## Abstract

It was proved that balance equations for systems with corpuscular structure can be derived if a kinematic description by piece-wise analytic functions is available (Vamoş et al., Physica A 227 (1996) 81). This article presents a rigorous derivation of an one-dimensional hydrodynamic model for the stock price evolution. The kinematic description is given by a set of time functions describing the evolution of the stock price.

## Authors

C. **Vamoş
**T. Popoviciu” Institute of Numerical Analysis, Romanian Academy

N. **Suciu
**T. Popoviciu” Institute of Numerical Analysis, Romanian Academy

W. **Blaj
**Globinvest SA Investment Company, Romanian

## Keywords

Econophysics; statistical mechanics; hydrodynamics

## Cite this paper as

C. Vamoş, N. Suciu, W. Blaj (2000), *Derivation of one-dimensional hydrodynamic model for stock price evolution*, Physica A, 287, 461-467, doi: 10.1016/S0378-4371(00)00385-X

### References

see the expanding block below

soon

## About this paper

##### Print ISSN

Not available yet.

##### Online ISSN

Not available yet.

##### Google Scholar Profile

google scholar link

[1] J.W. Moffat, *A dynamical model of the capital markets*, Physica A 264 (1999) 532.

CrossRef (DOI)

[2] J.G. Kirkwood,* Selected Topics in Statistical Mechanics*, R.W. Zwanzig, Ed., Gordon and Breach, New York, 1967.

[3] R. Balescu, *Equilibrium and Nonequilibrium Statistical Mechanic*s. Wiley, New York, 1975.

[4] C. Vamos, A. Georgescu, N. Suciu and I. Turcu, *Balance equations for physical systems with corpuscular structure*, Physica A 227 (1996) 81.

CrossRef (DOI)

[5] C. Vamos, A. Georgescu and N. Suciu, St. Cerc. Mat. 48 (1996) 115.

[6] C. Vamos, N. Suciu and A. Georgescu, *Hydrodynamic equations for one-dimensional systems of inelastic particles*, Phys. Rev. E 55 (1997) 6277.

CrossRef (DOI)

[7] L. Laloux, P. Cizeau, J. Bouchaud and M. Potters,* Noise Dressing of Financial Correlation Matrices,* Phys. Rev. Lett. 83 (1999) 1467.

CrossRef (DOI)

[8] V. Plerou, P. Gopikrishnan, B. Rosenow, L.N. Amaral and H.E. Stanley, *Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series*, Phys. Rev. Lett. 83 (1999) 1471.

CrossRef (DOI)

[9] C. Truesdell and R.A. Toupin, *The Classical Field Theories in Handbuch der Physik*, Vol. III, Part 1, S. Flugge, Ed., Springer, Berlin, 1960.