Ergodic Estimations of Upscaled Coefficients for Diffusion in Random Velocity Fields


Upscaled coefficients for diffusion in ergodic velocity fields are derived by summing up correlations of increments of the position process, or equivalently of the Lagrangian velocity.

Ergodic estimations of the correlations are obtained from time averages over finite paths sampled on a single trajectory of the process and a space average with respect to the initial positions of the paths. The first term in this path decomposition of the diffusion coefficients corresponds to Markovian diffusive behavior and is the only contribution for processes with independent increments. The next terms describe memory effects on diffusion coefficients until they level off to the value of the upscaled coefficients.

Since the convergence with respect to the path length is rather fast and no repeated Monte Carlo simulations are required, this method speeds up the computation of the upscaled coefficients over methods based on long-time limit and ensemble averages by four orders of magnitude.


N. Suciu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

C. Vamos
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)


Monte Carlo Approach; Transient Regime; Ergodic Property; Monte Carlo Estimation; Random Velocity.??

Cite this chapter as:

Suciu N., Vamoş C. (2009) Ergodic estimations of upscaled coefficients for diffusion in random velocity fields. In: L’ Ecuyer P., Owen A. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer, Berlin, Heidelberg,
doi: 10.1007/978-3-642-04107-5_40


About this chapter

Online ISBN


Publisher Name

Springer, Berlin, Heidelberg

Print ISBN


Cited by

Not available yet.


  1. Harayama, T., Klages, R., Gaspard, P.: Deterministic diffusion in flower shape billiards. Phys. Rev. E., 66, 02611 (2002)CrossRefGoogle Scholar
  2. Kurbanmuradov, O., Sabelfeld, K.: Lagrangian stochastic models for turbulent dispersion in the atmospheric boundary layer. Boundary-Layer Metheorology, 97, 191-218, (2000)CrossRefGoogle Scholar
  3. Mandelbrot, B. B., Wallis, J. R.: Noah, Joseph, and operational hydrology. Water Resour. Res., 4(5), 909-918 (1968)CrossRefGoogle Scholar
  4. Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res., 42, W04409, doi:10.1029/2005WR004546 (2006)CrossRefGoogle Scholar
  5. Suciu, N., Vamoş, C., Eberhard, J.: Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour. Res., 42, W11504, doi:10.1029/2005WR004714 (2006)CrossRefGoogle Scholar
  6. Suciu, N., Vamoş, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media. Water Resour. Res., 44, W08501, doi:10.1029/2007WR006740 (2008)CrossRefGoogle Scholar
  7. Suciu, N., Vamoş, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Itô equation model for dispersion of solutes in heterogeneous media. Revue D’Analyse Numérique et de Théorie D’Approximation, 37(2), 221-238, (2008)Google Scholar
  8. Suciu, N., Vamoş, C., Sabelfeld, K.: Ergodic simulations of diffusion in random velocity fields. In: Keller, A., Heinrich, S., and Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 659-668. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. Vamoş, C.: C++ codes ’descin.cpp’ and ’descre.cpp’. Unpublished manuscript (2001)Google Scholar
  10. Vamoş, C.: Automatic algorithm for monotone trend removal. Phys. Rev. E 75, 036705, doi: 10.1103/PhysRevE.75.036705 (2007)CrossRefGoogle Scholar
  11. Vamoş, C., Suciu, N., Vereecken, H.: Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys., 186(2), 527–544 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. Vamoş, C., Şoltuz, Ş. M., Crăciun, M.: Order 1 autoregressive processes of finite length. E-print arXiv:079.2963vl [], 19 Sep 2007 (2007)
  13. Vamoş, C., Crăciun, M.: Serial correlation of detrended time series. Phys. Rev. E 78, 036707 (2008)CrossRefGoogle Scholar
  14. Yaglom, A. M.: Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results, Springer, New York (1987)MATHGoogle Scholar
  15. Ying, S. C., Vattulainen, J., Merikoski, J., Hjelt, T., Als-Nissila, T.: Memory expansion for diffusion coefficients. Phys. Rev. B, 58(4), 2170-2178 (1998)CrossRefGoogle Scholar

Related Posts