## Abstract

In the present note, we study a certain Durrmeyer type integral modification of Bernstein polynomials. We investigate simultaneous approximation and estimate the rate of convergence in simultaneous approximation.

## Authors

**V. GUPTA**

School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110075, India

**T. SHERVASHIDZE**

A. Razmadze Mathematical Institute, Georgian Academy of Science 1, M. Aleksidze St., Tbilisi 0193 Georgia

M. **Craciun**

Tiberiu Popoviciu Institute of Numerical Analysis (Romanian Academy)

## Keywords

Lebesgue integrable functions; Bernstein polynomials; functions of bounded variation.

## References

[1] O. Agratini, *On the rate of convergence of some integral operators for functions of bounded variation*. Studia Sci. Math. Hungar. 42(2005), No. 2, 235–252

[2] R. N. Bhattacharya and R. Ranga Rao, *Normal approximation and asymptotic expansions.* Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York–London–Sydney, 1976.

[3] J. L. Durrmeyer, *Une formule d’inversion de la transformee de Laplace: Application a la Theorie des Moments*. These de 3e cycles, Faculte des Sciences de l’ Universite de Paris, 1967.

[4] S. S. Guo, *On the rate of convergence of the Durrmeyer operator for functions of bounded variation*. J. Approx. Theory 51(1987), No. 2, 183–192.

[5] V. Gupta, *A note on the rate of convergence of Durrmeyer type operators for function of bounded variation*. Soochow J. Math. 23(1997), No. 1, 115–118.

[6] V. Gupta and P. Maheshwari, *Bezier variant of a new Durrmeyer type operators*. Riv. Mat. Univ. Parma (7) 2(2003), 9–21.

[7] V. Gupta and G. S. Srivastava, *Approximation by Durrmeyer-type operators.* Ann. Polon. Math. 64(1996), No. 2, 153–159.

[8] X. M. Zeng, *Bounds for Bernstein basis functions and Meyer–Konig and Zeller basis functions*, J. Math. Anal. Appl. 219(1998), No. 2, 364–376.

##### Cite this paper as:

- V. Gupta, T. Shervashidze, M. Crăciun,
*Rate of approximation for certain Durrmeyer operators*, Georgian Mathematical Journal, vol. 13 (2006), no.2, 277-284.

## About this paper

##### Journal

Georgian Mathematical Journal

##### Publisher Name

De Gruyter

##### DOI

10.1515/GMJ.2006.277

##### Print ISSN

1072-947X

##### Online ISSN

Not available yet.