Derivation of one-dimensional hydrodynamic model for stock price evolution

Abstract

It was proved that balance equations for systems with corpuscular structure can be derived if a kinematic description by piece-wise analytic functions is available (Vamoş et al., Physica A 227 (1996) 81). This article presents a rigorous derivation of an one-dimensional hydrodynamic model for the stock price evolution. The kinematic description is given by a set of time functions describing the evolution of the stock price.

Authors

C. Vamoş
T. Popoviciu” Institute of Numerical Analysis, Romanian Academy

N. Suciu
T. Popoviciu” Institute of Numerical Analysis, Romanian Academy

W. Blaj
Globinvest SA Investment Company, Romanian

Keywords

Econophysics; statistical mechanics; hydrodynamics

Cite this paper as

C. Vamoş, N. Suciu, W. Blaj (2000), Derivation of one-dimensional hydrodynamic model for stock price evolution, Physica A, 287, 461-467, doi: 10.1016/S0378-4371(00)00385-X

References

see the expanding block below

PDF

https://ictp.acad.ro/vamos/papers/2000-vamos-suciu-blaj.pdf

soon

About this paper

Journal

Physica A

Publisher Name
Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

google scholar link

References

Paper in html format

References

[1] J.W. Moffat, A dynamical model of the capital markets, Physica A 264 (1999) 532.
CrossRef (DOI)

[2] J.G. Kirkwood, Selected Topics in Statistical Mechanics, R.W. Zwanzig, Ed., Gordon and Breach, New York, 1967.

[3] R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, New York, 1975.

[4] C. Vamos, A. Georgescu, N. Suciu and I. Turcu, Balance equations for physical systems with corpuscular structure, Physica A 227 (1996) 81.
CrossRef (DOI)

[5] C. Vamos, A. Georgescu and N. Suciu, St. Cerc. Mat. 48 (1996) 115.

[6] C. Vamos, N. Suciu and A. Georgescu, Hydrodynamic equations for one-dimensional systems of inelastic particles, Phys. Rev. E 55 (1997) 6277.
CrossRef (DOI)

[7] L. Laloux, P. Cizeau, J. Bouchaud and M. Potters, Noise Dressing of Financial Correlation Matrices, Phys. Rev. Lett. 83 (1999) 1467.
CrossRef (DOI)

[8] V. Plerou, P. Gopikrishnan, B. Rosenow, L.N. Amaral and H.E. Stanley, Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series, Phys. Rev. Lett. 83 (1999) 1471.
CrossRef (DOI)

[9] C. Truesdell and R.A. Toupin, The Classical Field Theories in Handbuch der Physik, Vol. III, Part 1, S. Flugge, Ed., Springer, Berlin, 1960.

Related Posts

Menu