Every generating isotone projection cone is latticial and correct




G. Isac
Departement de Mathematiques, College Militaire Royal, St. Jean, Q&bee, Canada JOJ IR

A.B. Németh
Institutul de Matematica, Str. Republicii Nr. 37, 3400 Cluj-Napoca, Roumanie




See the expanding block below.

Paper coordinates

G. Isac, A.B. Nemeth, Every generating isotone projection cone is latticial and correct, J. Math. Anal. Appl., 147 (1990) no. 1, pp. 53-62
doi: 10.1016/0022-247X(90)90383-Q



About this paper


Journal of Mathematical Analysis and Applications

Publisher Name


Print ISSN


Online ISSN


Google Scholar Profile


1. G. P. BARKER, Perfect cones, Linear Alg Appl. 22 (1978) 211-221.
2. J. M. BORWEIN, D. T. YOST, Absolute norms on vector lattices, Proc. Edinburgh Math. Sm. 27 ( 1984) 215222.
3. B. IOCHUM, Cones autopolaires et algebres de Jordan, in “Lecture Notes in Math.,” Vol. 1049, Springer-Verlag, New York/Berlin, 1984.
4. G. ISAC, A. B. NEMETH, Monotonicity of metric projections onto positive cones of ordered euclidean spaces, Arch. Math. 46 (1986) 5688576; Corrigendum, Arch. Math. 49 (1987), 367-368.
5. G. ISAC, A. B. NEMETH, Isotone projection cones in Hilbert spaces and the complementarity problem, Boll. U.M.I. (7) 3-B (1989).
6. G. ISAC AND A. B. NEMETH, Ordered Hilbert spaces, preprint, 1987.
7. C. W. MTARTHUR, In what spaces is every closed normal cone regular? Proc. Edinburgh Math. Soc. (2) 17 (1970), 121-125.
8. J. MOREAU, Decomposition orthogonale d’un espace hilbertien selon deux cones mutuellement pollaires, C. R. Acad. Sci. Paris Ser Math. 225 (1962), 238-240.
9. F. RIESZ, Sur quelques notions fondamentales dans la theorie g&r&ale des operations lineaires, Mat. Term~szet~ l&es. 56 (1937), 145; Ann. qf Math. 41 (1940), 174-206.
10. E. H. ZARANTONELLO, Projections on convex sets in Hilbert space and spectral theory, in “Contributions to Nonlinear Functional Analysis” (E. H. Zarantonello, Ed.), pp. 237424, Academic Press, New York, 1971.
11. A. YOUDINE. Solution de deux problemes de la theorie des espaces semi-ordonnes. C. R. Acad. Sci. U.R.S.S. 27 (1939), 418-422.


Related Posts