M.-C. Anisiu, Existence and uniqueness of solutions of the Darboux problem for partial differential equations, Seminar on Functional Analysis and Numerical Methods, 3-14, Preprint, 84-1, Univ.Babeş-BolyaiCluj-Napoca, 1984.
RXISTENCE AND UNIQUENESS OF SOLUTIONিS OF THE DAREOUX PROELEM FOR PARTIAT DIFH BRENXIAL FUNCTIONAL EQUATIONS
byแica-Cristiana Anfriu
The subject of linis paper is the Darboux problem for functions 1 equations of hyperbolic type. Such problems were first studied by D.V.Ionescu [4] and many contributions are to be found in some recent papers [1],[2],[5]-[8][1],[2],[5]-[8].
We consider equations of the following type
(1) u_(xy)(x,y)=f(x,y,u(x,y),u(g(x,y)))u_{x y}(x, y)=f(x, y, u(x, y), u(g(x, y)))
(2) quadu_(xy)(x,y)=f(x,y,u(x,y),u_(x)(x,y),u_(y)(x,y),u(E_(1)(x,y)),u_(x)(E_(2)(x,y)):}\quad u_{x y}(x, y)=f\left(x, y, u(x, y), u_{x}(x, y), u_{y}(x, y), u\left(E_{1}(x, y)\right), u_{x}\left(E_{2}(x, y)\right)\right., {:u_(y)( tilde(s)_(z)(x,y)))\left.u_{y}\left(\tilde{s}_{z}(x, y)\right)\right).
For T_(1),T_(2) >= 0T_{1}, T_{2} \geqslant 0 and alpha,beta > 0\alpha, \beta>0 we denote
(3) D=[0,alpha]xx[0,beta]D=[0, \alpha] \times[0, \beta] and D_(0)=([-T_(1),0]xx[-T_(2),beta])uu([0,alpha]x{: xx[-I_(2),0])D_{0}=\left(\left[-T_{1}, 0\right] \times\left[-T_{2}, \beta\right]\right) \cup([0, \alpha] x \left.\times\left[-I_{2}, 0\right]\right)
(4) E=[0,oo)^(2)E=[0, \infty)^{2} and E_(0)=([-T_(1),0]xx[-T_(2),oo))uu([0,oo)xx[-T_(2),0])E_{0}=\left(\left[-T_{1}, 0\right] \times\left[-T_{2}, \infty\right)\right) \cup\left([0, \infty) \times\left[-T_{2}, 0\right]\right).
A. We study at first the case when the equation is considered on the compact DD with boundary conditions on D_(0)D_{0} ( not only on ( [0,C]xx xx{0})uu({0}xx[0,beta])[0, \mathbb{C}] \times \times\{0\}) \cup(\{0\} \times[0, \beta]), which corresponds to T_(1)=T_(2)&0T_{1}=T_{2} \& 0 ) in order to admit also retarded arguments. The boundary condition is
(5) u(x,y)=varphi(x,y),(x,y)inD_(0)u(x, y)=\varphi(x, y),(x, y) \in D_{0}.
A solution of the problem (1) (or (2)) with the condition (5) is a function U in C(D uuD_(0))(:}U \in C\left(D \cup D_{0}\right)\left(\right. or {:U inC^(l)(D uuD_(0)))\left.U \in C^{l}\left(D \cup D_{0}\right)\right) such that U_(xy)U_{x y} exists on DD and UU satisfies the equation (1) (or (2)) for any (x,y)in D(x, y) \in D and the
Cencition (5) on Do.
All the functions whose range is not mentioned hav real values.
THEOREI 1. II
(a) quad r in C(D xxR^(2))\quad r \in C\left(D \times R^{2}\right) satisfies a Lipcchite condition with respect to
the last two variables
|f(x,y,z_(1),z_(2))-f(x,y,t_(1),t_(2))| <= I_(1)|z_(1)-t_(1)|+I_(2)|z_(2)-t_(2)|\left|f\left(x, y, z_{1}, z_{2}\right)-f\left(x, y, t_{1}, t_{2}\right)\right| \leqslant I_{1}\left|z_{1}-t_{1}\right|+I_{2}\left|z_{2}-t_{2}\right|
(b) varphi inC^(1)(D_(0))\varphi \in C^{1}\left(D_{0}\right)
(c) delta in C(D),xi:D rarr D uuD_(0),g=(h,k)\delta \in C(D), \xi: D \rightarrow D \cup D_{0}, g=(h, k) with h(x,y)+k(x,y) <= x+y+ah(x, y)+k(x, y) \leqslant x+y+a
sind a < s u p{(1)/(t)(t^(2)-I_(1))/(I_(2)):t > sqrt(I_(3))}a<\sup \left\{\frac{1}{t} \frac{t^{2}-I_{1}}{I_{2}}: t>\sqrt{I_{3}}\right\},
then the problem (1) with the condition (5) has in CSUD 2 d unique Solution.
Proof. We consider the Banach space C(D uuD_(0))C\left(D \cup D_{0}\right) with the Bielecki type norm
(6) ||u||=-max{|u(x,y)|exp(-t(x+y)):(x,y)in D uuD_(0)}\|u\|=-\max \left\{|u(x, y)| \exp (-t(x+y)):(x, y) \in D \cup D_{0}\right\}
and the operator T:C(D uuD_(0))rarr C(D uuD_(0))T: C\left(D \cup D_{0}\right) \rightarrow C\left(D \cup D_{0}\right) given by
(7) {[Tu(x","y)=int_(0)^(2)int_(0)^(y)f(x","s","u(x","s)","u(g(x","s)))drds+psi(x","y;","" if "(x","y)in D],[Tu(x","y)=varphi(x","y)","" for "(x","y)inD_(0)","]:}\left\{\begin{array}{l}\operatorname{Tu}(x, y)=\int_{0}^{2} \int_{0}^{y} f(x, s, u(x, s), u(g(x, s))) d r d s+\psi(x, y ;, \text { if }(x, y) \in D \\ \operatorname{Tu}(x, y)=\varphi(x, y), \text { for }(x, y) \in D_{0},\end{array}\right.
where
(3) psi(x,y)=varphi(x,0)+varphi(0,y)-varphi(0,0),(x,y)inD_(0)\psi(x, y)=\varphi(x, 0)+\varphi(0, y)-\varphi(0,0),(x, y) \in D_{0}
The problem is equivalent to the equation Tu=uT u=u. We prove that If is a contraction and then the Banach fixed point theorem guarantees the existence and uniqueness of a fixed point for TT.
. Let u,v in C(D uuD_(0))u, v \in C\left(D \cup D_{0}\right). If (x,y)inD_(0)(x, y) \in D_{0}, we have Tu(x,y)-Tv(x,y)==0\operatorname{Tu}(x, y)-\operatorname{Tv}(x, y)= =0. For (x,y)in D(x, y) \in D,
{:+I_(2)|u(g(r,g))-v(g(r,s))|)drds <= int_(0)^(y)int_(0)^(y)(I_(1)||u-v||exp(t(r+s))+:}\left.+I_{2}|u(g(r, g))-v(g(r, s))|\right) d r d s \leq \int_{0}^{y} \int_{0}^{y}\left(I_{1}\|u-v\| \exp (t(r+s))+\right. +I_(2)||u-v||exp(t(h(x,s)+k(x,s)))dxds <= int_(0)^(x)int_(0)^(y)(I_(2)∣lu-v||exp(t(x+3))+:}+L_(2)||u-v||exp(t(r+s+e))drds <= (1)/(t^(2))(I_(1)+I_(2)exp(t_(a)))||u-v||exp(t(x+y))+I_{2}\|u-v\| \exp (t(h(x, s)+k(x, s))) d x d s \leq \int_{0}^{x} \int_{0}^{y}\left(I_{2} \mid l u-v \| \exp (t(x+3))+\right. +L_{2}\|u-v\| \exp (t(r+s+e)) d r d s \leq \frac{1}{t^{2}}\left(I_{1}+I_{2} \exp \left(t_{a}\right)\right)\|u-v\| \exp (t(x+y)) and therefore
The bypothesis on a makes (1)/(t^(2))(L_(1)+L_(2)exp(t_(a))) < 1\frac{1}{t^{2}}\left(L_{1}+L_{2} \exp \left(t_{a}\right)\right)<1 .
R⿱䒑⿰⺝刂心裣 i.The maximum of the expression that denotes a majorant for a is attained in the case when t.is the unique colution greater than sqrt(L_(1))\sqrt{L_{1}} of the equation
If the right member of the equation(1)contains only the func tion having modified argument,i.e.the equation becomes
(9)u_(xy)(x,y)=f(x,y,u(g(x,y)))u_{x y}(x, y)=f(x, y, u(g(x, y))) ,
them we have
COROLLARY 1.If
(a)f in C(D xx R)f \in C(D \times R) is Lipschitz with respect to the last variable
|f(x,y,z)-f(x,y,t)| <= L|z=t||f(x, y, z)-f(x, y, t)| \leqslant L|z=t|
(b)varphi inG^(1)(D_(0))\varphi \in G^{1}\left(D_{0}\right)
(c)g in C(D),g:D rarr D uuD_(D),g=(h,k)g \in C(D), g: D \rightarrow D \cup D_{D}, g=(h, k) with h(x,y)+k(x,y)≤≤x+y+a,a < (2)/(rho//I^('))h(x, y)+k(x, y) \leq \leq x+y+a, a<\frac{2}{\rho / I^{\prime}}, then the problem(9)with the condition(5)bas in C(D uuD_(0))C\left(D \cup D_{0}\right) a unique solution.
Proof,We may consider that ff satisfies(a)from Theorem 1 with I_(1_(1))=0I_{1_{1}}=0 and I_(2)=II_{2}=I .The equation in Remaxk 1 becomes
2- ln((x^(2))/(I^(2)))=0\ln \frac{x^{2}}{I^{2}}=0 with the positive solution t=e[I_(y):}t=e\left[I_{y}\right. for which (1)/(t)2n(t^(2))/(t)=(2)/(esqrtL)\frac{1}{t} 2 n \frac{t^{2}}{t}=\frac{2}{e \sqrt{L}} and all the conditions in Theorem 1 are satisfied.It follows that the problem(9)with the condition(5)has a unique
solution in S(DUDo).
{:[" Fir the probled (2) with the condition (5) we obtain "],[" THEORM 2. If "]:}\begin{aligned}
& \text { Fir the probled (2) with the condition (5) we obtain } \\
& \text { THEORM 2. If }
\end{aligned}
(a) i in C(D xxR^(6))i \in C\left(D \times R^{6}\right) satistion a Lipschitz condition with respect to the last six variables
|f(x,y,z_(1),dots,z_(6))-f(x,y,t_(1),dots,t_(6))| <= I_(1)sum_(i=1)^(p)|z_(i)-t_(j)|+I_(2)sum_(i=4)^(c)|z_(i)-t_(i)|\left|f\left(x, y, z_{1}, \ldots, z_{6}\right)-f\left(x, y, t_{1}, \ldots, t_{6}\right)\right| \leq I_{1} \sum_{i=1}^{p}\left|z_{i}-t_{j}\right|+I_{2} \sum_{i=4}^{c}\left|z_{i}-t_{i}\right|
(b) varphi inC^(l)(D_(0))\varphi \in C^{l}\left(D_{0}\right) and varphi_(xy)\varphi_{x y} exists, f(0,y,z_(1),dots,z_(6))=varphi_(xy)(0,y)f\left(0, y, z_{1}, \ldots, z_{6}\right)=\varphi_{x y}(0, y), f(x,0,z_(1),dots,z_(sigma))=varphi_(xy)(x,0),(x,y)in D,(z_(1),dots,z_(sigma))inR^(6)f\left(x, 0, z_{1}, \ldots, z_{\sigma}\right)=\varphi_{x y}(x, 0),(x, y) \in D,\left(z_{1}, \ldots, z_{\sigma}\right) \in R^{6}
(C) quadg_(i)in C(D_(0)),E_(i):D rarr D uuD_(0),g_(i)=(h_(i),k_(i))\quad g_{i} \in C\left(D_{0}\right), E_{i}: D \rightarrow D \cup D_{0}, g_{i}=\left(h_{i}, k_{i}\right) with h_(i)(x,y)+k_(i)(x,y)⩽⩽x+y+a,i=sqrt(1,3)h_{i}(x, y)+k_{i}(x, y) \leqslant \leqslant x+y+a, i=\sqrt{1,3} and
a < s u p{(1)/(t)ln((t^(2)-2L_(1)t-L_(1))/(L_(2)(2t+1))):t > L_(1)+sqrt(L_(1)^(2)+L_(1))},a<\sup \left\{\frac{1}{t} \ln \frac{t^{2}-2 L_{1} t-L_{1}}{L_{2}(2 t+1)}: t>L_{1}+\sqrt{L_{1}^{2}+L_{1}}\right\},
then the problem (2) with the condition (5) has in C^(1)(DUD_(0))C^{1}\left(D U D_{0}\right) a unique solution.
Proof. In the Banach space C^(l)(D uuD_(0))C^{l}\left(D \cup D_{0}\right) endowed with the norm ||u||_(1)=||u||+||u_(x)||+||u_(y)||\|u\|_{1}=\|u\|+\left\|u_{x}\right\|+\left\|u_{y}\right\|, with ||*||\|\cdot\| given by (6) we consider the operator i : C^(1)(D uuD_(0))rarr C(D uuD_(0))C^{1}\left(D \cup D_{0}\right) \rightarrow C\left(D \cup D_{0}\right) given by (1.0){[Tu(x","y)=int_(0)^(x)int_(0)^(y)f(x,s,u(x,s),u_(x)(r,s),u_(y)(x,s),u(g_(1)(r,s)),:}],[{:u_(x)(g_(2)(r,s)),u_(y)(sigma_(3)(r,s)))drds+psi(x","y)","for(x","y)in D],[Iu(x","y)=varphi(x","y)","for(x","y)inD_(0)]:}(1.0)\left\{\begin{aligned} T u(x, y)= & \int_{0}^{x} \int_{0}^{y} f\left(x, s, u(x, s), u_{x}(r, s), u_{y}(x, s), u\left(g_{1}(r, s)\right),\right. \\ & \left.u_{x}\left(g_{2}(r, s)\right), u_{y}\left(\sigma_{3}(r, s)\right)\right) d r d s+\psi(x, y), f o r(x, y) \in D \\ I u(x, y)= & \varphi(x, y), f o r(x, y) \in D_{0}\end{aligned}\right.
where psi\psi is defined by (8).
We have to show that the range of TT is contained in C^(l)(DUD_(0))C^{l}\left(D U D_{0}\right). We obtain (Tu)_(x)(x,y)=int_(0)^(y)f(x,s,u(x,s),dots,u_(y)(g_(z)(x,s)))ds+varphi_(x)(x,0)(T u)_{x}(x, y)=\int_{0}^{y} f\left(x, s, u(x, s), \ldots, u_{y}\left(g_{z}(x, s)\right)\right) d s+\varphi_{x}(x, 0), for (x,y)in(0,alpha]xx(0,beta](x, y) \in(0, \alpha] \times(0, \beta] and (Xu)_(x)(x,y)=rho_(x)(x,y)(X u)_{x}(x, y)=\rho_{x}(x, y) for (x,y)inD_(0)\\{(x,y)in D:x=0(x, y) \in D_{0} \backslash\{(x, y) \in D: x=0 or y=0}y=0\}.
The limits in the points of the form (x_(0),0)\left(x_{0}, 0\right) an (0,y_(0))\left(0, y_{0}\right) are the same
for both expressions, in view of the condition (b). We have proved that (Tu)_(x)in C(D uuD_(0))(T u)_{x} \in C\left(D \cup D_{0}\right) and a similar argument shows that (Tu)_(y)∈∈C(D uuD_(0))(T u)_{y} \in \in C\left(D \cup D_{0}\right), so Tu inC^(1)(D uuD_(0))T u \in C^{1}\left(D \cup D_{0}\right).
Let u,v inC^(1)(D uuD_(0))u, v \in C^{1}\left(D \cup D_{0}\right). For (x,y)inD_(0)(x, y) \in D_{0} we have Tu(x,y)-Tv(x,y)=C_(y)\operatorname{Tu}(x, y)-\operatorname{Tv}(x, y)=C_{y} For (x,y)in D(x, y) \in D we obtain |Iu(x,y)-Iv(x,y)| <=|\operatorname{Iu}(x, y)-\operatorname{Iv}(x, y)| \leqslant
{:[ <= (I_(1)+I_(2)exp(t_(a)))||u-v||_(1)int_(0)^(pi)int_(0)^(g)exp(t(x+s))drds" and it follows that "],[||Tu-Tv|| <= (1)/(t^(2))(L_(1)+exp(ta)L_(2))||u-v||_(1).]:}\begin{aligned}
& \leq\left(I_{1}+I_{2} \exp \left(t_{a}\right)\right)\|u-v\|_{1} \int_{0}^{\pi} \int_{0}^{g} \exp (t(x+s)) d r d s \text { and it follows that } \\
& \|T u-T v\| \leq \frac{1}{t^{2}}\left(L_{1}+\exp (t a) L_{2}\right)\|u-v\|_{1} .
\end{aligned}
The hypothesis on a implies that ((1)/(t^(2))+(2)/(t))(L_(1)+L_(2)cip(:}\left(\frac{1}{t^{2}}+\frac{2}{t}\right)\left(L_{1}+L_{2} \operatorname{cip}(\right. tal ) < I_("r "))<I_{\text {r }} hence TT is a contraction and the considered froblem has a unique solution.
REEARK 2. The maximum of the majorant of a is attained then this the unique solution greater than I_(1)+sqrt(I_(1)^(2)+I_(1))I_{1}+\sqrt{I_{1}^{2}+I_{1}} of the equation
(a) f in C(D xxR^(3))f \in C\left(D \times R^{3}\right) satisfies a Lipschitz condition with respect to the last three variables
|f(x,y,z_(1),z_(2),z_(3))-1(x,y,t_(1),t_(2),t_(3))| <= Lsum_(i=1)^(j)|z_(i)-t_(i)|\left|f\left(x, y, z_{1}, z_{2}, z_{3}\right)-1\left(x, y, t_{1}, t_{2}, t_{3}\right)\right| \leq L \sum_{i=1}^{j}\left|z_{i}-t_{i}\right|
(b) varphi inC^(l)(D_(0))\varphi \in C^{l}\left(D_{0}\right) such that varphi_(xy)\varphi_{x y} exists and f(0,y,z_(1),z_(2),z_(3))=varphi_(xy)(0,y)f(0,x,z_(2),z_(2),z_(3))=varphi_(x_(y))(x,0)f\left(0, y, z_{1}, z_{2}, z_{3}\right)=\varphi_{x y}(0, y) f\left(0, x, z_{2}, z_{2}, z_{3}\right)=\varphi_{x_{y}}(x, 0), for any (x,y)in D,(z_(1),z_(2),z_(3))inR^(3)(x, y) \in D,\left(z_{1}, z_{2}, z_{3}\right) \in R^{3}
(๕) g_(i)in C(D),g_(i):D rarr D uuD_(0),g_(i)=(h_(i),k_(i))g_{i} \in C(D), g_{i}: D \rightarrow D \cup D_{0}, g_{i}=\left(h_{i}, k_{i}\right) with h_(i)(x,y)+k_(i)(x,y)⩽≤x+y+a_(b)quad i= bar(1,3)h_{i}(x, y)+k_{i}(x, y) \leqslant \leq x+y+a_{b} \quad i=\overline{1,3} and
a < s u p{(1)/(4)ln((t^(2))/(L(2t+1))):t > 0},a<\sup \left\{\frac{1}{4} \ln \frac{t^{2}}{L(2 t+1)}: t>0\right\},
then the problem (11) with the condition (5) has in C^(1)(DuuD_(0))C^{1}\left(\mathcal{D} \cup D_{0}\right) a unique solution. The maximum of the expression which denotes a majorant for a is attained in the case when tt is the unique positive soIution of the equation (2(x+1))/(2x+1)-1n(x^(2))/(n(2x+1))=0\frac{2(x+1)}{2 x+1}-1 n \frac{x^{2}}{n(2 x+1)}=0.
Proof. One applies Theorem 2 and Remain 2 considexing ff Lipschila with I_(1)=0I_{1}=0 and I_(2)=II_{2}=I.
REMARK 3. In the given theorems, the condition imposed to the functions that modify the variables is less restatictive than in [2] and determines a larger class of functions which satisfy the integral condition from [8]. It is said in [1] that one has the result in Theorem 2 even if one remounces to the last part of the conditions (b) and (c), but it is not true. The following examples, which satisfy all the conditions in theoxem 2 but the last part of the conditions (b) and (c), show that the uniqueness or even the existence of the solution is not quaranteed any wore。
ENAIPLE 1. Let D=[0,1]^(2),x_(1)=T_(2)=0,delta:D rarr D,g(x,y)=(1,y)_(0)D=[0,1]^{2}, x_{1}=T_{2}=0, \delta: D \rightarrow D, g(x, y)=(1, y)_{0} The equation
u(x,0^(˙))=u(0,y)=0,(x_(x)y)in Du(x, \dot{0})=u(0, y)=0,\left(x_{x} y\right) \in D
has infinitely many solutions of the form u(x,y)=xP(y),F:[0,1]rarr yu(x, y)=x P(y), F:[0,1] \rightarrow y being differentiable with F(0)=0F(0)=0.
WAITPIS 2. If in Example 1 we consider instead of (12) the equan tion u_(xy)(x,y)=u_(y)(1,J)+2yu_{x y}(x, y)=u_{y}(1, J)+2 y, we obtain a problem which has no solum tions in C^(1)(D)C^{1}(D).
Inceed, if the problem uas a solution UU, this will verify
U(x,y)=int_(0)^(x)int_(0)^(y)(U_(y)(1,s)+2s)drds,U(x, y)=\int_{0}^{x} \int_{0}^{y}\left(U_{y}(1, s)+2 s\right) d r d s,
therefore U_(y)(x,y)=x(2y+U_(y)(1,y))U_{y}(x, y)=x\left(2 y+U_{y}(1, y)\right). For x=1x=1 we get a contradiction.
B. We analyse now the existence of the global solutions of the equations (1) and (2) on EE, the boundary condition being
where xi\xi and E_(0)E_{0} are given by (4).
We extend some results of [3] to the case of functional equations, admitting also delays, using the methods given by Bielecki. We need the following estimations.
LEMMA 1. Let t > 0,L in C(E),L(x,y) >= 0t>0, L \in C(E), L(x, y) \geqslant 0 on EE and K(x,y)==int_(0)^(x)int_(0)^(y)L(p,q)dpdq,quad(x,y)in EK(x, y)= =\int_{0}^{x} \int_{0}^{y} L(p, q) d p d q, \quad(x, y) \in E. Then the following inequality holds
int_(0)^(n)int_(0)^(pi)L(r,s)exp(tK(r,s))drds <= (1)/(t)exp(tK(x,y)),(x,y)inZ.\int_{0}^{n} \int_{0}^{\pi} L(r, s) \exp (t K(r, s)) d r d s \leq \frac{1}{t} \exp (t K(x, y)),(x, y) \in \mathbb{Z} .
Eroof.
Let U(x,y)=(1)/(t)exp(tK(x,y))-int_(0)^(x)int_(0)^(y)L(x,s)exp(tK(r,s))drdsU(x, y)=\frac{1}{t} \exp (t K(x, y))-\int_{0}^{x} \int_{0}^{y} L(x, s) \exp (t K(r, s)) d r d s. It follows that U_(x)(x,y)=int_(0)^(y)L(x,q)dq*exp(tK(x,y))-int_(0)^(y)L(x,s)exp(tK(x,s))c^(˙)cU_{x}(x, y)=\int_{0}^{y} L(x, q) d q \cdot \exp (t K(x, y))-\int_{0}^{y} L(x, s) \exp (t K(x, s)) \dot{c} c Because U_(xy)(x,y) >= 0U_{x y}(x, y) \geqslant 0 for any (x,y)in E(x, y) \in E, we have U_(x)(x,y) >= U_(x)(x,0)=0U_{x}(x, y) \geqslant U_{x}(x, 0)=0 and U(x,y) >= U(0,y) >= 0U(x, y) \geqslant U(0, y) \geqslant 0, hence the inequality is proved.
The proof is similar for
LENMA 2. Let t > 0,L inC^(I)(E),L(x,y) >= 0,L_(x)(x,y) >= 0t>0, L \in C^{I}(E), L(x, y) \geqslant 0, L_{x}(x, y) \geqslant 0 and L_(y)(x,y) >= 0L_{y}(x, y) \geq 0 on E;K(x,y)=int_(0)^(x)int_(0)^(y)L(p,q)dpdq+int_(0)^(x)L(p,y)dp+int_(0)^(y)L(x,q)dqE ; K(x, y)=\int_{0}^{x} \int_{0}^{y} L(p, q) d p d q+\int_{0}^{x} L(p, y) d p+\int_{0}^{y} L(x, q) d q, (x,y)in E(x, y) \in E. We have then for any (x,y)in E(x, y) \in E
{:[int_(y)^(l)int_(l)^(y)L(r","s)exp(tK(r","s))drds <= (1)/(t)exp(tK(x","y))],[int_(0)^(x)L(x","s)exp(tK(x","s))ds <= (1)/(t)exp(tK(x","y))],[int_(0)^(x)L(r","y)exp(tK(r","y))dr <= (1)/(t)exp(tK(x","y))]:}\begin{aligned}
& \int_{y}^{l} \int_{l}^{y} L(r, s) \exp (t K(r, s)) d r d s \leq \frac{1}{t} \exp (t K(x, y)) \\
& \int_{0}^{x} L(x, s) \exp (t K(x, s)) d s \leq \frac{1}{t} \exp (t K(x, y)) \\
& \int_{0}^{x} L(r, y) \exp (t K(r, y)) d r \leq \frac{1}{t} \exp (t K(x, y))
\end{aligned}
We prove now
THEOREM 3. If
(a) quad f in C(E xxR^(2))\quad f \in C\left(E \times R^{2}\right) is Lipschitz with respect to the last two variables such that |f(x,y,z_(1),z_(2))-f(x,y,t_(1),t_(2))| <= L(x,y)(|z_(1)-t_(1)|+|z_(2)-t_(2)|)\left|f\left(x, y, z_{1}, z_{2}\right)-f\left(x, y, t_{1}, t_{2}\right)\right| \leq L(x, y)\left(\left|z_{1}-t_{1}\right|+\left|z_{2}-t_{2}\right|\right) and |f(x,y,0,0)| <= L(x,y)|f(x, y, 0,0)| \leqslant L(x, y), where J in C(E)J \in C(E) is nonnegative
(b) varphi inC^(2)(E_(0))\varphi \in C^{2}\left(E_{0}\right) and s u p{|varphi(x_(0)y)|:(x,y)inE_(0)}=S < oo\sup \left\{\left|\varphi\left(x_{0} y\right)\right|:(x, y) \in E_{0}\right\}=S<\infty
(c) g in C(E),g:E rarr E uuE_(0),g=(h,k)g \in C(E), g: E \rightarrow E \cup E_{0}, g=(h, k) with h(x,y) <= x,k(x,y) <= yh(x, y) \leq x, k(x, y) \leq y
for any (x,y)in E(x, y) \in E,
then the problem (1) with the condition (13) has in the space XX de fined below a unique solution.
Proof. Let u in C(EUE_(0))u \in C\left(E U E_{0}\right). We deflae K:BUE_(0)rarr RK: B U E_{0} \rightarrow R by K(x,y)=int_(0)^(pi)int_(0)^(y)L(p;q)dpdqK(x, y)=\int_{0}^{\pi} \int_{0}^{y} L(p ; q) d p d q for (x,y)in E(x, y) \in E and K(x,y)=0K(x, y)=0 for (x,y)inE_(D^(9))(x, y) \in E_{D^{9}} and consider
(14) quad|u|_(2)=s u p{|u(x,y)|exp(-tR(x,y)):(x,y)in E uuE_(0)}\quad|u|_{2}=\sup \left\{|u(x, y)| \exp (-\operatorname{tR}(x, y)):(x, y) \in E \cup E_{0}\right\} with t > 2t>2. We denote X={u in C(E uuE_(D)):||u||_(2) < oo}X=\left\{u \in C\left(E \cup E_{D}\right):\|u\|_{2}<\infty\right\} and observe that ( x,||*||_(2)x,\|\cdot\|_{2} ) is a Banach space.
For u in Xu \in X, we define TuT u as in (7) respectively on EE and E_(0)E_{0} and prove that the raage of TT is contained in XX.
Let (x,y)inE_(0)(x, y) \in E_{0}. Then |Tu(x,y)|=|varphi(x,y)| <= S|T u(x, y)|=|\varphi(x, y)| \leqslant S. For (x,y)in E(x, y) \in E, |Tu(x,y)| <= int_(0)^(x_(0))int_(0)^(y)L(x,s)(|u(x,s)|+|u(g(x,s))|+1)dxds <=|T u(x, y)| \leqslant \int_{0}^{x_{0}} \int_{0}^{y} L(x, s)(|u(x, s)|+|u(g(x, s))|+1) d x d s \leqslant <= (2||u||_(2)+1)int_(0)^(pi)int_(0)^(g)L(x,s)exp(tK(x_(0)s))drds\leqslant\left(2\|u\|_{2}+1\right) \int_{0}^{\pi} \int_{0}^{g} L(x, s) \exp \left(t K\left(x_{0} s\right)\right) d r d s. Applying Lenma I we obtaix |Tu(x,y)|exp(-tK(x,y)) <= (1)/((1)/(4))(||u||_(2)+1)|T u(x, y)| \exp (-t K(x, y)) \leq \frac{1}{\frac{1}{4}}\left(\|u\|_{2}+1\right), hence ||Tu||_(2)≤≤max{s,(1)/(t)(||u||_(2)+1)} < oo\|T u\|_{2} \leq \leq \max \left\{s, \frac{1}{t}\left(\|u\|_{2}+1\right)\right\}<\infty 。
We prove that TT is Lipschitz with a constant which is less than I_(0)I_{0} Let u,v in Xu, v \in X. For (x,y)inE_(0)(x, y) \in E_{0}, we have |Tu(x,y)=Tv(x,y)|=0|T u(x, y)=\operatorname{Tv}(x, y)|=0. For (x,y)in Sigma(x, y) \in \Sigma, we obtain
|Tu(x,y)-Tv(x,y)| <= 2||u||_(2)int_(0)^(e)int_(0)^(y)L(r,s)exp(tK(r,s))drds <=|T u(x, y)-T v(x, y)| \leqslant 2\|u\|_{2} \int_{0}^{e} \int_{0}^{y} L(r, s) \exp (t K(r, s)) d r d s \leqslant
<= (2)/(t)||u||_(2)exp(tK(x,y))\leqslant \frac{2}{t}\|u\|_{2} \exp (\operatorname{tK}(x, y)).
It follows that ||Tu-Tv||_(2) <= (2)/(t)||u-v||_(2)\|T u-T v\|_{2} \leq \frac{2}{t}\|u-v\|_{2} and for t > 2t>2 we have a unique solution in XX.
THEOREM 4。If
(a) f in C(E xxR^(6))f \in C\left(E \times R^{6}\right) is Lipschitz with respect to the last six variables such that |f(x,y,z_(1),dots,z_(6))-f(x,y,t_(1),dots,t_(6))| <= L(x,y)sum_(i_(1))^(6)|z_(i)-t_(i)|\left|f\left(x, y, z_{1}, \ldots, z_{6}\right)-f\left(x, y, t_{1}, \ldots, t_{6}\right)\right| \leqslant L(x, y) \sum_{i_{1}}^{6}\left|z_{i}-t_{i}\right| and |f(x,y,0,dots,0)| <= L(x,y)|f(x, y, 0, \ldots, 0)| \leq L(x, y) for any (x,y)in E(x, y) \in E, with L,L_(x)L, L_{x} and L_(y)L_{y} in O(E)O(E) and nonnegative on I
(b) quad varphi inC^(1)(E_(0))\quad \varphi \in \mathbb{C}^{1}\left(\mathrm{E}_{0}\right) with |varphi|,|varphi_(x)|,|varphi_(y)| <= S < oo|\varphi|,\left|\varphi_{x}\right|,\left|\varphi_{y}\right| \leq S<\infty, where |varphi|==s u p{|varphi(x,y)|:(x,y)inE_(0)}|\varphi|= =\sup \left\{|\varphi(x, y)|:(x, y) \in E_{0}\right\}, and varphi\varphi xy exists such that f(0,y,z_(1),dots,z_(6))=varphi_(xy)(0,y),f(x,0,z_(1),dots,z_(6))=varphi_(xy)(x,0)f\left(0, y, z_{1}, \ldots, z_{6}\right)=\varphi_{x y}(0, y), f\left(x, 0, z_{1}, \ldots, z_{6}\right)=\varphi_{x y}(x, 0), for any (x_(6)y)inx_(,)(z_(1),dots,z_(6))inR^(6)\left(x_{6} y\right) \in x_{,}\left(z_{1}, \ldots, z_{6}\right) \in R^{6}
(c) quadg_(j)in C(E),g_(i):E rarr E uuE_(o),g_(i)=(h_(i),k_(i))mith _h_(i)(x,y) <= x,k_(i)(x,y) <=\quad g_{j} \in C(E), g_{i}: E \rightarrow E \cup E_{o}, g_{i}=\left(h_{i}, k_{i}\right) \underline{\operatorname{mith}} h_{i}(x, y) \leq x, k_{i}(x, y) \leqslant if yy for any (x,y)in E,i= bar(1,3)(x, y) \in E, i=\overline{1,3},
then the problem (2) with the condition (13) has in the space YY defined bellow a unique solution.
Proof Let u inC^(1)(E uuE_(0))u \in C^{1}\left(E \cup E_{0}\right). We define K:E uuE_(0)rarr RK: E \cup E_{0} \rightarrow R by K(x,y)=int_(0)^(x)int_(0)^(y)L(p,q)dpdq+int_(0)^(z)L(p,y)dp+int_(0)^(y)L(x,q)dq,(x,y)in EK(x, y)=\int_{0}^{x} \int_{0}^{y} L(p, q) d p d q+\int_{0}^{z} L(p, y) d p+\int_{0}^{y} L(x, q) d q,(x, y) \in E and K(x,y)=0,(x,y)inE_(0)K(x, y)=0,(x, y) \in E_{0}. We consider also ||u||_(3)=||u||_(2)+||u_(x)||_(2)+||u_(y)||_(2)\|u\|_{3}=\|u\|_{2}+\left\|u_{x}\right\|_{2}+\left\|u_{y}\right\|_{2}, where ||*||_(2)\|\cdot\|_{2} is given by (14) with t > 6t>6.
Let Y={u inC^(1)(E uuE_(0)):||u||; < oo}Y=\left\{u \in C^{1}\left(E \cup E_{0}\right):\|u\| ;<\infty\right\} which is a Banach space with respect to the norm ||.||_(3)\|.\|_{3}. For u in Yu \in Y, we define TuT u by (10), respectively on F and E_(0)\mathrm{E}_{0}.
We prove that the range of TT is contained in YY.
{:[" We havo "Tu inC^(l)(E uuE_(0))" because of the condition (b). Iet ( "x","y" ) "in],[ inJ_(0)"; then "|Tu(x","y)|=|varphi(x","y)| <= " S. For "(x","y)in E" we have "],[|Tu(x","y)| <= (2||u||_(3)+1)int_(0)^(xi)int_(0)^(y)L(x","s)exp(tK(x","s))drds.],[" yoliowing Lemma "2" we obtain "|Tu(x_(9)y)|exp(-tK(x","y)) <= (1)/(4)(2||u||_(3^(+))1)", "],[(x","y)in E" and "],[||Iu||_(2) <= max{s,(1)/(t)(2||u||_(3)+1)}.],[" Similarly "],[||(Tu)_(x)||_(a) <= max{S,(1)/(t)(2||u||_(3)+1)}],[||(Tu)_(y)||_(2) <= max{(s),(1)/(t)(2||u||_(3)+1)}_(9)" hence "],[||Tu||_(3) <= 3max{s,(1)/(t)(2||u||_(3)+1)} < oo" and "Tu in Y.],[" Using again Lema "2" we prove that "T" is a Lipschitz operator. Let "],[u","v in Y;" for "(x","y)inE_(0)","" we have "|Tu(x","y)-Tv(x","y)|=0.For(x","y)in E],[|Tu(x","y)-Tv(x","y)| <= 2||u-v||zint_(0)^(x)int_(0)^(y)L(x","s)exp(tK(x","s))dxds <= ],[ <= (2)/(t)||u-v||_(3)exp(tK(x","y)).],[" It follows that "],[||Tu-Tv||_(2) <= (2)/(t)||u-v||_(3)],[" and similarly "],[||(Tu)_(x)-(Tv)_(x)||_(2) <= (2)/(t)||u-v||_(3)],[||(Tu)_(y)-(Tv)_(y)||_(2) <= (2)/(t)||u-v||_(3)],[" From the last three inequalities we obtain "],[:'||Tu-Tv||_(3) <= (6)/(t)||u-v||_(3)","],[" and for "t > 6" the problem has in "Y" a unique solution. "],[" REMARK 4. The results of Theorem "3" and "4" remain true imposing "],[" suitable conditions on "f" in the case of the equations (9) and (11). "],[" REffASK 5. Because all the theorems were proved using the Banach "],[" fixed point theorem, the solutions may be approximated by the method "],[" of successive approximations. "]:}\begin{aligned}
& \text { We havo } T u \in C^{l}\left(E \cup E_{0}\right) \text { because of the condition (b). Iet ( } x, y \text { ) } \in \\
& \in J_{0} \text {; then }|T u(x, y)|=|\varphi(x, y)| \leqslant \text { S. For }(x, y) \in E \text { we have } \\
& |T u(x, y)| \leq\left(2\|u\|_{3}+1\right) \int_{0}^{\xi} \int_{0}^{y} L(x, s) \exp (t K(x, s)) d r d s . \\
& \text { yoliowing Lemma } 2 \text { we obtain }\left|T u\left(x_{9} y\right)\right| \exp (-\operatorname{tK}(x, y)) \leqslant \frac{1}{4}\left(2\|u\|_{3^{+}} 1\right) \text {, } \\
& (x, y) \in E \text { and } \\
& \|I u\|_{2} \leq \max \left\{s, \frac{1}{t}\left(2\|u\|_{3}+1\right)\right\} . \\
& \text { Similarly } \\
& \left\|(\mathrm{Tu})_{\mathrm{x}}\right\|_{\mathrm{a}} \leq \max \left\{\mathrm{S}, \frac{1}{\mathrm{t}}\left(2\|\mathrm{u}\|_{3}+1\right)\right\} \\
& \left\|(\mathrm{Tu})_{\mathrm{y}}\right\|_{2} \leqslant \max \left\{\mathrm{~s}, \frac{1}{\mathrm{t}}\left(2\|\mathrm{u}\|_{3}+1\right)\right\}_{9} \text { hence } \\
& \|T u\|_{3} \leq 3 \max \left\{s, \frac{1}{t}\left(2\|u\|_{3}+1\right)\right\}<\infty \text { and } T u \in Y . \\
& \text { Using again Lema } 2 \text { we prove that } T \text { is a Lipschitz operator. Let } \\
& u, v \in Y ; \text { for }(x, y) \in E_{0}, \text { we have }|\operatorname{Tu}(x, y)-\operatorname{Tv}(x, y)|=0 . \operatorname{For}(x, y) \in E \\
& |T u(x, y)-T v(x, y)| \leq 2\|u-v\| z \int_{0}^{x} \int_{0}^{y} L(x, s) \exp (t K(x, s)) d x d s \leq \\
& \leqslant \frac{2}{t}\|u-v\|_{3} \exp (t K(x, y)) . \\
& \text { It follows that } \\
& \|T u-T v\|_{2} \leq \frac{2}{t}\|u-v\|_{3} \\
& \text { and similarly } \\
& \left\|(T u)_{x}-(T v)_{x}\right\|_{2} \leqslant \frac{2}{t}\|u-v\|_{3} \\
& \left\|(\mathrm{Tu})_{y}-(\mathrm{Tv})_{y}\right\|_{2} \leq \frac{2}{t}\|u-v\|_{3} \\
& \text { From the last three inequalities we obtain } \\
& \because\|\mathrm{Tu}-\operatorname{Tv}\|_{3} \leqslant \frac{6}{\mathrm{t}}\|\mathrm{u}-\mathrm{v}\|_{3}, \\
& \text { and for } t>6 \text { the problem has in } Y \text { a unique solution. } \\
& \text { REMARK 4. The results of Theorem } 3 \text { and } 4 \text { remain true imposing } \\
& \text { suitable conditions on } f \text { in the case of the equations (9) and (11). } \\
& \text { REffASK 5. Because all the theorems were proved using the Banach } \\
& \text { fixed point theorem, the solutions may be approximated by the method } \\
& \text { of successive approximations. }
\end{aligned}
REWERENCISS
AGABWAL, R.P., THANDAPANI, I., Existence and Uniqueness of Solutions of Hyperbolic Delay Differential Equations, Math. Sem. Notes 2(1979), 531-541
ALIOU, M.C., The Darboux Problem for Partial Differentiel Functio nal Equations of Hyperbolic ilppa, Mathemstica 19(42), 2(1977), 117-122
BIBLECKI, A., Une remarque sur l'application de la méthode de Banach-Cacciopoli-Tikhonov dans ia théorie de 1^(')1^{\prime} &quatinn s=f(x,y,z,p,q)s=f(x, y, z, p, q), Bull. Acad. Polon. Sci. 4(1956), 265-268
IONESCU, D.V., Sur une classe d'équations fonctiomelles, Thèse, Paris 1927
KWAPISZ, M., TURO, J., On the Bxistence and Uniqueness of Solutions of Darboux Problem for Partial Diffe-Fential-Functional Equations, Colloq. Math. 29(1974), 279-302
KWAPISZ, M., TURO, J., Some Integral Functional Equations, Punk. Mkv. 18(1975), 107-162
RADULFSCV, D., Sur un problème de D.V.Ionescu, Studia Univ. Babeş-Bolyai, Math.26(2)(1981), 51-55
B. WS, A.T. Qn the Eroblem of Darbon-Lonegen, "Babes-Bolyai" Univ Faculty of Bath. Research Semo, Frepnint n.' 1,1931,1-321,1931,1-32