-\mu^{2}\right|\left|x(t-1)+y(t-2)\;\right|<\delta_{3}

Let us consider the problems:

(4.4) {x(t)=μ1[x(t1)+y(t2)],t[0,2]y(t)=μ1[x(t1)y(t2)]x(t)=φ1(t),t[1,0]y(t)=ψ1(t),t[2,0]\left\{\begin{array}[]{ll}x^{\prime}(t)=\mu^{1}[x(t-1)+y(t-2)],&t\in[0,2]\\ y^{\prime}(t)=\mu^{1}[-x(t-1)-y(t-2)]\\ x(t)=\varphi^{1}(t),&t\in[-1,0]\\ y(t)=\psi^{1}(t),&t\in[-2,0]\end{array}\right.
(4.5) {x(t)=μ2[x(t1)+y(t2)]t[0,2]y(t)=μ2[x(t1)y(t2)]x(t)=φ2(t),t[1,0]y(t)=ψ2(t),t[2,0]\left\{\begin{array}[]{ll}x^{\prime}(t)=\mu^{2}[x(t-1)+y(t-2)]&t\in[0,2]\\ y^{\prime}(t)=\mu^{2}[-x(t-1)-y(t-2)]\\ x(t)=\varphi^{2}(t),&t\in[-1,0]\\ y(t)=\psi^{2}(t),&t\in[-2,0]\end{array}\right.

If (x1,y1)(x_{1}^{*},y_{1}^{*}) is a solution for the problem (4.4) and (x2,y2)(x_{2}^{*},y_{2}^{*}) is the solution for the problem (4.5), we look for a estimation of (x1,y1)(x2,y2)\left\|(x_{1}^{*},y_{1}^{*})-(x_{2}^{*},y_{2}^{*})\right\|. We have the operators Af1(x,y)(t)A_{f}^{1}(x,y)(t) and Af2(x,y)(t)A_{f}^{2}(x,y)(t) It follows that

Af1(x,y)Af2(x,y)δ1+δ2+2δ3\left\|A_{f}^{1}(x,y)-A_{f}^{2}(x,y)\right\|\leq\delta_{1}+\delta_{2}+2\delta_{3}

From Theorem 3, we have

(x1,y1)(x2,y2)δ1+δ2+2δ314L4L+1.\left\|(x_{1}^{*},y_{1}^{*})-(x_{2}^{*},y_{2}^{*})\right\|\leq\frac{\delta_{1}+\delta_{2}+2\delta_{3}}{1-\dfrac{4L}{4L+1}}.

5. Remarks and generalizations

Remark 1.

Theorems 1 and 3 also hold if we make some changes on the arguments as follows: instead of x(tτ1)x(t-\tau_{1}) we put g1(t)g_{1}(t) with g1C([t0,b],[t0τ1,t0])g_{1}\in C([t_{0},b],[t_{0}-\tau_{1},t_{0}]), and instead of y(tτ2)y(t-\tau_{2}) we have g2(t)g_{2}(t) with g2C([t0,b],[t0τ2,t0])g_{2}\in C([t_{0},b],[t_{0}-\tau_{2},t_{0}]).

Remark 2.

Let fC([t0,b]×n×n,n),φiC([t0τi,t0],n),i=1,2,,,n,t0,t,t0<t,τ1,τ2,,τn>0,τ1<τ2<<τn.f\in C([t_{0},b]\times\mathbb{R}^{n}\times\mathbb{R}^{n},\mathbb{R}^{n}),\;\varphi_{i}\in C([t_{0}-\tau_{i},t_{0}],\mathbb{R}^{n}),\;i=1,2,,\dots,n,\;t_{0},t\in\mathbb{R},\;t_{0}<t,\;\tau_{1},\tau_{2},\dots,\tau_{n}>0,\;\tau_{1}<\tau_{2}<\dots<\tau_{n}.We extend the same discussion to nn populations, with the specification that the populations are in the same environment – prade or predator.

Let x1(t),x2(t),,xn(t)x_{1}(t),x_{2}(t),\dots,x_{n}(t) be lows of growing, continuous and derivable. Then we have the system

(5.1) {x1(t)=f1(t,x1(t),,xn(t),x1(tτ1),,xn(tτn))x2(t)=f2(t,x1(t),,xn(t),x1(tτ1),,xn(tτn))xn(t)=fn(t,x1(t),,xn(t),x1(tτ1),,xn(tτn)),\left\{\begin{array}[c]{c}x_{1}^{{}^{\prime}}(t)=f_{1}(t,x_{1}(t),\dots,x_{n}(t),x_{1}(t-\tau_{1}),\dots,x_{n}(t-\tau_{n}))\\ x_{2}^{{}^{\prime}}(t)=f_{2}(t,x_{1}(t),\dots,x_{n}(t),x_{1}(t-\tau_{1}),\dots,x_{n}(t-\tau_{n}))\\ \cdots\\ x_{n}^{{}^{\prime}}(t)=f_{n}(t,x_{1}(t),\dots,x_{n}(t),x_{1}(t-\tau_{1}),\dots,x_{n}(t-\tau_{n})),\end{array}\right.

where t[t0,b],i=1,,n,fiC([t0,b]×n×n,),i=1,,nt\in[t_{0},b],\;i=1,\dots,n,\;f_{i}\in C([t_{0},b]\times\mathbb{R}^{n}\times\mathbb{R}^{n},\mathbb{R}),\;i=1,\dots,n, and the initial conditions

(5.2) {x1(t)=φ1(t),t[t0τ1,t0]x2(t)=φ2(t),t[t0τ2,t0]xn(t)=φn(t),t[t0τn,t0]\left\{\begin{array}[c]{c}x_{1}(t)=\varphi_{1}(t),\;t\in[t_{0}-\tau_{1},t_{0}]\\ x_{2}(t)=\varphi_{2}(t),\;t\in[t_{0}-\tau_{2},t_{0}]\\ \cdots\\ x_{n}(t)=\varphi_{n}(t),\;t\in[t_{0}-\tau_{n},t_{0}]\end{array}\right.

The problem is to determine xiC([t0τi,b])C1[t0,b],i=1,,nx_{i}\in C([t_{0}-\tau_{i},b])\cap C^{1}[t_{0},b],\;i=1,\dots,n that suits the problem (5.1)+(5.2).

By the contraction principle we have

Theorem 4.

Assume that the following conditions hold.

(i) there is L>0L>0 such that

|fi(t,u11,,u1n,v11,,v1n)fi(t,u21,,u2n,v21,,v2n)|\displaystyle\left|f_{i}(t,u_{11},\dots,u_{1n},v_{11},\dots,v_{1n})-f_{i}(t,u_{21},\dots,u_{2n},v_{21},\dots,v_{2n})\right|
L(|u11u21|++|u1nu2n|+|v11v21|++|v1nv2n|),\displaystyle\leq L(\left|u_{11}-u_{21}\right|+\dots+\left|u_{1n}-u_{2n}\right|+\left|v_{11}-v_{21}\right|+\dots+\left|v_{1n}-v_{2n}\right|),

for all t[t0,b],uji,vji,i=1,2,,n,j=1,2t\in[t_{0},b],\;u_{ji},v_{ji}\in\mathbb{R},\;i=1,2,\dots,n,\;j=1,2 ;

(ii) 2nL2nL+1<1.\dfrac{2nL}{2nL+1}<1.

Then the problem (5.1)+(5.2) has a unique solution. Moreover, if (x1,,xn)(x_{1}^{*},\dots,x_{n}^{*}) the unique solution of (5.1)+(5.2) , then

(x1,,xn)=limnAfn(x1,,xn),for all xiC[t0τi,b],i=1,2,,n(x_{1}^{*},\dots,x_{n}^{*})=\underset{n\rightarrow\infty}{\lim}A_{f}^{n}(x_{1},\dots,x_{n}),\;\text{for all }x_{i}\in C[t_{0}-\tau_{i},b],\;i=1,2,\dots,n

Applying Lemma 2 we have

Theorem 5.

Let fik,φik,k=1,2f_{i}^{k},\;\varphi_{i}^{k},k=1,2, i=1,,ni=1,\dots,n satisfying the hypotheses of Theorem 4. We assume that there exist ηik>0,k=1,2\eta_{i}^{k}>0,\;k=1,2, i=1,,ni=1,\dots,n such that

|φi1(t)φi2(t)|ηi1,t[t0τi,t0],i=1,2,,n\left|\varphi_{i}^{1}(t)-\varphi_{i}^{2}(t)\right|\leq\eta_{i}^{1},\;\forall t\in[t_{0}-\tau_{i},t_{0}],\quad i=1,2,\dots,n

and

|fi1(t,u1,,un,v1,,vn)fi2(t,u1,,un,v1,,vn)|ηi2\left|f_{i}^{1}(t,u_{1},\dots,u_{n},v_{1},\dots,v_{n})-f_{i}^{2}(t,u_{1},\dots,u_{n},v_{1},\dots,v_{n})\right|\leq\eta_{i}^{2}

for all t[t0,b],ui,vi,i=1,2,,n.t\in[t_{0},b],\;u_{i},v_{i}\in\mathbb{R},i=1,2,\dots,n. Then

(x11,,xn1)(x12,,xn2)Bη11++ηn1+(η12++ηn2)(tt0)12nL2nL+1,\left\|(x_{1}^{1*},\dots,x_{n}^{1*})-(x_{1}^{2*},\dots,x_{n}^{2*})\right\|_{B}\leq\frac{\eta_{1}^{1}+\dots+\eta_{n}^{1}+(\eta_{1}^{2}+\dots+\eta_{n}^{2})(t-t_{0})}{1-\dfrac{2nL}{2nL+1}},

where (x1k,,xnk),k=1,2(x_{1}^{k*},\dots,x_{n}^{k*}),\;k=1,2, are solutions of the problems (5.1)+(5.2) with data fi1,φi1,f_{i}^{1},\varphi_{i}^{1}, and fi2,φi2f_{i}^{2},\varphi_{i}^{2} respectively.

References

  • [1] Coman, Gh., Pavel, G., Rus, I. and Rus, I.A, Introducere in teoria ecuatiilor operatoriale, Editura Dacia, Cluj Napoca, 1976.
  • [2] Freedman H.I. and Ruan S., Uniform persistence in functional differential equations, J. Differential Equations, 115, 1995.
  • [3] Iancu C., A numerical method for a approximating the solution of an integral equation from biomathematics, Studia Univ. “Babes-Bolyai”, Mathematica, Vol XLIII, Nr. 4, 1998.
  • [4] Muresan V., Ecuatii diferentiale cu modificarea afina a argumentului, Transilvania Press, Cluj Napoca, 1997.
  • [5] Muroya Y., Uniform persistence for Lotka-Volterra-type delay differential systems, Nonlinear Analysis, 4, 2003.
  • [6] Rus I. A., Principii si aplicatii ale teoriei punctului fix, Editura Dacia, Cluj Napoca, 1979.
  • [7] Rus I. A. and Darzu-Ilea V., First order functional-differential equations with both advanced and retarded arguments, Sem. Fixed Point Theory, Cluj-Napoca, Vol. 5, Nr. 1, 2004
  • [8] Saito Y., Hara T. and Ma W., Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236, 1999.

Received February 21, 2005

“Babeş-Bolyai” University
Department of Applied Mathematics
Str. M. Kogălniceanu 1
RO-400084 Cluj-Napoca, Romania
E-mail: dotrocol@math.ubbcluj.ro

DATA DEPENDENCE FOR THE SOLUTION OF A LOTKA-VOLTERRA SYSTEM WITH TWO DELAYS

DIANA OTROCOL
Abstract.

The purpose of this paper is to study a Lotka-Volterra system with two delays, by applying fixed point theory.

1. Introduction

Let t,t0,t<t0,τ1,τ2>0,τ1τ2,fiC([t0,b]×4)t,t_{0}\in\mathbb{R},\;t<t_{0},\;\tau_{1},\tau_{2}>0,\;\tau_{1}\leq\tau_{2},\;f_{i}\in C([t_{0},b]\times\mathbb{R}^{4}), i=1,2i=1,2, φC[t0τ1,t0]\varphi\in C[t_{0}-\tau_{1},t_{0}], ψC[t0τ2,t0]\psi\in C[t_{0}-\tau_{2},t_{0}] be given.

The problem is to determine

x\displaystyle x C[t0τ1,b]C1[t0,b]\displaystyle\in C[t_{0}-\tau_{1},b]\cap C^{1}[t_{0},b]
y\displaystyle y C[t0τ2,b]C1[t0,b]\displaystyle\in C[t_{0}-\tau_{2},b]\cap C^{1}[t_{0},b]

from the Lotka-Volterra systems with two delays

(1.1) {x(t)=f1(t,x(t),y(t),x(tτ1),y(tτ2))y(t)=f2(t,x(t),y(t),x(tτ1),y(tτ2)),t[t0,b],t0<b\left\{\begin{array}[c]{c}x^{\prime}(t)=f_{1}(t,x(t),y(t),x(t-\tau_{1}),y(t-\tau_{2}))\\ y^{\prime}(t)=f_{2}(t,x(t),y(t),x(t-\tau_{1}),y(t-\tau_{2}))\end{array}\right.,\;t\in[t_{0},b],\;t_{0}<b

with initial conditions

(1.2) {x(t)=φ(t),t[t0τ1,t0]y(t)=ψ(t),t[t0τ2,t0].\left\{\begin{array}[c]{c}x(t)=\varphi(t),\;t\in[t_{0}-\tau_{1},t_{0}]\\ y(t)=\psi(t),\;t\in[t_{0}-\tau_{2},t_{0}]\end{array}\right..

There have been many studies on this subject (see [2], [5], [8]). The fact that time delays are harmless for the uniform persistence of solutions, is established by Wang and Ma for a predator-prey system, by Lu and Takeuchi and Takeuchi for competitive systems.

Recently, Saito, Hara and Ma [8] have derived necessary and sufficient conditions for the permanence (uniform persistence) and global stability of a symmetrical Lotka-Volterra-type predator-prey system with two delays.

For a nonautonomous competitive Lotka-Volterra system with no delays, recently Ahmad and Lazer have established the average conditions for the persistence, which are weaker than those of Gopalsamy and Tineo and Alvarez for periodic or almost-periodic cases.

Here we study the existence and uniqueness of the solution using the contraction principle and the data dependence using Lemma 2 for the problem (1.1)+(1.2).

2. Existence and uniqueness

The purpose of this section is to find the conditions for the existence and uniqueness of the solution of problem (1.1)+(1.2).

Let (x,y)(x,y) be a solution of (1.1)+(1.2). The problem (1.1)+(1.2) is equivalent with

(2.1) x(t)={φ(t),t[t0τ1,t0]φ(t0)+t0tf1(s,x(s),y(s),x(sτ1),y(sτ2))ds,t[t0,b]x(t)=\left\{\begin{array}[]{ll}\varphi(t),&t\in[t_{0}-\tau_{1},t_{0}]\\ \varphi(t_{0})+\int_{t_{0}}^{t}f_{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s,&t\in[t_{0},b]\end{array}\right.
(2.2) y(t)={ψ(t),t[t0τ2,t0]ψ(t0)+t0tf2(s,x(s),y(s),x(sτ1),y(sτ2))ds,t[t0,b]y(t)=\left\{\begin{array}[]{ll}\psi(t),&t\in[t_{0}-\tau_{2},t_{0}]\\ \psi(t_{0})+{\int_{t_{0}}^{t}}f_{2}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s,&t\in[t_{0},b]\end{array}\right.

where xC[t0τ1,b]x\in C[t_{0}-\tau_{1},b] and yC[t0τ2,b]y\in C[t_{0}-\tau_{2},b].

We consider the operator

Af:C[t0τ1,b]×C[t0τ2,b]C[t0τ1,b]×C[t0τ2,b]A_{f}:C[t_{0}-\tau_{1},b]\times C[t_{0}-\tau_{2},b]\rightarrow C[t_{0}-\tau_{1},b]\times C[t_{0}-\tau_{2},b]

and we remark that it follows

(2.3) (x,y)=Af(x,y)(x,y)=A_{f}(x,y)

where

(2.4) Af(x,y)(t)=(φ(t0)+t0tf1(s,x(s),y(s),x(sτ1),y(sτ2))ds,ψ(t0)+t0tf2(s,x(s),y(s),x(sτ1),y(sτ2))ds)\begin{split}A_{f}(x,y)(t)&=\Bigg(\varphi(t_{0})+\int_{t_{0}}^{t}f_{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s,\\ &\psi(t_{0})+{\int_{t_{0}}^{t}}f_{2}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s\Bigg)\end{split}

Consider the Banach space C[t0,b]C[t_{0},b] with Bielecki norm B\left\|\cdot\right\|_{B} defined by

(2.5) xB=maxt0tb|x(t)|eρ(tt0),ρ>0\left\|x\right\|_{B}=\underset{t_{0}\leq t\leq b}{\max}\left|x(t)\right|e^{-\rho(t-t_{0})},\;\rho>0

For t[t0τ1,t0]t\in[t_{0}-\tau_{1},t_{0}] we have |Af(x,y)(t)Af(x¯,y¯)(t)|=0.\left|A_{f}(x,y)(t)-A_{f}(\overline{x},\overline{y})(t)\right|=0.

For t[t0τ2,t0]t\in[t_{0}-\tau_{2},t_{0}] we have |Af(x,y)(t)Af(x¯,y¯)(t)|=0.\left|A_{f}(x,y)(t)-A_{f}(\overline{x},\overline{y})(t)\right|=0.

For t[t0,b],t\in[t_{0},b], let (X,d)(X,d) be a metric space with X=(C[t0,b],B)X=(C[t_{0},b],\left\|\cdot\right\|_{B}) and (x,y),(x¯,y¯)X×X,\;(x,y),(\overline{x},\overline{y})\in X\times X, then:

(2.6) d(Af(x,y),Af(x¯,y¯))=|π1Af(x,y)(t)π1Af(x¯,y¯)(t)|=|φ(t0)+t0tf1(s,x(s),y(s),x(sτ1),y(sτ2))dsφ(t0)t0tf1(s,x¯(s),y¯(s),x¯(sτ1),y¯(sτ2))ds|L[t0t|x(s)x¯(s)|eρ(st0)eρ(st0)ds+t0t|y(s)y¯(s)|eρ(st0)eρ(st0)ds+t0t|x(sτ1)x¯(sτ1)|eρ(sτ1t0)eρ(sτ1t0)ds+t0t|y(sτ2)y¯(sτ2)|eρ(sτ2t0)eρ(sτ2t0)ds]L(2xx¯B1ρeρ(tt0)+2yy¯B1ρeρ(tt0))2Lρeρ(tt0)(xx¯B+yy¯B)\begin{split}d(A_{f}(x,y)&,A_{f}(\overline{x},\overline{y}))=\left|\pi_{1}A_{f}(x,y)(t)-\pi_{1}A_{f}(\overline{x},\overline{y})(t)\right|\\ &=\left|\varphi(t_{0})+{\displaystyle\int_{t_{0}}^{t}}f_{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s-\varphi(t_{0})\right.\\ &\left.-{\displaystyle\int_{t_{0}}^{t}}f_{1}(s,\overline{x}(s),\overline{y}(s),\overline{x}(s-\tau_{1}),\overline{y}(s-\tau_{2}))\mathrm{d}s\right|\\ &\leq L\left[{\displaystyle\int_{t_{0}}^{t}}\left|x(s)-\overline{x}(s)\right|e^{-\rho(s-t_{0})}e^{\rho(s-t_{0})}\mathrm{d}s\right.\\ &\left.+{\displaystyle\int_{t_{0}}^{t}}\left|y(s)-\overline{y}(s)\right|e^{-\rho(s-t_{0})}e^{\rho(s-t_{0})}\mathrm{d}s\right.\\ &\left.+{\displaystyle\int_{t_{0}}^{t}}\left|x(s-\tau_{1})-\overline{x}(s-\tau_{1})\right|e^{-\rho(s-\tau_{1}-t_{0})}e^{\rho(s-\tau_{1}-t_{0})}\mathrm{d}s\right.\\ &\left.+{\displaystyle\int_{t_{0}}^{t}}\left|y(s-\tau_{2})-\overline{y}(s-\tau_{2})\right|e^{-\rho(s-\tau_{2}-t_{0})}e^{\rho(s-\tau_{2}-t_{0})}\mathrm{d}s\right]\\ &\leq L\left(2\left\|x-\overline{x}\right\|_{B}\dfrac{1}{\rho}e^{\rho(t-t_{0})}+2\left\|y-\overline{y}\right\|_{B}\dfrac{1}{\rho}e^{\rho(t-t_{0})}\right)\\ &\leq\dfrac{2L}{\rho}e^{\rho(t-t_{0})}\left(\left\|x-\overline{x}\right\|_{B}+\left\|y-\overline{y}\right\|_{B}\right)\end{split}

Consequently,

π1Af(x,y)π1Af(x¯,y¯)B2Lρd((x,y),(x¯,y¯)),\left\|\pi_{1}A_{f}(x,y)-\pi_{1}A_{f}(\overline{x},\overline{y})\right\|_{B}\leq\frac{2L}{\rho}d((x,y),(\overline{x},\overline{y})),

where π1\pi_{1} is the first projection for Af(x,y)A_{f}(x,y) from (2.4).

By similar calculations we obtain

(2.7) π2Af(x,y)π2Af(x¯,y¯)B2Lρd((x,y),(x¯,y¯)),\left\|\pi_{2}A_{f}(x,y)-\pi_{2}A_{f}(\overline{x},\overline{y})\right\|_{B}\leq\frac{2L}{\rho}d((x,y),(\overline{x},\overline{y})),

where π2\pi_{2} is the second projection for Af(x,y)A_{f}(x,y) from (2.4). We deduce

(2.8) d(Af(x,y),Af(x¯,y¯))=π1A(x,y)π1A(x¯,y¯)B+π2A(x,y)π2A(x¯,y¯)B4Lρd((x,y),(x¯,y¯))\begin{split}d(A_{f}(x,y),A_{f}(\overline{x},\overline{y}))&=\left\|\pi_{1}A(x,y)-\pi_{1}A(\overline{x},\overline{y})\right\|_{B}\\ &+\left\|\pi_{2}A(x,y)-\pi_{2}A(\overline{x},\overline{y})\right\|_{B}\\ &\leq\dfrac{4L}{\rho}d((x,y),(\overline{x},\overline{y}))\end{split}

Then AfA_{f} is Lipschitz with a Lipschitz constant LAf=4LρL_{A_{f}}=\dfrac{4L}{\rho}. For ρ=4L+1,\rho=4L+1, AfA_{f} is a contraction. By the contraction principle we have:

Theorem 1.

We suppose that:

(i) fiC([t0,b]×4),i=1,2f_{i}\in C([t_{0},b]\times\mathbb{R}^{4}),\;i=1,2 ;

(ii) there is L>0L>0 such that:

|fi(t,u1,u2,u3,u4)\displaystyle|f_{i}(t,u_{1},u_{2},u_{3},u_{4}) fi(t,v1,v2,v3,v4)|\displaystyle-f_{i}(t,v_{1},v_{2},v_{3},v_{4})|
L(|u1v1|+|u2v2|+|u3v3|+|u4v4|),\displaystyle\leq L(|u_{1}-v_{1}|+|u_{2}-v_{2}|+|u_{3}-v_{3}|+|u_{4}-v_{4}|),

for all t[t0,b],ui,vi,i=1,4¯t\in[t_{0},b],\;u_{i},v_{i}\in\mathbb{R},\;i=\overline{1,4}\; ;

(iii) 4L4L+1<1.\dfrac{4L}{4L+1}<1.

Then the problem (1.1)+(1.2) has in C[t0τ1,b]×C[t0τ2,b]C[t_{0}-\tau_{1},b]\times C[t_{0}-\tau_{2},b] a unique solution. Moreover, if (x,y)(x^{*},y^{*}) the unique solution of (1.1)+(1.2), then

(x,y)=limnAfn(x,y),for all xC[t0τ1,b]yC[t0τ2,b].(x^{*},y^{*})=\underset{n\rightarrow\infty}{\lim}A_{f}^{n}(x,y),\;\text{for all }x\in C[t_{0}-\tau_{1},b]\text{, }y\in C[t_{0}-\tau_{2},b].

3. Data dependence

In this section we shall discus a theorem of data dependence for the solution of problem (1.1)+(1.2). To prove data dependence relation we need the following lemma:

Lemma 2 (I.A. Rus).

Let (X,d)(X,d) be a complete metric space and A,B:XXA,B:X\rightarrow X two operators. We suppose that:

(i) AA is an α\alpha-contraction;

(ii) there is η>0\eta>0 such that

d(A(x),B(x))η,xX,d(A(x),B(x))\leq\eta,\;\forall x\in X,

(iii) xBFBx_{B}^{*}\in F_{B}.

Then

d(xA,xB)η1αd(x_{A}^{*},x_{B}^{*})\leq\frac{\eta}{1-\alpha}

where xAx_{A}^{*} is the unique fixed point of AA.

We have

Theorem 3.

Let f11,f21,f12,f22,φ1,φ2,ψ1,ψ2f_{1}^{1},\;f_{2}^{1},\;f_{1}^{2},\;f_{2}^{2},\;\varphi^{1},\;\varphi^{2},\;\psi^{1},\;\psi^{2} under the hypothesis of Theorem 1. We suppose that there exist ηi>0,i=1,2,3,\eta_{i}>0,\;i=1,2,3, such that

|φ1(t)φ2(t)|η1,t[t0τ1,t0],\left|\varphi^{1}(t)-\varphi^{2}(t)\right|\leq\eta_{1},\;\forall t\in[t_{0}-\tau_{1},t_{0}],
|ψ1(t)ψ2(t)|η2,t[t0τ2,t0]\left|\psi^{1}(t)-\psi^{2}(t)\right|\leq\eta_{2},\;\forall t\in[t_{0}-\tau_{2},t_{0}]

and

|fi1(t,u1,u2,u3,u4)fi2(t,u1,u2,u3,u4)|η3,\left|f_{i}^{1}(t,u_{1},u_{2},u_{3},u_{4})-f_{i}^{2}(t,u_{1},u_{2},u_{3},u_{4})\right|\leq\eta_{3},

for all t[t0,b],u1,u2,u3,u4.t\in[t_{0},b],\;u_{1},u_{2},u_{3},u_{4}\in\mathbb{R}. Then

(x1,y1)(x2,y2)Bη1+η2+2η3(tt0)14L4L+1\left\|(x_{1}^{*},y_{1}^{*})-(x_{2}^{*},y_{2}^{*})\right\|_{B}\leq\frac{\eta_{1}+\eta_{2}+2\eta_{3}(t-t_{0})}{1-\dfrac{4L}{4L+1}}

where (xi,yi),i=1,2(x_{i}^{*},y_{i}^{*}),\;i=1,2 are solutions of the problems (1.1)+(1.2) with data fi1,φ1,ψ1,f_{i}^{1},\varphi^{1},\psi^{1}, respectively with data fi2,φ2,ψ2,i=1,2f_{i}^{2},\varphi^{2},\psi^{2},\;i=1,2.

Consider that we are under the hypothesis of Theorem 1. If (x1,y1)(x_{1}^{*},y_{1}^{*}) solution of problem (1.1)+(1.2) with data fi1,φ1,ψ1,Af1,i=1,2,f_{i}^{1},\varphi^{1},\psi^{1},A_{f}^{1},\;i=1,2, and if (x2,y2)(x_{2}^{*},y_{2}^{*}) solution of problem (1.1)+(1.2) with data fi2,φ2,ψ2,Af2,i=1,2,f_{i}^{2},\varphi^{2},\psi^{2},A_{f}^{2},\;i=1,2, then it follows that

(3.1) |π1Af1(x,y)(t)π1Af2(x,y)(t)|=|φ1(t0)+t0tf11(s,x(s),y(s),x(sτ1),y(sτ2))dsφ2(t0)t0tf12(s,x(s),y(s),x(sτ1),y(sτ2))ds||φ1(t0)φ2(t0)|+t0t|f11(s,x(s),y(s),x(sτ1),y(sτ2))f12(s,x(s),y(s),x(sτ1),y(sτ2))|dsη1+η3(tt0).\begin{split}&\left|\pi_{1}A_{f}^{1}(x,y)(t)-\pi_{1}A_{f}^{2}(x,y)(t)\right|\\ &=\left|\varphi^{1}(t_{0})+{\displaystyle\int_{t_{0}}^{t}}f_{1}^{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s\right.\\ &\left.-\varphi^{2}(t_{0})-{\displaystyle\int_{t_{0}}^{t}}f_{1}^{2}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\mathrm{d}s\right|\\ &\leq\left|\varphi^{1}(t_{0})-\varphi^{2}(t_{0})\right|+{\displaystyle\int_{t_{0}}^{t}}\left|f_{1}^{1}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\right.\\ &-\left.f_{1}^{2}(s,x(s),y(s),x(s-\tau_{1}),y(s-\tau_{2}))\right|\mathrm{d}s\leq\eta_{1}+\eta_{3}(t-t_{0}).\end{split}

We have

(3.2) |π1Af1(x,y)(t)π1Af2(x,y)(t)|η1+η3(tt0)\displaystyle\left|\pi_{1}A_{f}^{1}(x,y)(t)-\pi_{1}A_{f}^{2}(x,y)(t)\right|\leq\eta_{1}+\eta_{3}(t-t_{0})
(3.3) |π1Af1(x,y)(t)π1Af2(x,y)(t)|eρ(tt0)η1+η3(tt0)\displaystyle\left|\pi_{1}A_{f}^{1}(x,y)(t)-\pi_{1}A_{f}^{2}(x,y)(t)\right|e^{-\rho(t-t_{0})}\leq\eta_{1}+\eta_{3}(t-t_{0})
(3.4) π1Af1(x,y)(t)π1Af2(x,y)(t)Bη1+η3(tt0).\displaystyle\left\|\pi_{1}A_{f}^{1}(x,y)(t)-\pi_{1}A_{f}^{2}(x,y)(t)\right\|_{B}\leq\eta_{1}+\eta_{3}(t-t_{0}).

Analogously

π2Af1(x,y)(t)π2Af2(x,y)(t)η2+η3(tt0).\left\|\pi_{2}A_{f}^{1}(x,y)(t)-\pi_{2}A_{f}^{2}(x,y)(t)\right\|\leq\eta_{2}+\eta_{3}(t-t_{0}).

Then

Af1(x,y)Af2(x,y)Bη1+η2+2η3(tt0).\left\|A_{f}^{1}(x,y)-A_{f}^{2}(x,y)\right\|_{B}\leq\eta_{1}+\eta_{2}+2\eta_{3}(t-t_{0}).

From Lemma 2 we have:

(x1,y1)(x2,y2)Bη1+η2+2η3(tt0)14L4L+1\left\|(x_{1}^{*},y_{1}^{*})-(x_{2}^{*},y_{2}^{*})\right\|_{B}\leq\frac{\eta_{1}+\eta_{2}+2\eta_{3}(t-t_{0})}{1-\dfrac{4L}{4L+1}}

So the proof is complete. ∎

4. Examples

Let μ,φC[1,0],ψC[2,0]\mu\in\mathbb{R},\;\varphi\in C[-1,0],\;\psi\in C[-2,0] be given. We consider the problem

(4.1) {x(t)=μ[x(t1)+y(t2)],t[0,2]y(t)=μ[x(t1)y(t2)],t[0,2]x(t)=φ(t),t[1,0]y(t)=ψ(t),t[2,0].\left\{\begin{array}[]{ll}x^{\prime}(t)=\mu[x(t-1)+y(t-2)],&t\in[0,2]\\ y^{\prime}(t)=\mu[-x(t-1)-y(t-2)],&t\in[0,2]\\ x(t)=\varphi(t),&t\in[-1,0]\\ y(t)=\psi(t),&t\in[-2,0].\end{array}\right.

Then

(4.2) x(t)={φ(t),t[1,0]φ(t0)+0tμ[x(s1)+y(s2)]ds,t[0,2]x(t)=\left\{\begin{array}[]{ll}\varphi(t),&t\in[-1,0]\\ \varphi(t_{0})+{\displaystyle\int_{0}^{t}}\mu[x(s-1)+y(s-2)]\mathrm{d}s,&t\in[0,2]\end{array}\right.
(4.3) y(t)={ψ(t),t[2,0]ψ(t0)+0tμ[x(s1)y(s2)]ds,t[0,2]y(t)=\left\{\begin{array}[]{ll}\psi(t),&t\in[-2,0]\\ \psi(t_{0})+{\displaystyle\int_{0}^{t}}\mu[-x(s-1)-y(s-2)]\mathrm{d}s,&t\in[0,2]\end{array}\right.

We note that if we take A:C[1,2]×[2,2]C[1,2]×[2,2]A:C[-1,2]\times[-2,2]\rightarrow C[-1,2]\times[-2,2] defined by

A(x,y)(t)\displaystyle A(x,y)(t) =(φ(t0)+0tμ[x(s1)+y(s2)]ds,\displaystyle=\left(\varphi(t_{0})+{\displaystyle\int_{0}^{t}}\mu[x(s-1)+y(s-2)]\mathrm{d}s\right.,
ψ(t0)+0tμ[x(s1)y(s2)]ds),\displaystyle\left.\psi(t_{0})+{\displaystyle\int_{0}^{t}}\mu[-x(s-1)-y(s-2)]\mathrm{d}s\right),

then the problem (4.1) is equivalent with

(x,y)=A(x,y).(x,y)=A(x,y).

From Theorem 1 the problem (4.1) has a unique solution.

In what follows we discuss the data dependence of the solution.
Let φ1,φ2,ψ1,ψ2.\varphi^{1},\;\varphi^{2},\;\psi^{1},\;\psi^{2}. We suppose that there are δi>0,i=1,2,3\delta_{i}>0,\;i=1,2,3 such that

|φ1(t)φ2(t)|<δ1\displaystyle\left|\varphi^{1}(t)-\;\varphi^{2}(t)\right|<\delta_{1}
|ψ1(t)ψ2(t)|<δ2\displaystyle\left|\psi^{1}(t)-\;\psi^{2}(t)\right|<\delta_{2}
|μ1μ2||x(t1)+y(t2)|<δ3\displaystyle\left|\mu^{1}-\mu^{2}\right|\left|x(t-1)+y(t-2)\;\right|<\delta_{3}

Let us consider the problems:

(4.4) {x(t)=μ1[x(t1)+y(t2)],t[0,2]y(t)=μ1[x(t1)y(t2)]x(t)=φ1(t),t[1,0]y(t)=ψ1(t),t[2,0]\left\{\begin{array}[]{ll}x^{\prime}(t)=\mu^{1}[x(t-1)+y(t-2)],&t\in[0,2]\\ y^{\prime}(t)=\mu^{1}[-x(t-1)-y(t-2)]\\ x(t)=\varphi^{1}(t),&t\in[-1,0]\\ y(t)=\psi^{1}(t),&t\in[-2,0]\end{array}\right.
(4.5) {x(t)=μ2[x(t1)+y(t2)]t[0,2]y(t)=μ2[x(t1)y(t2)]x(t)=φ2(t),t[1,0]y(t)=ψ2(t),t[2,0]\left\{\begin{array}[]{ll}x^{\prime}(t)=\mu^{2}[x(t-1)+y(t-2)]&t\in[0,2]\\ y^{\prime}(t)=\mu^{2}[-x(t-1)-y(t-2)]\\ x(t)=\varphi^{2}(t),&t\in[-1,0]\\ y(t)=\psi^{2}(t),&t\in[-2,0]\end{array}\right.

If (x1,y1)(x_{1}^{*},y_{1}^{*}) is a solution for the problem (4.4) and (x2,y2)(x_{2}^{*},y_{2}^{*}) is the solution for the problem (4.5), we look for a estimation of (x1,y1)(x2,y2)\left\|(x_{1}^{*},y_{1}^{*})-(x_{2}^{*},y_{2}^{*})\right\|. We have the operators Af1(x,y)(t)A_{f}^{1}(x,y)(t) and Af2(x,y)(t)A_{f}^{2}(x,y)(t) It follows that

Af1(x,y)Af2(x,y)δ1+δ2+2δ3\left\|A_{f}^{1}(x,y)-A_{f}^{2}(x,y)\right\|\leq\delta_{1}+\delta_{2}+2\delta_{3}

From Theorem 3, we have

(x1,y1)(x2,y2)δ1+δ2+2δ314L4L+1.\left\|(x_{1}^{*},y_{1}^{*})-(x_{2}^{*},y_{2}^{*})\right\|\leq\frac{\delta_{1}+\delta_{2}+2\delta_{3}}{1-\dfrac{4L}{4L+1}}.

5. Remarks and generalizations

Remark 1.

Theorems 1 and 3 also hold if we make some changes on the arguments as follows: instead of x(tτ1)x(t-\tau_{1}) we put g1(t)g_{1}(t) with g1C([t0,b],[t0τ1,t0])g_{1}\in C([t_{0},b],[t_{0}-\tau_{1},t_{0}]), and instead of y(tτ2)y(t-\tau_{2}) we have g2(t)g_{2}(t) with g2C([t0,b],[t0τ2,t0])g_{2}\in C([t_{0},b],[t_{0}-\tau_{2},t_{0}]).

Remark 2.

Let fC([t0,b]×n×n,n),φiC([t0τi,t0],n),i=1,2,,,n,t0,t,t0<t,τ1,τ2,,τn>0,τ1<τ2<<τn.f\in C([t_{0},b]\times\mathbb{R}^{n}\times\mathbb{R}^{n},\mathbb{R}^{n}),\;\varphi_{i}\in C([t_{0}-\tau_{i},t_{0}],\mathbb{R}^{n}),\;i=1,2,,\dots,n,\;t_{0},t\in\mathbb{R},\;t_{0}<t,\;\tau_{1},\tau_{2},\dots,\tau_{n}>0,\;\tau_{1}<\tau_{2}<\dots<\tau_{n}.We extend the same discussion to nn populations, with the specification that the populations are in the same environment – prade or predator.

Let x1(t),x2(t),,xn(t)x_{1}(t),x_{2}(t),\dots,x_{n}(t) be lows of growing, continuous and derivable. Then we have the system

(5.1) {x1(t)=f1(t,x1(t),,xn(t),x1(tτ1),,xn(tτn))x2(t)=f2(t,x1(t),,xn(t),x1(tτ1),,xn(tτn))xn(t)=fn(t,x1(t),,xn(t),x1(tτ1),,xn(tτn)),\left\{\begin{array}[c]{c}x_{1}^{{}^{\prime}}(t)=f_{1}(t,x_{1}(t),\dots,x_{n}(t),x_{1}(t-\tau_{1}),\dots,x_{n}(t-\tau_{n}))\\ x_{2}^{{}^{\prime}}(t)=f_{2}(t,x_{1}(t),\dots,x_{n}(t),x_{1}(t-\tau_{1}),\dots,x_{n}(t-\tau_{n}))\\ \cdots\\ x_{n}^{{}^{\prime}}(t)=f_{n}(t,x_{1}(t),\dots,x_{n}(t),x_{1}(t-\tau_{1}),\dots,x_{n}(t-\tau_{n})),\end{array}\right.

where t[t0,b],i=1,,n,fiC([t0,b]×n×n,),i=1,,nt\in[t_{0},b],\;i=1,\dots,n,\;f_{i}\in C([t_{0},b]\times\mathbb{R}^{n}\times\mathbb{R}^{n},\mathbb{R}),\;i=1,\dots,n, and the initial conditions

(5.2) {x1(t)=φ1(t),t[t0τ1,t0]x2(t)=φ2(t),t[t0τ2,t0]xn(t)=φn(t),t[t0τn,t0]\left\{\begin{array}[c]{c}x_{1}(t)=\varphi_{1}(t),\;t\in[t_{0}-\tau_{1},t_{0}]\\ x_{2}(t)=\varphi_{2}(t),\;t\in[t_{0}-\tau_{2},t_{0}]\\ \cdots\\ x_{n}(t)=\varphi_{n}(t),\;t\in[t_{0}-\tau_{n},t_{0}]\end{array}\right.

The problem is to determine xiC([t0τi,b])C1[t0,b],i=1,,nx_{i}\in C([t_{0}-\tau_{i},b])\cap C^{1}[t_{0},b],\;i=1,\dots,n that suits the problem (5.1)+(5.2).

By the contraction principle we have

Theorem 4.

Assume that the following conditions hold.

(i) there is L>0L>0 such that

|fi(t,u11,,u1n,v11,,v1n)fi(t,u21,,u2n,v21,,v2n)|\displaystyle\left|f_{i}(t,u_{11},\dots,u_{1n},v_{11},\dots,v_{1n})-f_{i}(t,u_{21},\dots,u_{2n},v_{21},\dots,v_{2n})\right|
L(|u11u21|++|u1nu2n|+|v11v21|++|v1nv2n|),\displaystyle\leq L(\left|u_{11}-u_{21}\right|+\dots+\left|u_{1n}-u_{2n}\right|+\left|v_{11}-v_{21}\right|+\dots+\left|v_{1n}-v_{2n}\right|),

for all t[t0,b],uji,vji,i=1,2,,n,j=1,2t\in[t_{0},b],\;u_{ji},v_{ji}\in\mathbb{R},\;i=1,2,\dots,n,\;j=1,2 ;

(ii) 2nL2nL+1<1.\dfrac{2nL}{2nL+1}<1.

Then the problem (5.1)+(5.2) has a unique solution. Moreover, if (x1,,xn)(x_{1}^{*},\dots,x_{n}^{*}) the unique solution of (5.1)+(5.2) , then

(x1,,xn)=limnAfn(x1,,xn),for all xiC[t0τi,b],i=1,2,,n(x_{1}^{*},\dots,x_{n}^{*})=\underset{n\rightarrow\infty}{\lim}A_{f}^{n}(x_{1},\dots,x_{n}),\;\text{for all }x_{i}\in C[t_{0}-\tau_{i},b],\;i=1,2,\dots,n

Applying Lemma 2 we have

Theorem 5.

Let fik,φik,k=1,2f_{i}^{k},\;\varphi_{i}^{k},k=1,2, i=1,,ni=1,\dots,n satisfying the hypotheses of Theorem 4. We assume that there exist ηik>0,k=1,2\eta_{i}^{k}>0,\;k=1,2, i=1,,ni=1,\dots,n such that

|φi1(t)φi2(t)|ηi1,t[t0τi,t0],i=1,2,,n\left|\varphi_{i}^{1}(t)-\varphi_{i}^{2}(t)\right|\leq\eta_{i}^{1},\;\forall t\in[t_{0}-\tau_{i},t_{0}],\quad i=1,2,\dots,n

and

|fi1(t,u1,,un,v1,,vn)fi2(t,u1,,un,v1,,vn)|ηi2\left|f_{i}^{1}(t,u_{1},\dots,u_{n},v_{1},\dots,v_{n})-f_{i}^{2}(t,u_{1},\dots,u_{n},v_{1},\dots,v_{n})\right|\leq\eta_{i}^{2}

for all t[t0,b],ui,vi,i=1,2,,n.t\in[t_{0},b],\;u_{i},v_{i}\in\mathbb{R},i=1,2,\dots,n. Then

(x11,,xn1)(x12,,xn2)Bη11++ηn1+(η12++ηn2)(tt0)12nL2nL+1,\left\|(x_{1}^{1*},\dots,x_{n}^{1*})-(x_{1}^{2*},\dots,x_{n}^{2*})\right\|_{B}\leq\frac{\eta_{1}^{1}+\dots+\eta_{n}^{1}+(\eta_{1}^{2}+\dots+\eta_{n}^{2})(t-t_{0})}{1-\dfrac{2nL}{2nL+1}},

where (x1k,,xnk),k=1,2(x_{1}^{k*},\dots,x_{n}^{k*}),\;k=1,2, are solutions of the problems (5.1)+(5.2) with data fi1,φi1,f_{i}^{1},\varphi_{i}^{1}, and fi2,φi2f_{i}^{2},\varphi_{i}^{2} respectively.

References

  • [1] Coman, Gh., Pavel, G., Rus, I. and Rus, I.A, Introducere in teoria ecuatiilor operatoriale, Editura Dacia, Cluj Napoca, 1976.
  • [2] Freedman H.I. and Ruan S., Uniform persistence in functional differential equations, J. Differential Equations, 115, 1995.
  • [3] Iancu C., A numerical method for a approximating the solution of an integral equation from biomathematics, Studia Univ. “Babes-Bolyai”, Mathematica, Vol XLIII, Nr. 4, 1998.
  • [4] Muresan V., Ecuatii diferentiale cu modificarea afina a argumentului, Transilvania Press, Cluj Napoca, 1997.
  • [5] Muroya Y., Uniform persistence for Lotka-Volterra-type delay differential systems, Nonlinear Analysis, 4, 2003.
  • [6] Rus I. A., Principii si aplicatii ale teoriei punctului fix, Editura Dacia, Cluj Napoca, 1979.
  • [7] Rus I. A. and Darzu-Ilea V., First order functional-differential equations with both advanced and retarded arguments, Sem. Fixed Point Theory, Cluj-Napoca, Vol. 5, Nr. 1, 2004
  • [8] Saito Y., Hara T. and Ma W., Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236, 1999.

Received February 21, 2005

“Babeş-Bolyai” University
Department of Applied Mathematics
Str. M. Kogălniceanu 1
RO-400084 Cluj-Napoca, Romania
E-mail: dotrocol@math.ubbcluj.ro
2006

Related Posts