Diffusion in random velocity fields with applications to contaminant transport in groundwater

Abstract

The process of diffusion in a random velocity field is the mathematical object underlying currently used stochastic models of transport in groundwater. The essential difference from the normal diffusion is given by the nontrivial correlation of the increments of the process which induces transitory or persistent dependence on initial conditions. Intimately related to these memory effects is the ergodicity issue in subsurface hydrology.

These two topics are discussed here from the perspectives of Itô and Fokker–Planck complementary descriptions and of recent Monte Carlo studies. The latter used a global random walk algorithm, stable and free of numerical diffusion. Beyond Monte Carlo simulations, this algorithm and the mathematical frame of the diffusion in random fields allow efficient solutions to evolution equations for the probability density of the random concentration.

Authors

N. Suciu
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
-Department of Mathematics, Friedrich-Alexander University of Erlangen-Nuremberg, Cauerstr. 11, 91058 Erlangen, Germany

Keywords

Groundwater; Transport processes; Ergodicity; Random fields; Random walk; PDF methods

Cite this paper as

N. Suciu, Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Res., 69, 114-133, 2014,
doi: 10.1016/j.advwatres.2014.04.002

[1] Y. Ait-Sahalia, Telling from discrete data whether the underlying continuous time model is a diffusion, J Finance 2002;57:2075–112.
CrossRef (DOI)

[2] Attinger S, Dentz M, Kinzelbach H, Kinzelbach W., Temporal behavior of a solute cloud in a chemically heterogeneous porous medium. J Fluid Mech 1999; 386:77–104.
CrossRef (DOI)

[3] Avellaneda M, Majda M., Stieltjes integral representation and effective diffusivity bounds for turbulent diffusion. Phys Rev Lett 1989; 62(7):753–5.
CrossRef (DOI)

[4] Avellaneda M, Majda M., Superdiffusion in nearly stratified flows. J Stat Phys 1992; 69(3/4): 689–729.
CrossRef (DOI)

[5] Balescu R., Transport processes in plasmas. Amsterdam: North-Holland; 1988.

[6] Balescu R., Memory effects in plasma transport theory. Plasma Phys Controlled Fusion 2000; 42:B1–B13.
CrossRef (DOI)

[7] Balescu R, Wang H-D, Misguich JH., Langevin equation versus kinetic equation: subdiffusive behavior of charged particles in a stochastic magnetic field. Phys Plasmas 1994; 1(12): 3826–42.
CrossRef (DOI)

[8] Bear J., On the tensor form of dispersion in porous media. J Geophys Res 1961; 66(4): 1185–97.
CrossRef (DOI)

[9] Berkowitz B, Scher H., Anomalous transport in random fracture networks. Phys Rev Lett 1997; 79(20): 4038–41.
CrossRef (DOI)

[10] Berkowitz B, Scher H., Anomalous transport in correlated velocity fields. Phys Rev E 2010; 81:011128.
CrossRef (DOI)

[11] Bouchaud J-P, Georges A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys Rep 1990; 195: 127–293.
CrossRef (DOI)

[12] Bouchaud J-P, Georges A, Koplik J, Provata A, Redner S., Superdiffusion in random velocity fields. Phys Rev Lett 1990; 64: 2503–6.
CrossRef (DOI)

[13] Brunner F, Radu FA, Bause M, Knabner P., Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media. Adv Water Resour 2012; 35: 163–71.
CrossRef (DOI)

[14] Chilès JP, Delfiner P., Geostatistics: modeling spatial uncertainty. New York: John Wiley & Sons; 1999

[15] Clincy M, Kinzelbach H., Stratified disordered media: exact solutions for transport parameters and their self-averaging properties. J Phys A: Math Gen 2001; 34: 7142–52.
CrossRef (DOI)

[16] Colucci PJ, Jaberi FA, Givi P., Filtered density function for large eddy simulation of turbulent reacting flows. Phys Fluids 1998; 10(2): 499–515.
CrossRef (DOI)

[17] Cushman JH., On measurement, scale, and scaling. Water Resour Res 1986; 22: 129–34.
CrossRef (DOI)

[18] Cushman J.H. In: Cushman J.H, editor. Dynamics of fluids in hierarchical porous media. London: Academic Press; 1990

[19] Cushman J,H.. The physics of fluids in hierarchical porous media: angstroms to miles. Dordrecht: Springer Science + Business Media; 1997
CrossRef (DOI)

[20] Cushman JH, Ginn T.R., Nonlocal dispersion in porous media with continuously evolving scales of heterogeneity. J Transp Porous Media 1993; 13(1): 123–38.
CrossRef (DOI)

[21] Cushman JH, Ginn T.R., On dispersion in fractal porous media. Water Resour Res 1993; 29(10): 3513–5.
CrossRef (DOI)

[22] Cushman JH, Hu X, Ginn T.R., Nonequilibrium statistical mechanics of preasymptotic dispersion. J Stat Phys 1994; 75: 859–78.
CrossRef (DOI)

[23] Dagan G., Solute transport in heterogeneous porous formations. J Fluid Mech 1984; 145: 151–177.
CrossRef (DOI)

[24] Dagan G., Theory of solute transport by groundwater. Annu Rev Fluid Mech 1987; 19: 183–215.
CrossRef (DOI)

[25] Dagan G., Flow and transport in porous formations. Berlin: Springer; 1989.
CrossRef (DOI)

[26] Dagan G., Transport in heterogeneous porous formations: spatial moments, ergodicity, and effective dispersion. Water Resour Res 1990; 26(6): 1281–1290.
CrossRef (DOI)

[27] Deng W, Barkai E., Ergodic properties of fractional Brownian–Langevin motion. Phys Rev E 2009; 79: 011112.
CrossRef (DOI)

[28] Dentz M, Kinzelbach H, Attinger S, Kinzelbach W., Temporal behavior of a solute cloud in a heterogeneous porous medium. 1. Point-like injection. Water Resour Res 2000; 36: 3591–604.
CrossRef (DOI)

[29] Dentz M, Tartakovsky D.M., Probability density functions for passive scalars dispersed in random velocity fields. Geophys Res Lett 2010; 37:L24406.
CrossRef (DOI)

[30] Dentz M. de Barros F.P.J., Dispersion variance for transport in heterogeneous porous media. Water Resour Res 2013; 49: 3443–61.
CrossRef (DOI)

[31] Doob J.L., Stochastic processes. London: John Wiley & Sons; 1990.

[32] Dorini FA, Cunha M.C.C., On the linear advection equation subject to random velocity fields. Math Comput Simul 2011; 82:679–90.
CrossRef (DOI)

[33] Dybiec B, Gudowska-Nowak E., Discriminating between normal and anomalous random walks. Phys Rev E 2009; 80:061122.
CrossRef (DOI)

[34] Eberhard J., Approximations for transport parameters and self-averaging properties for point-like injections in heterogeneous media. J Phys A:Math Gen 2004; 37:2549–71.
CrossRef (DOI)

[35] Eberhard J, Suciu N, Vamos C., On the self-averaging of dispersion for transport in quasi-periodic random media. J Phys A: Math Theor 2007; 40:597–610.
CrossRef (DOI)

[36] El Haddad R, Lécot C, Venkiteswaran G., Diffusion in a nonhomogeneous medium: quasi-random walk on a lattice. Monte Carlo Methods Appl. 2010; 16:2011–30.
CrossRef (DOI)

[37] El Haddad R, Lécot C, Venkiteswaran G., Quasi-Monte Carlo simulation of diffusion in a spatially nonhomogeneous medium. In: L’Ecuyér Pierre, Owen Art B, editors. Monte Carlo and quasi-Monte Carlo methods 2008. Berlin: Springer; 2009. p. 339–54.
CrossRef (DOI)

[38] Fannjiang A, Komorowski T., Diffusive and nondiffusive limits of transport in nonmixing flows. SIAM J Appl Math 2002; 62:909–23.
CrossRef (DOI)

[39] Fiori A., On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour Res 2001; 37(2):235–42.
CrossRef (DOI)

[40] Fiori A, Dagan G., Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J Contam Hydrol 2000; 45:139–63.
CrossRef (DOI)

[41] Fox R.O., Computational models for turbulent reacting flows. New York: Cambridge University Press; 2003

[42] Fried J.J., Groundwater pollution. New York: Elsevier; 1975.

[43] Gardiner C., Stochastic methods. Berlin: Springer; 2009

[44] Gelhar L.W., Stochastic subsurface hydrology from theory to applications. Water Resour Res 1986; 22(9S):135S–45S.
CrossRef (DOI)

[45] Gelhar LW, Axness C., Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 1983; 19(1):161–80.
CrossRef (DOI)

[46] Gheorghiu S, Coppens M.O., Heterogeneity explains features of anomalous thermodynamics and statistics. PNAS 2004; 101(45):15852–6.
CrossRef (DOI)

[47] Haworth D.C., Progress in probability density function methods for turbulent reacting flows. Prog Energy Combust Sci 2010; 36:168–259.
CrossRef (DOI)

[48] Haworth D.C, Pope S.B., Transported probability density function methods for Reynolds-averaged and large-eddy simulations. In: Echekki T, Mastorakos E, editors. Turbulent combustion modeling. Fluid mechanics and its applications, vol. 95. Dordrecht: Springer; 2011. p. 119–42.
CrossRef (DOI)

[49] Heinz S., Unified turbulence models for LES and RANS, FDF and PDF simulations. Theor Comput Fluid Dyn 2007; 21:99–118.
CrossRef (DOI)

[50] Jeon J-H, Metzler R., Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys Rev E 2010; 81:021103.
CrossRef (DOI)

[51] Kabala ZJ, Sposito G., A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer. Water Resour Res 1991; 27(3):341–50.
CrossRef (DOI)

[52] Kavvas M.L, Karakas A., On the stochastic theory of solute transport by unsteady and steady groundwater flow in heterogeneous aquifers. J Hydrol 1996; 179:321–51.
CrossRef (DOI)

[53] Kavvas M.L., General conservation equation for solute transport in heterogeneous porous media. J Hydrol Eng 2001; 6(2):341–50.
CrossRef (DOI)

[54] Kavvas M.L., Nonlinear hydrologic processes: Conservation equations for determining their means and probability distributions. J Hydrol Eng 2003; 8(2):44–52.
CrossRef (DOI)

[55] Karapiperis T, Blankleider B., Cellular automaton model of reaction-transport processes. Physica D 1994; 78:30–64.
CrossRef (DOI)

[56] Kesten H, Papanicolaou G.C., A limit theorem for turbulent diffusion. Commun Math Phys 1979; 65:97–128.
CrossRef (DOI)

[57] Kitanidis P.K., Prediction by the method of moments of transport in a heterogeneous formation. J Hydrol 1988; 102:453–73.
CrossRef (DOI)

[58] Klimenko A.Y., On simulating scalar transport by mixing between Lagrangian particles. Phys Fluids 2007; 19:031702.
CrossRef (DOI)

[59] Kloeden P.E, Platen E., Numerical solutions of stochastic differential equations. Berlin: Springer; 1999

[60] Komorowski T, Papanicolaou G., Motion in a Gaussian incompressible flow. Ann Appl Probab 1997; 7(1):229–64.
CrossRef (DOI)

[61] Kraichnan R.H., Diffusion by a random velocity field. Phys Fluids 1970; 13(1):22–31.
CrossRef (DOI)

[62] Le Doussal P, Machta J., Annealed versus quenched diffusion coefficient in random media. Phys Rev B 1989; 40(12):9427–30.
CrossRef (DOI)

[63] Lécot C, Coulibaly I., A particle method for some parabolic equations. J Comput Appl Math 1998; 90:25–44.
CrossRef (DOI)

[64] Lumley J.L., The mathematical nature of the problem of relating Lagrangian and Eulerian statistical functions in turbulence. In: Mécanique de la Turbulence (Coll. Intern. du CNRS à Marseille). Paris: CNRS; 1962. p. 17–26

[65] Majda A.J, Kramer P.R., Simplified models for turbulent dilusion: theory, numerical modelling, and physical phenomena. Phys Rep 1999; 14:237–574.
CrossRef (DOI)

[66] Majumdar S.N., Persistence of a particle in the Matheron – de Marsily velocity field. Phys Rev E 2003; 68:050101(R).
CrossRef (DOI)

[67] Matheron G, de Marsily G., Is transport in porous media always diffusive? Water Resour Res 1980; 16:901–17.
CrossRef (DOI)

[68] Meyer D,W, Jenny P, Tchelepi H.A., A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media. Water Resour Res 2010; 46:W12522.
CrossRef (DOI)

[69] McDermott R, Pope S.B., A particle formulation for treating differential diffusion in filtered density models. J Comput Phys 2007; 226:947–93.
CrossRef (DOI)

[70] Monin A.S, Yaglom A.M., Statistical fluid mechanics: mechanics of turbulence. Cambridge, MA: MIT Press; 1975

[71] Morales-Casique E, Neuman SP, Gaudagnini A., Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: theoretical framework. Adv Water Resour 2006; 29:1238–55.
CrossRef (DOI)

[72] Morales-Casique E, Neuman S.P, Gaudagnini A., Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: computational analysis. Adv Water Resour 2006; 29:1399–418.
CrossRef (DOI)

[73] Neuman SP, Tartakovsky D.M., Perspective on theories of non-Fickian transport in heterogeneous media. Adv Water Resour 2009; 32:670–80.
CrossRef (DOI)

[74] Nolen J, Papanicolaou G, Pironeau O., A framework for adaptive multiscale methods for elliptic problems. Multiscale Model Simul 2008; 7:171–196.
CrossRef (DOI)

[75] O’Malley D, Cushman J.H., A renormalization group classification of nonstationary and/or infinite second moment diffusive processes. J Stat Phys 2012; 146(5):989–1000.
CrossRef (DOI)

[76] O’Malley D, Cushman J.H., Two scale renormalization group classification of diffusive processes. Phys Rev E 2012; 86(1):011126.
CrossRef (DOI)

[77] Papoulis A, Pillai S.U., Probability, random variables and stochastic processes. Singapore: McGraw-Hill; 2002.

[78] Pope S.B. PDF methods for turbulent reactive flows. Prog Energy Combust Sci 1885; 11(2):119–92.
CrossRef (DOI)

[79] Pope S.B., Simple models of turbulent flows. Phys Fluids 2011; 23:011301.
CrossRef (DOI)

[80] Port S.C, Stone C.J., Random measures and their application to motion in an incompressible fluid. J Appl Prob 1976; 13:498–506.
CrossRef (DOI)

[81] Radu F.A, Suciu N, Hoffmann J, Vogel A, Kolditz O, Park C-H, et al. Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv Water Resour 2011: 34 47–61.
CrossRef (DOI)

[82] Ray N, van Noorden T, Frank F, Knabner P., Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. Transp Porous Media 2012; 95:669–96.
CrossRef (DOI)

[83] Sanchez-Vila X, Guadagnini A, Fernàndez-Garcia D., Conditional probability density functions of concentrations for mixing-controlled reactive transport in heterogeneous aquifers. Math Geosci 2009; 41:323–51.
CrossRef (DOI)

[84] Scheidegger A.E., General theory of dispersion in porous media. J Geophys Res 1961; 66(10):3273–8.
CrossRef (DOI)

[85] Schwede R.L, Cirpka O.A, Nowak W, Neuweiler I., Impact of sampling volume on the probability density function of steady state concentration. Water Resour Res 2008; 44(12):W12433.
CrossRef (DOI)

[86] Sirin H., On the using cumulant expansion method and van Kampen’s lemma for stochastic differential equations with forcing. Stoch Environ Res Risk Assess 2013; 27:91–110.
CrossRef (DOI)

[87] Sirin H, Marinõ M.A., On the cumulant expansion up scaling of ground water contaminant transport equation with nonequilibrium sorption. Stoch Environ Res Risk Assess 2008; 22:551–65.
CrossRef (DOI)

[88] Sposito G, Dagan G., Predicting solute plume evolution in heterogeneous porous formations, Water Resour Res 1994; 30(2):585–589.
CrossRef (DOI)

[89] Sposito G, Jury W.A, Gupta V.K., Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils. Water Resour Res 1986; 22(1):77–88.
CrossRef (DOI)

[90] Sposito G, Barry D.A., On the Dagan model of solute transport in groundwater: foundational aspects. Water Resour Res 1987; 23(10):1867–75.
CrossRef (DOI)

[91] Strikwerda J.C., Finite difference schemes and partial differential equations. Pacific Grove, CA: Wadsworth & Brooks; 1989

[92] Suciu N., Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. Phys Rev E 2010; 81:056301.
CrossRef (DOI)

[93] Suciu N, Vamos C, Vanderborght J, Hardelauf H, Vereecken H., Numerical modeling of large scale transport of contaminant solutes using the global random walk algorithm. Monte Carlo Methods Appl 2004; 10(2):153–77.
CrossRef (DOI)

[94] Suciu N, Vamos C, Knabner P, Ruede U., Biased global random walk, a cellular automaton for diffusion. In: Hülsemann F, Kowarschik M, Rude U, editors. Simulationstechnique, 18th symposium in Erlangen, September 2005. Erlangen: SCS Publishing House e. V.; 2005. p. 562–7

[95] Suciu N, Vamos C, Vanderborght J, Hardelauf H, Vereecken H., Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour Res 2006; 42:W04409.
CrossRef (DOI)

[96] Suciu N, Vamos C, Eberhard J., Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour Res 2006; 42:W11504.
CrossRef (DOI)

[97] Suciu N, Vamos C., Evaluation of overshooting errors in particle methods for diffusion by biased global random walk. Rev Anal Numer Theor Approx (Rom Acad) 2006; 35:119–26

[98] Suciu N, Vamos C., Comment on Nonstationary flow and nonergodic transport in random porous media by G. Darvini and P. Salandin. Water Resour Res 2007; 43:W12601.
CrossRef (DOI)

[99] Suciu N, Vamos C, Vereecken H, Sabelfeld K, Knabner P., Ito equation model for dispersion of solutes in heterogeneous media. Rev Anal Numer Theor Approx 2008; 37:2 21–38.
paper on journal website

[100] Suciu N, Vamos C, Vereecken H, Sabelfeld K, Knabner P., Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media. Water Resour Res 2008;44:W08501.
CrossRef (DOI)

[101] Suciu N, Knabner P., Comment on ‘Spatial moments analysis of kinetically sorbing solutes in aquifer with bimodal permeability distribution’ by M. Massabo, A. Bellin, and A.J. Valocchi. Water Resour Res 2009; 45:W05601.
CrossRef (DOI)

[102] Suciu N, Vamos C., Ergodic estimations of upscaled coefficients for diffusion in random velocity fields. In: L’Ecuyér Pierre, Owen Art B, editors. Monte Carlo and quasi-Monte Carlo methods 2008. Berlin: Springer; 2009. p. 617–26.
CrossRef (DOI)

[103] Suciu N, Vamos C, Turcu I, Pop C.V.L, Ciortea L.I., Global random walk modeling of transport in complex systems. Comput Visual Sci 2009;12:77–85.
CrossRef (DOI)

[104] Suciu N, Vamos C, Radu .FA, Vereecken H, Knabner P., Persistent memory of diffusing particles. Phys Rev E 2009; 80:061134.
CrossRef (DOI)

[105] Suciu N, Attinger S, Radu F.A, Vamos C, Vanderborght J, Vereecken H, Knabner P., Solute transport in aquifers with evolving scale heterogeneity, Preprint No. 346, Mathematics Department, Friedrich-Alexander University Erlangen-Nuremberg.
CrossRef (DOI)

[106] Suciu N, Vamos C, Vereecken H, Knabner P., Global random walk simulations for sensitivity and uncertainty analysis of passive transport models. Ann Acad Rom Sci Ser Math Appl 2011;3(1):218–34.
paper on journal website

[107] Suciu N, Radu F.A, Prechtel A, Knabner P., A coupled finite element – global random walk approach to advection – dominated transport in porous media with random hydraulic conductivity. J Comput Appl Math 2013; 246:27–37.
CrossRef (DOI)

[108] Suciu N, Vamos C, Attinger S, Knabner P., Global random walk solutions to PDF evolutions equations. Paper presented at International Conference on Water Resources CMWR, University of Illinois at Urbana-Champaign, June 17–22;
2012

[109] Taylor G.I., Diffusion by continuous movements. Proc Lond Math Soc 1922; 2(20):196–212.
CrossRef (DOI)

[110] Vamos C, Suciu N, Vereecken H., Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J Comput Phys 2003; 186(2):527–44.
CrossRef (DOI)

[111] Vamos C, Craciun M., Serial correlation of detrended time series. Phys Rev E 2008; 78:036707.
CrossRef (DOI)

[112] Vamos C, Craciun M., Separation of components from a scale mixture of Gaussian white noises. Phys Rev E 2010; 81:051125.
CrossRef (DOI)

[113] Vamos C, Craciun M., Automatic trend estimation. Dortrecht: Springer; 2012
CrossRef (DOI)

[114] Vamos C, Craciun M., Numerical demodulation of a Gaussian white noise modulated in amplitude by a deterministic volatility. Eur Phys J B 2013; 86:166.
CrossRef (DOI)

[115] Venturi D, Tartakovsky D.M, Tartakovsky A.M, Karniadakis G.E., Exact PDF equations and closure approximations for advective–reactive transport. J Comput Phys 2013; 243:323–43.
CrossRef (DOI)

[116] van Kampen N.G., Stochastic differential equations. Phys Rep 1976; 24(3):171–228.
CrossRef (DOI)

[117] van Kampen N.G., Stochastic processes in physics and chemistry. Amsterdam: North-Holland; 1981

[118] Yaglom A.M., Correlation theory of stationary and related random functions. Basic results, vol. I. New York: Springer; 1987

[119] Zirbel C.L., Lagrangian observations of homogeneous random environments. Adv Appl Prob 2001;33:810–835.
CrossRef (DOI)

[120] Zwanzig R., Memory effects in ireversible thermodynamics. Phys Rev 1961; 124(4):983–92.
CrossRef (DOI)

PDF

soon

About this paper

Print ISSN

0309-1708

Online ISSN
MR

?

ZBL

?

Google Scholar

soon

2014

Related Posts