## Abstract

Existence, uniqueness, data dependence (monotony, continuity, and differentiability with respect to parameter), and Ulam-Hyers stability results for the solutions of a system of functional-differential equations with delays are proved. The techniques used are Perov’s fixed point theorem and weakly Picard operator theory.

## Authors

V.A. **Ilea
**(Babes Bolyai Univ)

D. **Otrocol
**(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

## Keywords

## Cite this paper as:

V. A. Ilea, D. Otrocol, *Some properties of solutions of a functional-differential equation of second order with delay*, Hindawi Publishing Corporation, Sci. World J., Vol. 2014 (2014), Article ID 878395, 8 pages, doi: 10.1155/2014/878395

## About this paper

##### Journal

Scientific world Journal

##### Publisher Name

Hindawi Publishing Corporation, New York, USA

##### Print ISSN

1537-744X

##### Online ISSN

##### MR

##### ZBL

## Google Scholar

## References

## Paper in html format

## References

[1] V. Kolmanovskiĭ and A. Myshkis, *Applied Theory of Functional-Differential Equations*, Kluwer Academic Publishers Group, Dordrecht, Germany, 1992.

[2] E. Pinney, *Ordinary Difference-Differential Equations*, University of California Press, Berkeley, Calif, USA, 1958.

[3] V. V. Guljaev, A. S. Dmitriev, and V. E. Kislov, *“Strange attractors in the circle: selfoscillating systems,”* Doklady Akademii Nauk SSSR, vol. 282, no. 2, pp. 53–66, 1985.

[4] V. B. Kolmanovskiĭ and V. R. Nosov, *Stability of Functional-Differential Equations*, Academic Press, London, UK, 1986.

[5] V. A. Ilea and D. Otrocol, *“On a D. V. Ionescu’s problem for functional-differential equations,”* Fixed Point Theory, vol. 10, no. 1, pp. 125–140, 2009.

[6] I. M. Olaru, *“An integral equation via weakly Picard operators,”* Fixed Point Theory, vol. 11, no. 1, pp. 97–106, 2010.

[7] I. M. Olaru, *“Data dependence for some integral equations,”* Studia. Universitatis Babeş-Bolyai. Mathematica, vol. 55, no. 2, pp. 159–165, 2010.

[8] D. Otrocol and V. Ilea*, “Ulam stability for a delay differential equation,”* Central European Journal of Mathematics, vol. 11, no. 7, pp. 1296–1303, 2013.

[9] R. Precup, *“The role of matrices that are convergent to zero in the study of semilinear operator systems,” *Mathematical and Computer Modelling, vol. 49, no. 3-4, pp. 703–708, 2009.

[10] I. A. Rus, *Principles ans Applications of the Fixed Point Theory*, Dacia, Cluj-Napoca, Romania, 1979, Romanian.

[11] I. A. Rus, *Generalized contractions and applications*, Cluj University Press, Cluj-Napoca, Romania, 2001.

[12] I. A. Rus, *“Functional-differential equations of mixed type, via weakly Picard operators,”* Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, pp. 335–345, 2002.

[13] I. A. Rus, *“Picard operators and applications,”* Scientiae Mathematicae Japonicae, vol. 58, no. 1, pp. 191–219, 2003.

[14] I. A. Rus, *“Gronwall lemmas: ten open problems,” *Scientiae Mathematicae Japonicae, vol. 70, no. 2, pp. 221–228, 2009.

[15] I. A. Rus*, “Ulam stability of ordinary differential equations,”* Studia. Universitatis Babeş-Bolyai. Mathematica, vol. 54, no. 4, pp. 125–133, 2009.

[16] I. A. Rus, *“Remarks on Ulam stability of the operatorial equations,”* Fixed Point Theory, vol. 10, no. 2, pp. 305–320, 2009.

[17] I. A. Rus, *“Ulam stability of the operatorial equations,”* in Functional Equations in Mathematical Analysis, T. M. Rassias and J. Brzdek, Eds., chapter 23, Springer, 2011.

[18] A. I. Perov and A. V. Kibenko, *“On a general method to study boundary value problems,”* Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 30, pp. 249–264, 1966.