Evaluation of the first‐order approximations for transport in heterogeneous media

Abstract

Longitudinal dispersion coefficients in given realizations of the transport computed by two currently used approximations of the first‐order in velocity variance are compared with accurate global random walk simulations. The comparisons are performed for the same ensemble of realizations of the Darcy velocity field, approximated by a quasiperiodic random field, for lognormal hydraulic conductivity with small variance and finite correlation lengths. The results show that at finite times of about one dispersion timescale, the mean coefficient is underestimated by ≈20%, and the fluctuations are overestimated by ≈80%. At larger times the errors decrease monotonously, and the first‐order approximations yield fairly good predictions for the mean and the fluctuations of the dispersion coefficient.

 

Authors

N. Suciu
Institute of Applied Mathematics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany

C. Vamoş
‘T. Popoviciu Institute of Numerical Analysis, Romanian Academy,

J. Eberhard
Simulation in Technology, University of Heidelberg, Germany

Keywords

?

Paper coordinates

N. Suciu, C. Vamoş, J. Eberhard (2006), Evaluation of the first-order approximations for transport in heterogeneous media, Water Resour. Res., W11504,
doi: 10.1029/2005wr004714

References

see the expansion block below.

PDF

https://www.researchgate.net/publication/251423583_Evaluation_of_the_first-order_approximations_for_transport_in_heterogeneous_media

soon

About this paper

Journal

Water Resour. Res.

Publisher Name
Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

google scholar link

[1] Bouchaud, J.‐P., and A. Georges (1990), Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep.195, 127–293.
CrossRef (DOI)

[2] Carvalho, J. C., E. R. Nichimura, M. T. M. B. de Vilhena, D. M. Moreira, and G. A. Degrazia (2005), An iterative Langevin solution for contaminant dispersion simulation using the GramCharlier PDF, Environ. Modell. Software, 20(3), 285–289.
CrossRef (DOI)

[3] Chin, D. A., and T. Wang (1992), An investigation of the validity of firstorder stochastic dispersion theories in isotropic porous media, Water Resour. Res.28(6), 1531–1542.
CrossRef (DOI)

[4] Dagan, G. (1984), Solute transport in heterogeneous porous formations, J. Fluid Mech.145, 151–177.
CrossRef (DOI)

[5] Dagan, G. (1987), Theory of solute transport by groundwater, Water Resour. Res.19, 183–215.
CrossRef (DOI)

[6] Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000), Temporal behavior of a solute cloud in a heterogeneous porous medium: 2. Spatially extended injection, Water Resour. Res.36, 3605–3614.
CrossRef (DOI)

[7] Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2003), Numerical studies of the transport behavior of a passive solute in a two‐dimensional incompressible random flow field, Phys. Rev. E67, 046306.
CrossRef (DOI)??

[8] Eberhard, J. (2004), Approximations for transport parameters and selfaveraging properties for pointlike injections in heterogeneous media, J. Phys. A Math. Gen., 37, 2549–2571.
CrossRef (DOI)

[9] Fiori, A., and G. Dagan (2000), Concentration fluctuations in aquifer transport: A rigorous firstorder solution and applications, J. Contam. Hydrol.45, 139–163.
CrossRef (DOI)

[10] Kraichnan, R. H. (1970), Diffusion by a random velocity field, Phys. Fluids, 13(1), 22–31.
CrossRef (DOI)

[11] Morales‐Casique, E., S. P. Neuman, and A. Gaudagnini (2006a), Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: Theoretical framework, Adv. Water Resour.29(8), 1238–1255.
CrossRef (DOI)

[12] Morales‐Casique, E., S. P. Neuman, and A. Gaudagnini (2006b), Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: Computational analysis, Adv. Water Resour., 29(9), 1399–1418.
CrossRef (DOI)

[13] Phythian, R. (1975), Dispersion by random velocity fields, J. Fluid Mech.67, 145–153.
CrossRef (DOI)

[14] Rajaram, H., and L. W. Gelhar (1991), Three‐dimensional spatial moments analysis of the Borden tracer test, Water Resour. Res.27(6), 1239–1251.
CrossRef (DOI)??

[15] Suciu, N., C. Vamoş. P. Knabner. and U. Rüde (2005), Biased global random walk, a cellular automaton for diffusion, in Simulations Technique, 18th Symposium in Erlangen, September 2005, edited by F. Hülsemann, M. Kowarschik, and U. Rüde, pp. 562–567, SCS Publ. House, Erlangen, Germany.
CrossRef (DOI)??

[16] Suciu, N., C. Vamoş, J. Vanderborght, H. Hardelauf, and H. Vereecken (2006), Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res., 42, W04409.
CrossRef (DOI)

[17] Vamoş, C., N. Suciu, and H. Vereecken (2003), Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comput. Phys.186(2), 527–544.
CrossRef (DOI)

soon