Abstract
It is investigated the role of the state–dependent source–term for the localization by means of the kinetic energy of radially symmetric states for the stationary p–Laplace diffusion. It is shown that the oscillatory behavior of the source–term, with respect to the state amplitude, yields multiple possible states, located in disjoint energy bands. The mathematical analysis makes use of critical point theory in conical shells and of a version of Pucci–Serrin three–critical point theorem for the intersection of a cone with a ball. A key ingredient is a Harnack type inequality in terms of the energetic norm.
Authors
Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Patrizia Pucci
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Perugia, Italy
Csaba Varga
Faculty of Mathematics and Computer Science, Babes–Bolyai University, Cluj–Napoca, Romania; Department of Mathematics, University of Pécs, Pécs, Hungary
Keywords
p–Laplacian; radial solution; positive solution; Harnack inequality; energy–based localization; multiple solutions.
Paper coordinates
R. Precup, P. Pucci, C. Varga, Energy-based localization and multiplicity of radially symmetric states for the stationary p-Laplace diffusion, Complex Variables and Elliptic Equations 65 (2020):7, 1198-1209, https://doi.org/10.1080/17476933.2019.1574774
??
About this paper
Journal
Publisher Name
Taylor and Francis Ltd.
Print ISSN
17476933
Online ISSN
17476941
google scholar link
[1] Benedikt J, Girg P, Kotrla L, et al. Origin of the p-Laplacian and A. Missbach. Electron J Differ Equ. 2018;2018(16):1–17. [Google Scholar]
[2] Lindqvist P. Notes on p-Laplace equation. University of Jyväskylä; 2017. [Google Scholar]
[3] Kristály A, Rădulescu VD, Varga CsGy. Variational principles in mathematical physics, geometry, and economics. 136. Cambridge: Cambridge University Press; 2010. Encyclopedia of Mathematics and its Applications. [Crossref], [Google Scholar]
[4] Papageorgiou NS, Rădulescu VD, Repovš DD. Modern nonlinear analysis – applications. Springer; 2020Springer monographs in mathematics [Google Scholar]
[5] Ambrosetti A, Azorero JG, Peral I. Multiplicity results for some nonlinear elliptic equations. J Funct Anal. 1996;137:219–242. doi: 10.1006/jfan.1996.0045 [Crossref], [Web of Science ®], [Google Scholar]
[6] Garcia–Huidobro M, Manasevich R, Schmitt K. Positive radial solutions of quasilinear elliptic partial differential equations on a ball. Nonlinear Anal. 1999;35:175–190. doi: 10.1016/S0362-546X(97)00613-5 [Crossref], [Web of Science ®], [Google Scholar]
[7] Ercole G, Zumpano A. Existence of positive radial solutions for the n-dimensional p-Laplacian. Nonlinear Anal. 2001;44:355–360. doi: 10.1016/S0362-546X(99)00269-2 [Crossref], [Web of Science ®], [Google Scholar]
[8] Marcos do Ó J, Ubilla P. Multiple solutions for a class of quasilinear elliptic problems. Proc Edinburgh Math Soc. 2003;46:159–168. [Crossref], [Web of Science ®], [Google Scholar]
[9] O’Regan D, Wang H. Positive radial solutions for p-Laplacian systems. Aequationes Math. 2008;75:43–50. doi: 10.1007/s00010-007-2909-3 [Crossref], [Web of Science ®], [Google Scholar]
[10] Wang H. An existence theorem for quasilinear systems. Proc Edinburgh Math Soc. 2006;49:505–511. doi: 10.1017/S0013091504001506 [Crossref], [Web of Science ®], [Google Scholar]
[11] He X. Multiple radial solutions for a class of quasilinear elliptic problems. Appl Math Lett. 2010;23:110–114. doi: 10.1016/j.aml.2009.08.017 [Crossref], [Web of Science ®], [Google Scholar]
[12] Pei M, Wang L, Lv X. Multiplicity of positive radial solutions of p-Laplacian problems with nonlinear gradient term. Boundary Value Problems. 2017;2017:1–7. Article 36 doi: 10.1186/s13661-017-0770-4 [Crossref], [Google Scholar]
[13] Cossio J, Herrón S, Vélez C. Infinitely many radial solutions for a p-Laplacian problem p-superlinear at the origin. J Math Anal Appl. 2011;376:741–749. doi: 10.1016/j.jmaa.2010.10.075 [Crossref], [Web of Science ®], [Google Scholar]
[14] Lisei H, Precup R, Varga C. A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete Contin Dyn Syst. 2016;36:3775–3789. doi: 10.3934/dcds.2016.36.3775 [Crossref], [Web of Science ®], [Google Scholar]
[15] Precup R, Pucci P, Varga C. A three critical points result in a bounded domain of a Banach space and applications. Differ Integral Equ. 2017;30(7–8):555–568. [Web of Science ®], [Google Scholar]
[16] Pucci P, Serrin J. The strong maximum principle revisited. J Differ Equ. 2004;196:1–66. doi: 10.1016/j.jde.2003.05.001 [Crossref], [Web of Science ®], [Google Scholar]