Some properties of solutions of a functional-differential equation of second order with delay


Existence, uniqueness, data dependence (monotony, continuity, and  differentiability with respect to parameter), and Ulam-Hyers stability results for the solutions of a system of functional-differential equations with delays are proved. The techniques used are Perov’s fixed point theorem and weakly Picard operator theory.


V.A. Ilea
(Babes Bolyai Univ)

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)


System of functional-differential equations, delay, existence, uniqueness, data dependence, Ulam-Hyers stability, weakly Picard operator technique

Cite this paper as:

V. A. Ilea, D. Otrocol, Some properties of solutions of a functional-differential equation of second order with delay, Hindawi Publishing Corporation, Sci. World J., Vol. 2014 (2014), Article ID 878395, 8 pages, doi: 10.1155/2014/878395


About this paper


Scientific world Journal

Publisher Name

Hindawi Publishing Corporation, New York, USA

Print ISSN


Online ISSN

Google Scholar

[1]  V. Kolmanovskiĭ and A. Myshkis, Applied Theory of Functional-Differential Equations, Kluwer Academic Publishers Group, Dordrecht, Germany, 1992.

[2] E. Pinney, Ordinary Difference-Differential Equations, University of California Press, Berkeley, Calif, USA, 1958.

[3] V. V. Guljaev, A. S. Dmitriev, and V. E. Kislov, “Strange attractors in the circle: selfoscillating systems,” Doklady Akademii Nauk SSSR, vol. 282, no. 2, pp. 53–66, 1985.

[4] V. B. Kolmanovskiĭ and V. R. Nosov, Stability of Functional-Differential Equations, Academic Press, London, UK, 1986.

[5] V. A. Ilea and D. Otrocol, “On a D. V. Ionescu’s problem for functional-differential equations,” Fixed Point Theory, vol. 10, no. 1, pp. 125–140, 2009.

[6] I. M. Olaru, “An integral equation via weakly Picard operators,” Fixed Point Theory, vol. 11, no. 1, pp. 97–106, 2010.

[7] I. M. Olaru, “Data dependence for some integral equations,” Studia. Universitatis Babeş-Bolyai. Mathematica, vol. 55, no. 2, pp. 159–165, 2010.

[8] D. Otrocol and V. Ilea, “Ulam stability for a delay differential equation,” Central European Journal of Mathematics, vol. 11, no. 7, pp. 1296–1303, 2013.

[9] R. Precup, “The role of matrices that are convergent to zero in the study of semilinear operator systems,” Mathematical and Computer Modelling, vol. 49, no. 3-4, pp. 703–708, 2009.

[10] I. A. Rus, Principles ans Applications of the Fixed Point Theory, Dacia, Cluj-Napoca, Romania, 1979, Romanian.

[11] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, Romania, 2001.

[12] I. A. Rus, “Functional-differential equations of mixed type, via weakly Picard operators,” Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, pp. 335–345, 2002.

[13] I. A. Rus, “Picard operators and applications,” Scientiae Mathematicae Japonicae, vol. 58, no. 1, pp. 191–219, 2003.

[14] I. A. Rus, “Gronwall lemmas: ten open problems,” Scientiae Mathematicae Japonicae, vol. 70, no. 2, pp. 221–228, 2009.

[15] I. A. Rus, “Ulam stability of ordinary differential equations,” Studia. Universitatis Babeş-Bolyai. Mathematica, vol. 54, no. 4, pp. 125–133, 2009.

[16] I. A. Rus, “Remarks on Ulam stability of the operatorial equations,” Fixed Point Theory, vol. 10, no. 2, pp. 305–320, 2009.

[17] I. A. Rus, “Ulam stability of the operatorial equations,” in Functional Equations in Mathematical Analysis, T. M. Rassias and J. Brzdek, Eds., chapter 23, Springer, 2011.

[18] A. I. Perov and A. V. Kibenko, “On a general method to study boundary value problems,” Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 30, pp. 249–264, 1966.

Related Posts