Existence and uniqueness of solutions of the Darboux problem for partial differential equations

Abstract

Authors

Mira-Cristiana Anisiu
Institutul de Matematica, Cluj-Napoca, Romanai

Keywords

?

Paper coordinates

M.-C. Anisiu, Existence and uniqueness of solutions of the Darboux problem for partial differential equations, Seminar on Functional Analysis and Numerical Methods, 3-14, Preprint, 84-1, Univ. Babeş-Bolyai Cluj-Napoca, 1984.

PDF

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

1984-Anisiu-Existence

RXISTENCE AND UNIQUENESS OF SOLUTIONিS OF THE DAREOUX PROELEM FOR PARTIAT DIFH BRENXIAL FUNCTIONAL EQUATIONS

byแica-Cristiana Anfriu

The subject of linis paper is the Darboux problem for functions 1 equations of hyperbolic type. Such problems were first studied by D.V.Ionescu [4] and many contributions are to be found in some recent papers [ 1 ] , [ 2 ] , [ 5 ] [ 8 ] [ 1 ] , [ 2 ] , [ 5 ] [ 8 ] [1],[2],[5]-[8][1],[2],[5]-[8][1],[2],[5][8].
We consider equations of the following type
(1) u x y ( x , y ) = f ( x , y , u ( x , y ) , u ( g ( x , y ) ) ) u x y ( x , y ) = f ( x , y , u ( x , y ) , u ( g ( x , y ) ) ) u_(xy)(x,y)=f(x,y,u(x,y),u(g(x,y)))u_{x y}(x, y)=f(x, y, u(x, y), u(g(x, y)))uxy(x,y)=f(x,y,u(x,y),u(g(x,y)))
(2) u x y ( x , y ) = f ( x , y , u ( x , y ) , u x ( x , y ) , u y ( x , y ) , u ( E 1 ( x , y ) ) , u x ( E 2 ( x , y ) ) u x y ( x , y ) = f x , y , u ( x , y ) , u x ( x , y ) , u y ( x , y ) , u E 1 ( x , y ) , u x E 2 ( x , y ) quadu_(xy)(x,y)=f(x,y,u(x,y),u_(x)(x,y),u_(y)(x,y),u(E_(1)(x,y)),u_(x)(E_(2)(x,y)):}\quad u_{x y}(x, y)=f\left(x, y, u(x, y), u_{x}(x, y), u_{y}(x, y), u\left(E_{1}(x, y)\right), u_{x}\left(E_{2}(x, y)\right)\right.uxy(x,y)=f(x,y,u(x,y),ux(x,y),uy(x,y),u(E1(x,y)),ux(E2(x,y)), u y ( s ~ z ( x , y ) ) ) u y s ~ z ( x , y ) {:u_(y)( tilde(s)_(z)(x,y)))\left.u_{y}\left(\tilde{s}_{z}(x, y)\right)\right)uy(s~z(x,y))).
For T 1 , T 2 0 T 1 , T 2 0 T_(1),T_(2) >= 0T_{1}, T_{2} \geqslant 0T1,T20 and α , β > 0 α , β > 0 alpha,beta > 0\alpha, \beta>0α,β>0 we denote
(3) D = [ 0 , α ] × [ 0 , β ] D = [ 0 , α ] × [ 0 , β ] D=[0,alpha]xx[0,beta]D=[0, \alpha] \times[0, \beta]D=[0,α]×[0,β] and D 0 = ( [ T 1 , 0 ] × [ T 2 , β ] ) ( [ 0 , α ] x × [ I 2 , 0 ] ) D 0 = T 1 , 0 × T 2 , β ( [ 0 , α ] x × I 2 , 0 D_(0)=([-T_(1),0]xx[-T_(2),beta])uu([0,alpha]x{: xx[-I_(2),0])D_{0}=\left(\left[-T_{1}, 0\right] \times\left[-T_{2}, \beta\right]\right) \cup([0, \alpha] x \left.\times\left[-I_{2}, 0\right]\right)D0=([T1,0]×[T2,β])([0,α]x×[I2,0])
(4) E = [ 0 , ) 2 E = [ 0 , ) 2 E=[0,oo)^(2)E=[0, \infty)^{2}E=[0,)2 and E 0 = ( [ T 1 , 0 ] × [ T 2 , ) ) ( [ 0 , ) × [ T 2 , 0 ] ) E 0 = T 1 , 0 × T 2 , [ 0 , ) × T 2 , 0 E_(0)=([-T_(1),0]xx[-T_(2),oo))uu([0,oo)xx[-T_(2),0])E_{0}=\left(\left[-T_{1}, 0\right] \times\left[-T_{2}, \infty\right)\right) \cup\left([0, \infty) \times\left[-T_{2}, 0\right]\right)E0=([T1,0]×[T2,))([0,)×[T2,0]).
A. We study at first the case when the equation is considered on the compact D D DDD with boundary conditions on D 0 D 0 D_(0)D_{0}D0 ( not only on ( [ 0 , C ] × × { 0 } ) ( { 0 } × [ 0 , β ] ) [ 0 , C ] × × { 0 } ) ( { 0 } × [ 0 , β ] ) [0,C]xx xx{0})uu({0}xx[0,beta])[0, \mathbb{C}] \times \times\{0\}) \cup(\{0\} \times[0, \beta])[0,C]××{0})({0}×[0,β]), which corresponds to T 1 = T 2 & 0 T 1 = T 2 & 0 T_(1)=T_(2)&0T_{1}=T_{2} \& 0T1=T2&0 ) in order to admit also retarded arguments. The boundary condition is
(5) u ( x , y ) = φ ( x , y ) , ( x , y ) D 0 u ( x , y ) = φ ( x , y ) , ( x , y ) D 0 u(x,y)=varphi(x,y),(x,y)inD_(0)u(x, y)=\varphi(x, y),(x, y) \in D_{0}u(x,y)=φ(x,y),(x,y)D0.
A solution of the problem (1) (or (2)) with the condition (5) is a function U C ( D D 0 ) ( U C D D 0 U in C(D uuD_(0))(:}U \in C\left(D \cup D_{0}\right)\left(\right.UC(DD0)( or U C l ( D D 0 ) ) U C l D D 0 {:U inC^(l)(D uuD_(0)))\left.U \in C^{l}\left(D \cup D_{0}\right)\right)UCl(DD0)) such that U x y U x y U_(xy)U_{x y}Uxy exists on D D DDD and U U UUU satisfies the equation (1) (or (2)) for any ( x , y ) D ( x , y ) D (x,y)in D(x, y) \in D(x,y)D and the
Cencition (5) on Do.
All the functions whose range is not mentioned hav real values.
THEOREI 1. II
(a) r C ( D × R 2 ) r C D × R 2 quad r in C(D xxR^(2))\quad r \in C\left(D \times R^{2}\right)rC(D×R2) satisfies a Lipcchite condition with respect to
the last two variables
| f ( x , y , z 1 , z 2 ) f ( x , y , t 1 , t 2 ) | I 1 | z 1 t 1 | + I 2 | z 2 t 2 | f x , y , z 1 , z 2 f x , y , t 1 , t 2 I 1 z 1 t 1 + I 2 z 2 t 2 |f(x,y,z_(1),z_(2))-f(x,y,t_(1),t_(2))| <= I_(1)|z_(1)-t_(1)|+I_(2)|z_(2)-t_(2)|\left|f\left(x, y, z_{1}, z_{2}\right)-f\left(x, y, t_{1}, t_{2}\right)\right| \leqslant I_{1}\left|z_{1}-t_{1}\right|+I_{2}\left|z_{2}-t_{2}\right||f(x,y,z1,z2)f(x,y,t1,t2)|I1|z1t1|+I2|z2t2|
(b) φ C 1 ( D 0 ) φ C 1 D 0 varphi inC^(1)(D_(0))\varphi \in C^{1}\left(D_{0}\right)φC1(D0)
(c) δ C ( D ) , ξ : D D D 0 , g = ( h , k ) δ C ( D ) , ξ : D D D 0 , g = ( h , k ) delta in C(D),xi:D rarr D uuD_(0),g=(h,k)\delta \in C(D), \xi: D \rightarrow D \cup D_{0}, g=(h, k)δC(D),ξ:DDD0,g=(h,k) with h ( x , y ) + k ( x , y ) x + y + a h ( x , y ) + k ( x , y ) x + y + a h(x,y)+k(x,y) <= x+y+ah(x, y)+k(x, y) \leqslant x+y+ah(x,y)+k(x,y)x+y+a
sind a < sup { 1 t t 2 I 1 I 2 : t > I 3 } a < sup 1 t t 2 I 1 I 2 : t > I 3 a < s u p{(1)/(t)(t^(2)-I_(1))/(I_(2)):t > sqrt(I_(3))}a<\sup \left\{\frac{1}{t} \frac{t^{2}-I_{1}}{I_{2}}: t>\sqrt{I_{3}}\right\}a<sup{1tt2I1I2:t>I3},
then the problem (1) with the condition (5) has in CSUD 2 d unique Solution.
Proof. We consider the Banach space C ( D D 0 ) C D D 0 C(D uuD_(0))C\left(D \cup D_{0}\right)C(DD0) with the Bielecki type norm
(6) u = max { | u ( x , y ) | exp ( t ( x + y ) ) : ( x , y ) D D 0 } u = max | u ( x , y ) | exp ( t ( x + y ) ) : ( x , y ) D D 0 ||u||=-max{|u(x,y)|exp(-t(x+y)):(x,y)in D uuD_(0)}\|u\|=-\max \left\{|u(x, y)| \exp (-t(x+y)):(x, y) \in D \cup D_{0}\right\}u=max{|u(x,y)|exp(t(x+y)):(x,y)DD0}
and the operator T : C ( D D 0 ) C ( D D 0 ) T : C D D 0 C D D 0 T:C(D uuD_(0))rarr C(D uuD_(0))T: C\left(D \cup D_{0}\right) \rightarrow C\left(D \cup D_{0}\right)T:C(DD0)C(DD0) given by
(7) { Tu ( x , y ) = 0 2 0 y f ( x , s , u ( x , s ) , u ( g ( x , s ) ) ) d r d s + ψ ( x , y ; , if ( x , y ) D Tu ( x , y ) = φ ( x , y ) , for ( x , y ) D 0 , Tu ( x , y ) = 0 2 0 y f ( x , s , u ( x , s ) , u ( g ( x , s ) ) ) d r d s + ψ ( x , y ; ,  if  ( x , y ) D Tu ( x , y ) = φ ( x , y ) ,  for  ( x , y ) D 0 , {[Tu(x","y)=int_(0)^(2)int_(0)^(y)f(x","s","u(x","s)","u(g(x","s)))drds+psi(x","y;","" if "(x","y)in D],[Tu(x","y)=varphi(x","y)","" for "(x","y)inD_(0)","]:}\left\{\begin{array}{l}\operatorname{Tu}(x, y)=\int_{0}^{2} \int_{0}^{y} f(x, s, u(x, s), u(g(x, s))) d r d s+\psi(x, y ;, \text { if }(x, y) \in D \\ \operatorname{Tu}(x, y)=\varphi(x, y), \text { for }(x, y) \in D_{0},\end{array}\right.{Tu(x,y)=020yf(x,s,u(x,s),u(g(x,s)))drds+ψ(x,y;, if (x,y)DTu(x,y)=φ(x,y), for (x,y)D0,
where
(3) ψ ( x , y ) = φ ( x , 0 ) + φ ( 0 , y ) φ ( 0 , 0 ) , ( x , y ) D 0 ψ ( x , y ) = φ ( x , 0 ) + φ ( 0 , y ) φ ( 0 , 0 ) , ( x , y ) D 0 psi(x,y)=varphi(x,0)+varphi(0,y)-varphi(0,0),(x,y)inD_(0)\psi(x, y)=\varphi(x, 0)+\varphi(0, y)-\varphi(0,0),(x, y) \in D_{0}ψ(x,y)=φ(x,0)+φ(0,y)φ(0,0),(x,y)D0
The problem is equivalent to the equation T u = u T u = u Tu=uT u=uTu=u. We prove that If is a contraction and then the Banach fixed point theorem guarantees the existence and uniqueness of a fixed point for T T TTT.
. Let u , v C ( D D 0 ) u , v C D D 0 u,v in C(D uuD_(0))u, v \in C\left(D \cup D_{0}\right)u,vC(DD0). If ( x , y ) D 0 ( x , y ) D 0 (x,y)inD_(0)(x, y) \in D_{0}(x,y)D0, we have Tu ( x , y ) Tv ( x , y ) == 0 Tu ( x , y ) Tv ( x , y ) == 0 Tu(x,y)-Tv(x,y)==0\operatorname{Tu}(x, y)-\operatorname{Tv}(x, y)= =0Tu(x,y)Tv(x,y)==0. For ( x , y ) D ( x , y ) D (x,y)in D(x, y) \in D(x,y)D,
| T u ( x , y ) T v ( x , y ) | 0 x 0 y ( I l | u ( r , s ) v ( r , s ) | + | T u ( x , y ) T v ( x , y ) | 0 x 0 y I l | u ( r , s ) v ( r , s ) | + |Tu(x,y)-Tv(x,y)| <= int_(0)^(x)int_(0)^(y)(I_(l)|u(r,s)-v(r,s)|+:}|T u(x, y)-T v(x, y)| \leqslant \int_{0}^{x} \int_{0}^{y}\left(I_{l}|u(r, s)-v(r, s)|+\right.|Tu(x,y)Tv(x,y)|0x0y(Il|u(r,s)v(r,s)|+
+ I 2 | u ( g ( r , g ) ) v ( g ( r , s ) ) | ) d r d s 0 y 0 y ( I 1 u v exp ( t ( r + s ) ) + + I 2 | u ( g ( r , g ) ) v ( g ( r , s ) ) | d r d s 0 y 0 y I 1 u v exp ( t ( r + s ) ) + {:+I_(2)|u(g(r,g))-v(g(r,s))|)drds <= int_(0)^(y)int_(0)^(y)(I_(1)||u-v||exp(t(r+s))+:}\left.+I_{2}|u(g(r, g))-v(g(r, s))|\right) d r d s \leq \int_{0}^{y} \int_{0}^{y}\left(I_{1}\|u-v\| \exp (t(r+s))+\right.+I2|u(g(r,g))v(g(r,s))|)drds0y0y(I1uvexp(t(r+s))+
+ I 2 u v exp ( t ( h ( x , s ) + k ( x , s ) ) ) d x d s 0 x 0 y ( I 2 l u v exp ( t ( x + 3 ) ) + + L 2 u v exp ( t ( r + s + e ) ) d r d s 1 t 2 ( I 1 + I 2 exp ( t a ) ) u v exp ( t ( x + y ) ) + I 2 u v exp ( t ( h ( x , s ) + k ( x , s ) ) ) d x d s 0 x 0 y I 2 l u v exp ( t ( x + 3 ) ) + + L 2 u v exp ( t ( r + s + e ) ) d r d s 1 t 2 I 1 + I 2 exp t a u v exp ( t ( x + y ) ) +I_(2)||u-v||exp(t(h(x,s)+k(x,s)))dxds <= int_(0)^(x)int_(0)^(y)(I_(2)∣lu-v||exp(t(x+3))+:}+L_(2)||u-v||exp(t(r+s+e))drds <= (1)/(t^(2))(I_(1)+I_(2)exp(t_(a)))||u-v||exp(t(x+y))+I_{2}\|u-v\| \exp (t(h(x, s)+k(x, s))) d x d s \leq \int_{0}^{x} \int_{0}^{y}\left(I_{2} \mid l u-v \| \exp (t(x+3))+\right. +L_{2}\|u-v\| \exp (t(r+s+e)) d r d s \leq \frac{1}{t^{2}}\left(I_{1}+I_{2} \exp \left(t_{a}\right)\right)\|u-v\| \exp (t(x+y))+I2uvexp(t(h(x,s)+k(x,s)))dxds0x0y(I2luvexp(t(x+3))++L2uvexp(t(r+s+e))drds1t2(I1+I2exp(ta))uvexp(t(x+y)) and therefore
T u T v 1 t 2 ( I 2 + I 2 exp ( t a ) u v , T u T v 1 t 2 I 2 + I 2 exp ( t a ) u v , ||Tu-Tv|| <= (1)/(t^(2))(I_(2)+I_(2)exp(ta)||u-v||,:}\|T u-T v\| \leq \frac{1}{t^{2}}\left(I_{2}+I_{2} \exp (t a)\|u-v\|,\right.TuTv1t2(I2+I2exp(ta)uv,
The bypothesis on a makes 1 t 2 ( L 1 + L 2 exp ( t a ) ) < 1 1 t 2 L 1 + L 2 exp t a < 1 (1)/(t^(2))(L_(1)+L_(2)exp(t_(a))) < 1\frac{1}{t^{2}}\left(L_{1}+L_{2} \exp \left(t_{a}\right)\right)<11t2(L1+L2exp(ta))<1
R⿱䒑⿰⺝刂心裣 i.The maximum of the expression that denotes a majorant for a is attained in the case when t.is the unique colution greater than L 1 L 1 sqrt(L_(1))\sqrt{L_{1}}L1 of the equation
2 x 2 x 2 I 1 ln x 2 I 1 I 2 = 0 2 x 2 x 2 I 1 ln x 2 I 1 I 2 = 0 (2x^(2))/(x^(2)-I_(1))-ln((x^(2)-I_(1))/(I_(2)))=0\frac{2 x^{2}}{x^{2}-I_{1}}-\ln \frac{x^{2}-I_{1}}{I_{2}}=02x2x2I1lnx2I1I2=0
If the right member of the equation(1)contains only the func tion having modified argument,i.e.the equation becomes
(9) u x y ( x , y ) = f ( x , y , u ( g ( x , y ) ) ) u x y ( x , y ) = f ( x , y , u ( g ( x , y ) ) ) u_(xy)(x,y)=f(x,y,u(g(x,y)))u_{x y}(x, y)=f(x, y, u(g(x, y)))uxy(x,y)=f(x,y,u(g(x,y)))
them we have
COROLLARY 1.If
(a) f C ( D × R ) f C ( D × R ) f in C(D xx R)f \in C(D \times R)fC(D×R) is Lipschitz with respect to the last variable
| f ( x , y , z ) f ( x , y , t ) | L | z = t | | f ( x , y , z ) f ( x , y , t ) | L | z = t | |f(x,y,z)-f(x,y,t)| <= L|z=t||f(x, y, z)-f(x, y, t)| \leqslant L|z=t||f(x,y,z)f(x,y,t)|L|z=t|
(b) φ G 1 ( D 0 ) φ G 1 D 0 varphi inG^(1)(D_(0))\varphi \in G^{1}\left(D_{0}\right)φG1(D0)
(c) g C ( D ) , g : D D D D , g = ( h , k ) g C ( D ) , g : D D D D , g = ( h , k ) g in C(D),g:D rarr D uuD_(D),g=(h,k)g \in C(D), g: D \rightarrow D \cup D_{D}, g=(h, k)gC(D),g:DDDD,g=(h,k) with h ( x , y ) + k ( x , y ) ≤≤ x + y + a , a < 2 ρ / I h ( x , y ) + k ( x , y ) ≤≤ x + y + a , a < 2 ρ / I h(x,y)+k(x,y)≤≤x+y+a,a < (2)/(rho//I^('))h(x, y)+k(x, y) \leq \leq x+y+a, a<\frac{2}{\rho / I^{\prime}}h(x,y)+k(x,y)≤≤x+y+a,a<2ρ/I, then the problem(9)with the condition(5)bas in C ( D D 0 ) C D D 0 C(D uuD_(0))C\left(D \cup D_{0}\right)C(DD0) a unique solution.
Proof,We may consider that f f fff satisfies(a)from Theorem 1 with I 1 1 = 0 I 1 1 = 0 I_(1_(1))=0I_{1_{1}}=0I11=0 and I 2 = I I 2 = I I_(2)=II_{2}=II2=I .The equation in Remaxk 1 becomes
2- ln x 2 I 2 = 0 ln x 2 I 2 = 0 ln((x^(2))/(I^(2)))=0\ln \frac{x^{2}}{I^{2}}=0lnx2I2=0 with the positive solution t = e [ I y t = e I y t=e[I_(y):}t=e\left[I_{y}\right.t=e[Iy for which
1 t 2 n t 2 t = 2 e L 1 t 2 n t 2 t = 2 e L (1)/(t)2n(t^(2))/(t)=(2)/(esqrtL)\frac{1}{t} 2 n \frac{t^{2}}{t}=\frac{2}{e \sqrt{L}}1t2nt2t=2eL and all the conditions in Theorem 1 are satisfied.It follows that the problem(9)with the condition(5)has a unique
solution in S(DUDo).
Fir the probled (2) with the condition (5) we obtain THEORM 2. If  Fir the probled (2) with the condition (5) we obtain   THEORM 2. If  {:[" Fir the probled (2) with the condition (5) we obtain "],[" THEORM 2. If "]:}\begin{aligned} & \text { Fir the probled (2) with the condition (5) we obtain } \\ & \text { THEORM 2. If } \end{aligned} Fir the probled (2) with the condition (5) we obtain  THEORM 2. If 
(a) i C ( D × R 6 ) i C D × R 6 i in C(D xxR^(6))i \in C\left(D \times R^{6}\right)iC(D×R6) satistion a Lipschitz condition with respect to the last six variables
| f ( x , y , z 1 , , z 6 ) f ( x , y , t 1 , , t 6 ) | I 1 i = 1 p | z i t j | + I 2 i = 4 c | z i t i | f x , y , z 1 , , z 6 f x , y , t 1 , , t 6 I 1 i = 1 p z i t j + I 2 i = 4 c z i t i |f(x,y,z_(1),dots,z_(6))-f(x,y,t_(1),dots,t_(6))| <= I_(1)sum_(i=1)^(p)|z_(i)-t_(j)|+I_(2)sum_(i=4)^(c)|z_(i)-t_(i)|\left|f\left(x, y, z_{1}, \ldots, z_{6}\right)-f\left(x, y, t_{1}, \ldots, t_{6}\right)\right| \leq I_{1} \sum_{i=1}^{p}\left|z_{i}-t_{j}\right|+I_{2} \sum_{i=4}^{c}\left|z_{i}-t_{i}\right||f(x,y,z1,,z6)f(x,y,t1,,t6)|I1i=1p|zitj|+I2i=4c|ziti|
(b) φ C l ( D 0 ) φ C l D 0 varphi inC^(l)(D_(0))\varphi \in C^{l}\left(D_{0}\right)φCl(D0) and φ x y φ x y varphi_(xy)\varphi_{x y}φxy exists, f ( 0 , y , z 1 , , z 6 ) = φ x y ( 0 , y ) f 0 , y , z 1 , , z 6 = φ x y ( 0 , y ) f(0,y,z_(1),dots,z_(6))=varphi_(xy)(0,y)f\left(0, y, z_{1}, \ldots, z_{6}\right)=\varphi_{x y}(0, y)f(0,y,z1,,z6)=φxy(0,y), f ( x , 0 , z 1 , , z σ ) = φ x y ( x , 0 ) , ( x , y ) D , ( z 1 , , z σ ) R 6 f x , 0 , z 1 , , z σ = φ x y ( x , 0 ) , ( x , y ) D , z 1 , , z σ R 6 f(x,0,z_(1),dots,z_(sigma))=varphi_(xy)(x,0),(x,y)in D,(z_(1),dots,z_(sigma))inR^(6)f\left(x, 0, z_{1}, \ldots, z_{\sigma}\right)=\varphi_{x y}(x, 0),(x, y) \in D,\left(z_{1}, \ldots, z_{\sigma}\right) \in R^{6}f(x,0,z1,,zσ)=φxy(x,0),(x,y)D,(z1,,zσ)R6
(C) g i C ( D 0 ) , E i : D D D 0 , g i = ( h i , k i ) g i C D 0 , E i : D D D 0 , g i = h i , k i quadg_(i)in C(D_(0)),E_(i):D rarr D uuD_(0),g_(i)=(h_(i),k_(i))\quad g_{i} \in C\left(D_{0}\right), E_{i}: D \rightarrow D \cup D_{0}, g_{i}=\left(h_{i}, k_{i}\right)giC(D0),Ei:DDD0,gi=(hi,ki) with h i ( x , y ) + k i ( x , y ) ⩽⩽ x + y + a , i = 1 , 3 h i ( x , y ) + k i ( x , y ) ⩽⩽ x + y + a , i = 1 , 3 h_(i)(x,y)+k_(i)(x,y)⩽⩽x+y+a,i=sqrt(1,3)h_{i}(x, y)+k_{i}(x, y) \leqslant \leqslant x+y+a, i=\sqrt{1,3}hi(x,y)+ki(x,y)⩽⩽x+y+a,i=1,3 and
a < sup { 1 t ln t 2 2 L 1 t L 1 L 2 ( 2 t + 1 ) : t > L 1 + L 1 2 + L 1 } , a < sup 1 t ln t 2 2 L 1 t L 1 L 2 ( 2 t + 1 ) : t > L 1 + L 1 2 + L 1 , a < s u p{(1)/(t)ln((t^(2)-2L_(1)t-L_(1))/(L_(2)(2t+1))):t > L_(1)+sqrt(L_(1)^(2)+L_(1))},a<\sup \left\{\frac{1}{t} \ln \frac{t^{2}-2 L_{1} t-L_{1}}{L_{2}(2 t+1)}: t>L_{1}+\sqrt{L_{1}^{2}+L_{1}}\right\},a<sup{1tlnt22L1tL1L2(2t+1):t>L1+L12+L1},
then the problem (2) with the condition (5) has in C 1 ( D U D 0 ) C 1 D U D 0 C^(1)(DUD_(0))C^{1}\left(D U D_{0}\right)C1(DUD0) a unique solution.
Proof. In the Banach space C l ( D D 0 ) C l D D 0 C^(l)(D uuD_(0))C^{l}\left(D \cup D_{0}\right)Cl(DD0) endowed with the norm u 1 = u + u x + u y u 1 = u + u x + u y ||u||_(1)=||u||+||u_(x)||+||u_(y)||\|u\|_{1}=\|u\|+\left\|u_{x}\right\|+\left\|u_{y}\right\|u1=u+ux+uy, with ||*||\|\cdot\| given by (6) we consider the operator i : C 1 ( D D 0 ) C ( D D 0 ) C 1 D D 0 C D D 0 C^(1)(D uuD_(0))rarr C(D uuD_(0))C^{1}\left(D \cup D_{0}\right) \rightarrow C\left(D \cup D_{0}\right)C1(DD0)C(DD0) given by
( 1.0 ) { T u ( x , y ) = 0 x 0 y f ( x , s , u ( x , s ) , u x ( r , s ) , u y ( x , s ) , u ( g 1 ( r , s ) ) , u x ( g 2 ( r , s ) ) , u y ( σ 3 ( r , s ) ) ) d r d s + ψ ( x , y ) , f o r ( x , y ) D I u ( x , y ) = φ ( x , y ) , f o r ( x , y ) D 0 ( 1.0 ) T u ( x , y ) = 0 x 0 y f x , s , u ( x , s ) , u x ( r , s ) , u y ( x , s ) , u g 1 ( r , s ) , u x g 2 ( r , s ) , u y σ 3 ( r , s ) d r d s + ψ ( x , y ) , f o r ( x , y ) D I u ( x , y ) = φ ( x , y ) , f o r ( x , y ) D 0 (1.0){[Tu(x","y)=int_(0)^(x)int_(0)^(y)f(x,s,u(x,s),u_(x)(r,s),u_(y)(x,s),u(g_(1)(r,s)),:}],[{:u_(x)(g_(2)(r,s)),u_(y)(sigma_(3)(r,s)))drds+psi(x","y)","for(x","y)in D],[Iu(x","y)=varphi(x","y)","for(x","y)inD_(0)]:}(1.0)\left\{\begin{aligned} T u(x, y)= & \int_{0}^{x} \int_{0}^{y} f\left(x, s, u(x, s), u_{x}(r, s), u_{y}(x, s), u\left(g_{1}(r, s)\right),\right. \\ & \left.u_{x}\left(g_{2}(r, s)\right), u_{y}\left(\sigma_{3}(r, s)\right)\right) d r d s+\psi(x, y), f o r(x, y) \in D \\ I u(x, y)= & \varphi(x, y), f o r(x, y) \in D_{0}\end{aligned}\right.(1.0){Tu(x,y)=0x0yf(x,s,u(x,s),ux(r,s),uy(x,s),u(g1(r,s)),ux(g2(r,s)),uy(σ3(r,s)))drds+ψ(x,y),for(x,y)DIu(x,y)=φ(x,y),for(x,y)D0
where ψ ψ psi\psiψ is defined by (8).
We have to show that the range of T T TTT is contained in C l ( D U D 0 ) C l D U D 0 C^(l)(DUD_(0))C^{l}\left(D U D_{0}\right)Cl(DUD0). We obtain
( T u ) x ( x , y ) = 0 y f ( x , s , u ( x , s ) , , u y ( g z ( x , s ) ) ) d s + φ x ( x , 0 ) ( T u ) x ( x , y ) = 0 y f x , s , u ( x , s ) , , u y g z ( x , s ) d s + φ x ( x , 0 ) (Tu)_(x)(x,y)=int_(0)^(y)f(x,s,u(x,s),dots,u_(y)(g_(z)(x,s)))ds+varphi_(x)(x,0)(T u)_{x}(x, y)=\int_{0}^{y} f\left(x, s, u(x, s), \ldots, u_{y}\left(g_{z}(x, s)\right)\right) d s+\varphi_{x}(x, 0)(Tu)x(x,y)=0yf(x,s,u(x,s),,uy(gz(x,s)))ds+φx(x,0), for
( x , y ) ( 0 , α ] × ( 0 , β ] ( x , y ) ( 0 , α ] × ( 0 , β ] (x,y)in(0,alpha]xx(0,beta](x, y) \in(0, \alpha] \times(0, \beta](x,y)(0,α]×(0,β] and
( X u ) x ( x , y ) = ρ x ( x , y ) ( X u ) x ( x , y ) = ρ x ( x , y ) (Xu)_(x)(x,y)=rho_(x)(x,y)(X u)_{x}(x, y)=\rho_{x}(x, y)(Xu)x(x,y)=ρx(x,y) for ( x , y ) D 0 { ( x , y ) D : x = 0 ( x , y ) D 0 { ( x , y ) D : x = 0 (x,y)inD_(0)\\{(x,y)in D:x=0(x, y) \in D_{0} \backslash\{(x, y) \in D: x=0(x,y)D0{(x,y)D:x=0 or y = 0 } y = 0 } y=0}y=0\}y=0}.
The limits in the points of the form ( x 0 , 0 ) x 0 , 0 (x_(0),0)\left(x_{0}, 0\right)(x0,0) an ( 0 , y 0 ) 0 , y 0 (0,y_(0))\left(0, y_{0}\right)(0,y0) are the same
for both expressions, in view of the condition (b). We have proved that ( T u ) x C ( D D 0 ) ( T u ) x C D D 0 (Tu)_(x)in C(D uuD_(0))(T u)_{x} \in C\left(D \cup D_{0}\right)(Tu)xC(DD0) and a similar argument shows that ( T u ) y ∈∈ C ( D D 0 ) ( T u ) y ∈∈ C D D 0 (Tu)_(y)∈∈C(D uuD_(0))(T u)_{y} \in \in C\left(D \cup D_{0}\right)(Tu)y∈∈C(DD0), so T u C 1 ( D D 0 ) T u C 1 D D 0 Tu inC^(1)(D uuD_(0))T u \in C^{1}\left(D \cup D_{0}\right)TuC1(DD0).
Let u , v C 1 ( D D 0 ) u , v C 1 D D 0 u,v inC^(1)(D uuD_(0))u, v \in C^{1}\left(D \cup D_{0}\right)u,vC1(DD0). For ( x , y ) D 0 ( x , y ) D 0 (x,y)inD_(0)(x, y) \in D_{0}(x,y)D0 we have Tu ( x , y ) Tv ( x , y ) = C y Tu ( x , y ) Tv ( x , y ) = C y Tu(x,y)-Tv(x,y)=C_(y)\operatorname{Tu}(x, y)-\operatorname{Tv}(x, y)=C_{y}Tu(x,y)Tv(x,y)=Cy For ( x , y ) D ( x , y ) D (x,y)in D(x, y) \in D(x,y)D we obtain | Iu ( x , y ) Iv ( x , y ) | | Iu ( x , y ) Iv ( x , y ) | |Iu(x,y)-Iv(x,y)| <=|\operatorname{Iu}(x, y)-\operatorname{Iv}(x, y)| \leqslant|Iu(x,y)Iv(x,y)|
( I 1 + I 2 exp ( t a ) ) u v 1 0 π 0 g exp ( t ( x + s ) ) d r d s and it follows that T u T v 1 t 2 ( L 1 + exp ( t a ) L 2 ) u v 1 . I 1 + I 2 exp t a u v 1 0 π 0 g exp ( t ( x + s ) ) d r d s  and it follows that  T u T v 1 t 2 L 1 + exp ( t a ) L 2 u v 1 . {:[ <= (I_(1)+I_(2)exp(t_(a)))||u-v||_(1)int_(0)^(pi)int_(0)^(g)exp(t(x+s))drds" and it follows that "],[||Tu-Tv|| <= (1)/(t^(2))(L_(1)+exp(ta)L_(2))||u-v||_(1).]:}\begin{aligned} & \leq\left(I_{1}+I_{2} \exp \left(t_{a}\right)\right)\|u-v\|_{1} \int_{0}^{\pi} \int_{0}^{g} \exp (t(x+s)) d r d s \text { and it follows that } \\ & \|T u-T v\| \leq \frac{1}{t^{2}}\left(L_{1}+\exp (t a) L_{2}\right)\|u-v\|_{1} . \end{aligned}(I1+I2exp(ta))uv10π0gexp(t(x+s))drds and it follows that TuTv1t2(L1+exp(ta)L2)uv1.
We obtain similaxly
( T u ) x ( T v ) x l t ( I 1 + exp ( t a ) L 2 ) u v 1 ( T u ) y ( T v ) y l t ( I 1 + exp ( t a ) L 2 ) u v 1 . ( T u ) x ( T v ) x l t I 1 + exp ( t a ) L 2 u v 1 ( T u ) y ( T v ) y l t I 1 + exp ( t a ) L 2 u v 1 . {:[||(Tu)_(x)-(Tv)_(x)|| <= (l)/(t)(I_(1)+exp(ta)L_(2))||u-v||_(1)],[||(Tu)_(y)-(Tv)_(y)|| <= (l)/(t)(I_(1)+exp(ta)L_(2))||u-v||_(1).]:}\begin{aligned} & \left\|(T u)_{x}-(T v)_{x}\right\| \leq \frac{l}{t}\left(I_{1}+\exp (t a) L_{2}\right)\|u-v\|_{1} \\ & \left\|(T u)_{y}-(T v)_{y}\right\| \leq \frac{l}{t}\left(I_{1}+\exp (t a) L_{2}\right)\|u-v\|_{1} . \end{aligned}(Tu)x(Tv)xlt(I1+exp(ta)L2)uv1(Tu)y(Tv)ylt(I1+exp(ta)L2)uv1.
The last three inequalities leed us to
T u T v 1 ( 1 t 2 + 2 t ) ( L 1 + I 2 exp ( t a ) ) u v 1 . T u T v 1 1 t 2 + 2 t L 1 + I 2 exp ( t a ) u v 1 . ||Tu-Tv||_(1) <= ((1)/(t^(2))+(2)/(t))(L_(1)+I_(2)exp(ta))||u-v||_(1).\|T u-T v\|_{1} \leqslant\left(\frac{1}{t^{2}}+\frac{2}{t}\right)\left(L_{1}+I_{2} \exp (t a)\right)\|u-v\|_{1} .TuTv1(1t2+2t)(L1+I2exp(ta))uv1.
The hypothesis on a implies that ( 1 t 2 + 2 t ) ( L 1 + L 2 cip ( 1 t 2 + 2 t L 1 + L 2 cip ( ((1)/(t^(2))+(2)/(t))(L_(1)+L_(2)cip(:}\left(\frac{1}{t^{2}}+\frac{2}{t}\right)\left(L_{1}+L_{2} \operatorname{cip}(\right.(1t2+2t)(L1+L2cip( tal ) < I r ) < I ) < I_("r "))<I_{\text {r }})<I hence T T TTT is a contraction and the considered froblem has a unique solution.
REEARK 2. The maximum of the majorant of a is attained then this the unique solution greater than I 1 + I 1 2 + I 1 I 1 + I 1 2 + I 1 I_(1)+sqrt(I_(1)^(2)+I_(1))I_{1}+\sqrt{I_{1}^{2}+I_{1}}I1+I12+I1 of the equation
2 x 2 ( x + 1 ) ( 2 x + 1 ) ( x 2 2 I 1 x I 1 ) ln x 2 2 I 1 x I 1 I 2 ( 2 x + 1 ) = 0 . 2 x 2 ( x + 1 ) ( 2 x + 1 ) x 2 2 I 1 x I 1 ln x 2 2 I 1 x I 1 I 2 ( 2 x + 1 ) = 0 . (2x^(2)(x+1))/((2x+1)(x^(2)-2I_(1)x-I_(1)))-ln((x^(2)-2I_(1)x-I_(1))/(I_(2)(2x+1)))=0.\frac{2 x^{2}(x+1)}{(2 x+1)\left(x^{2}-2 I_{1} x-I_{1}\right)}-\ln \frac{x^{2}-2 I_{1} x-I_{1}}{I_{2}(2 x+1)}=0 .2x2(x+1)(2x+1)(x22I1xI1)lnx22I1xI1I2(2x+1)=0.
In the case of the equation
(11) u x y ( x , y ) = f ( x , y , u ( g 1 ( x , y ) ) , u x ( g 2 ( x , y ) ) , u y ( g z ( x , y ) ) ) (11) u x y ( x , y ) = f x , y , u g 1 ( x , y ) , u x g 2 ( x , y ) , u y g z ( x , y ) {:(11)u_(xy)(x","y)=f(x,y,u(g_(1)(x,y)),u_(x)(g_(2)(x,y)),u_(y)(g_(z)(x,y))):}\begin{equation*} u_{x y}(x, y)=f\left(x, y, u\left(g_{1}(x, y)\right), u_{x}\left(g_{2}(x, y)\right), u_{y}\left(g_{z}(x, y)\right)\right) \tag{11} \end{equation*}(11)uxy(x,y)=f(x,y,u(g1(x,y)),ux(g2(x,y)),uy(gz(x,y)))
with the condition (5) we obtain

COROILARY 2. If

(a) f C ( D × R 3 ) f C D × R 3 f in C(D xxR^(3))f \in C\left(D \times R^{3}\right)fC(D×R3) satisfies a Lipschitz condition with respect to the last three variables
| f ( x , y , z 1 , z 2 , z 3 ) 1 ( x , y , t 1 , t 2 , t 3 ) | L i = 1 j | z i t i | f x , y , z 1 , z 2 , z 3 1 x , y , t 1 , t 2 , t 3 L i = 1 j z i t i |f(x,y,z_(1),z_(2),z_(3))-1(x,y,t_(1),t_(2),t_(3))| <= Lsum_(i=1)^(j)|z_(i)-t_(i)|\left|f\left(x, y, z_{1}, z_{2}, z_{3}\right)-1\left(x, y, t_{1}, t_{2}, t_{3}\right)\right| \leq L \sum_{i=1}^{j}\left|z_{i}-t_{i}\right||f(x,y,z1,z2,z3)1(x,y,t1,t2,t3)|Li=1j|ziti|
(b) φ C l ( D 0 ) φ C l D 0 varphi inC^(l)(D_(0))\varphi \in C^{l}\left(D_{0}\right)φCl(D0) such that φ x y φ x y varphi_(xy)\varphi_{x y}φxy exists and f ( 0 , y , z 1 , z 2 , z 3 ) = φ x y ( 0 , y ) f ( 0 , x , z 2 , z 2 , z 3 ) = φ x y ( x , 0 ) f 0 , y , z 1 , z 2 , z 3 = φ x y ( 0 , y ) f 0 , x , z 2 , z 2 , z 3 = φ x y ( x , 0 ) f(0,y,z_(1),z_(2),z_(3))=varphi_(xy)(0,y)f(0,x,z_(2),z_(2),z_(3))=varphi_(x_(y))(x,0)f\left(0, y, z_{1}, z_{2}, z_{3}\right)=\varphi_{x y}(0, y) f\left(0, x, z_{2}, z_{2}, z_{3}\right)=\varphi_{x_{y}}(x, 0)f(0,y,z1,z2,z3)=φxy(0,y)f(0,x,z2,z2,z3)=φxy(x,0), for any ( x , y ) D , ( z 1 , z 2 , z 3 ) R 3 ( x , y ) D , z 1 , z 2 , z 3 R 3 (x,y)in D,(z_(1),z_(2),z_(3))inR^(3)(x, y) \in D,\left(z_{1}, z_{2}, z_{3}\right) \in R^{3}(x,y)D,(z1,z2,z3)R3
(๕) g i C ( D ) , g i : D D D 0 , g i = ( h i , k i ) g i C ( D ) , g i : D D D 0 , g i = h i , k i g_(i)in C(D),g_(i):D rarr D uuD_(0),g_(i)=(h_(i),k_(i))g_{i} \in C(D), g_{i}: D \rightarrow D \cup D_{0}, g_{i}=\left(h_{i}, k_{i}\right)giC(D),gi:DDD0,gi=(hi,ki) with h i ( x , y ) + k i ( x , y ) ⩽≤ x + y + a b i = 1 , 3 h i ( x , y ) + k i ( x , y ) ⩽≤ x + y + a b i = 1 , 3 ¯ h_(i)(x,y)+k_(i)(x,y)⩽≤x+y+a_(b)quad i= bar(1,3)h_{i}(x, y)+k_{i}(x, y) \leqslant \leq x+y+a_{b} \quad i=\overline{1,3}hi(x,y)+ki(x,y)⩽≤x+y+abi=1,3 and
a < sup { 1 4 ln t 2 L ( 2 t + 1 ) : t > 0 } , a < sup 1 4 ln t 2 L ( 2 t + 1 ) : t > 0 , a < s u p{(1)/(4)ln((t^(2))/(L(2t+1))):t > 0},a<\sup \left\{\frac{1}{4} \ln \frac{t^{2}}{L(2 t+1)}: t>0\right\},a<sup{14lnt2L(2t+1):t>0},
then the problem (11) with the condition (5) has in C 1 ( D D 0 ) C 1 D D 0 C^(1)(DuuD_(0))C^{1}\left(\mathcal{D} \cup D_{0}\right)C1(DD0) a unique solution. The maximum of the expression which denotes a majorant for a is attained in the case when t t ttt is the unique positive soIution of the equation 2 ( x + 1 ) 2 x + 1 1 n x 2 n ( 2 x + 1 ) = 0 2 ( x + 1 ) 2 x + 1 1 n x 2 n ( 2 x + 1 ) = 0 (2(x+1))/(2x+1)-1n(x^(2))/(n(2x+1))=0\frac{2(x+1)}{2 x+1}-1 n \frac{x^{2}}{n(2 x+1)}=02(x+1)2x+11nx2n(2x+1)=0.
Proof. One applies Theorem 2 and Remain 2 considexing f f fff Lipschila with I 1 = 0 I 1 = 0 I_(1)=0I_{1}=0I1=0 and I 2 = I I 2 = I I_(2)=II_{2}=II2=I.
REMARK 3. In the given theorems, the condition imposed to the functions that modify the variables is less restatictive than in [2] and determines a larger class of functions which satisfy the integral condition from [8]. It is said in [1] that one has the result in Theorem 2 even if one remounces to the last part of the conditions (b) and (c), but it is not true. The following examples, which satisfy all the conditions in theoxem 2 but the last part of the conditions (b) and (c), show that the uniqueness or even the existence of the solution is not quaranteed any wore。
ENAIPLE 1. Let D = [ 0 , 1 ] 2 , x 1 = T 2 = 0 , δ : D D , g ( x , y ) = ( 1 , y ) 0 D = [ 0 , 1 ] 2 , x 1 = T 2 = 0 , δ : D D , g ( x , y ) = ( 1 , y ) 0 D=[0,1]^(2),x_(1)=T_(2)=0,delta:D rarr D,g(x,y)=(1,y)_(0)D=[0,1]^{2}, x_{1}=T_{2}=0, \delta: D \rightarrow D, g(x, y)=(1, y)_{0}D=[0,1]2,x1=T2=0,δ:DD,g(x,y)=(1,y)0 The equation
(12) u x y ( x t y ) = u y ( 1 , y ) , ( x 0 y ) D (12) u x y x t y = u y ( 1 , y ) , x 0 y D {:(12)u_(xy)(x_(t)y)=u_(y)(1","y)","quad(x_(0)y)in D:}\begin{equation*} u_{x y}\left(x_{t} y\right)=u_{y}(1, y), \quad\left(x_{0} y\right) \in D \tag{12} \end{equation*}(12)uxy(xty)=uy(1,y),(x0y)D
with the boundary conditions
u ( x , 0 ˙ ) = u ( 0 , y ) = 0 , ( x x y ) D u ( x , 0 ˙ ) = u ( 0 , y ) = 0 , x x y D u(x,0^(˙))=u(0,y)=0,(x_(x)y)in Du(x, \dot{0})=u(0, y)=0,\left(x_{x} y\right) \in Du(x,0˙)=u(0,y)=0,(xxy)D
has infinitely many solutions of the form u ( x , y ) = x P ( y ) , F : [ 0 , 1 ] y u ( x , y ) = x P ( y ) , F : [ 0 , 1 ] y u(x,y)=xP(y),F:[0,1]rarr yu(x, y)=x P(y), F:[0,1] \rightarrow yu(x,y)=xP(y),F:[0,1]y being differentiable with F ( 0 ) = 0 F ( 0 ) = 0 F(0)=0F(0)=0F(0)=0.
WAITPIS 2. If in Example 1 we consider instead of (12) the equan tion u x y ( x , y ) = u y ( 1 , J ) + 2 y u x y ( x , y ) = u y ( 1 , J ) + 2 y u_(xy)(x,y)=u_(y)(1,J)+2yu_{x y}(x, y)=u_{y}(1, J)+2 yuxy(x,y)=uy(1,J)+2y, we obtain a problem which has no solum tions in C 1 ( D ) C 1 ( D ) C^(1)(D)C^{1}(D)C1(D).
Inceed, if the problem uas a solution U U UUU, this will verify
U ( x , y ) = 0 x 0 y ( U y ( 1 , s ) + 2 s ) d r d s , U ( x , y ) = 0 x 0 y U y ( 1 , s ) + 2 s d r d s , U(x,y)=int_(0)^(x)int_(0)^(y)(U_(y)(1,s)+2s)drds,U(x, y)=\int_{0}^{x} \int_{0}^{y}\left(U_{y}(1, s)+2 s\right) d r d s,U(x,y)=0x0y(Uy(1,s)+2s)drds,
therefore U y ( x , y ) = x ( 2 y + U y ( 1 , y ) ) U y ( x , y ) = x 2 y + U y ( 1 , y ) U_(y)(x,y)=x(2y+U_(y)(1,y))U_{y}(x, y)=x\left(2 y+U_{y}(1, y)\right)Uy(x,y)=x(2y+Uy(1,y)). For x = 1 x = 1 x=1x=1x=1 we get a contradiction.
B. We analyse now the existence of the global solutions of the equations (1) and (2) on E E EEE, the boundary condition being
(13) u ( x , y ) = φ ( x , y ) , ( x , y ) E o , (13) u ( x , y ) = φ ( x , y ) , ( x , y ) E o , {:(13)u(x","y)=varphi(x","y)","(x","y)inE_(o)",":}\begin{equation*} u(x, y)=\varphi(x, y),(x, y) \in E_{o}, \tag{13} \end{equation*}(13)u(x,y)=φ(x,y),(x,y)Eo,
where ξ ξ xi\xiξ and E 0 E 0 E_(0)E_{0}E0 are given by (4).
We extend some results of [3] to the case of functional equations, admitting also delays, using the methods given by Bielecki. We need the following estimations.
LEMMA 1. Let t > 0 , L C ( E ) , L ( x , y ) 0 t > 0 , L C ( E ) , L ( x , y ) 0 t > 0,L in C(E),L(x,y) >= 0t>0, L \in C(E), L(x, y) \geqslant 0t>0,LC(E),L(x,y)0 on E E EEE and K ( x , y ) == 0 x 0 y L ( p , q ) d p d q , ( x , y ) E K ( x , y ) == 0 x 0 y L ( p , q ) d p d q , ( x , y ) E K(x,y)==int_(0)^(x)int_(0)^(y)L(p,q)dpdq,quad(x,y)in EK(x, y)= =\int_{0}^{x} \int_{0}^{y} L(p, q) d p d q, \quad(x, y) \in EK(x,y)==0x0yL(p,q)dpdq,(x,y)E. Then the following inequality holds
0 n 0 π L ( r , s ) exp ( t K ( r , s ) ) d r d s 1 t exp ( t K ( x , y ) ) , ( x , y ) Z . 0 n 0 π L ( r , s ) exp ( t K ( r , s ) ) d r d s 1 t exp ( t K ( x , y ) ) , ( x , y ) Z . int_(0)^(n)int_(0)^(pi)L(r,s)exp(tK(r,s))drds <= (1)/(t)exp(tK(x,y)),(x,y)inZ.\int_{0}^{n} \int_{0}^{\pi} L(r, s) \exp (t K(r, s)) d r d s \leq \frac{1}{t} \exp (t K(x, y)),(x, y) \in \mathbb{Z} .0n0πL(r,s)exp(tK(r,s))drds1texp(tK(x,y)),(x,y)Z.
Eroof.
Let U ( x , y ) = 1 t exp ( t K ( x , y ) ) 0 x 0 y L ( x , s ) exp ( t K ( r , s ) ) d r d s U ( x , y ) = 1 t exp ( t K ( x , y ) ) 0 x 0 y L ( x , s ) exp ( t K ( r , s ) ) d r d s U(x,y)=(1)/(t)exp(tK(x,y))-int_(0)^(x)int_(0)^(y)L(x,s)exp(tK(r,s))drdsU(x, y)=\frac{1}{t} \exp (t K(x, y))-\int_{0}^{x} \int_{0}^{y} L(x, s) \exp (t K(r, s)) d r d sU(x,y)=1texp(tK(x,y))0x0yL(x,s)exp(tK(r,s))drds. It follows that U x ( x , y ) = 0 y L ( x , q ) d q exp ( t K ( x , y ) ) 0 y L ( x , s ) exp ( t K ( x , s ) ) c ˙ c U x ( x , y ) = 0 y L ( x , q ) d q exp ( t K ( x , y ) ) 0 y L ( x , s ) exp ( t K ( x , s ) ) c ˙ c U_(x)(x,y)=int_(0)^(y)L(x,q)dq*exp(tK(x,y))-int_(0)^(y)L(x,s)exp(tK(x,s))c^(˙)cU_{x}(x, y)=\int_{0}^{y} L(x, q) d q \cdot \exp (t K(x, y))-\int_{0}^{y} L(x, s) \exp (t K(x, s)) \dot{c} cUx(x,y)=0yL(x,q)dqexp(tK(x,y))0yL(x,s)exp(tK(x,s))c˙c Because U x y ( x , y ) 0 U x y ( x , y ) 0 U_(xy)(x,y) >= 0U_{x y}(x, y) \geqslant 0Uxy(x,y)0 for any ( x , y ) E ( x , y ) E (x,y)in E(x, y) \in E(x,y)E, we have U x ( x , y ) U x ( x , 0 ) = 0 U x ( x , y ) U x ( x , 0 ) = 0 U_(x)(x,y) >= U_(x)(x,0)=0U_{x}(x, y) \geqslant U_{x}(x, 0)=0Ux(x,y)Ux(x,0)=0 and U ( x , y ) U ( 0 , y ) 0 U ( x , y ) U ( 0 , y ) 0 U(x,y) >= U(0,y) >= 0U(x, y) \geqslant U(0, y) \geqslant 0U(x,y)U(0,y)0, hence the inequality is proved.
The proof is similar for
LENMA 2. Let t > 0 , L C I ( E ) , L ( x , y ) 0 , L x ( x , y ) 0 t > 0 , L C I ( E ) , L ( x , y ) 0 , L x ( x , y ) 0 t > 0,L inC^(I)(E),L(x,y) >= 0,L_(x)(x,y) >= 0t>0, L \in C^{I}(E), L(x, y) \geqslant 0, L_{x}(x, y) \geqslant 0t>0,LCI(E),L(x,y)0,Lx(x,y)0 and L y ( x , y ) 0 L y ( x , y ) 0 L_(y)(x,y) >= 0L_{y}(x, y) \geq 0Ly(x,y)0 on E ; K ( x , y ) = 0 x 0 y L ( p , q ) d p d q + 0 x L ( p , y ) d p + 0 y L ( x , q ) d q E ; K ( x , y ) = 0 x 0 y L ( p , q ) d p d q + 0 x L ( p , y ) d p + 0 y L ( x , q ) d q E;K(x,y)=int_(0)^(x)int_(0)^(y)L(p,q)dpdq+int_(0)^(x)L(p,y)dp+int_(0)^(y)L(x,q)dqE ; K(x, y)=\int_{0}^{x} \int_{0}^{y} L(p, q) d p d q+\int_{0}^{x} L(p, y) d p+\int_{0}^{y} L(x, q) d qE;K(x,y)=0x0yL(p,q)dpdq+0xL(p,y)dp+0yL(x,q)dq, ( x , y ) E ( x , y ) E (x,y)in E(x, y) \in E(x,y)E. We have then for any ( x , y ) E ( x , y ) E (x,y)in E(x, y) \in E(x,y)E
y l l y L ( r , s ) exp ( t K ( r , s ) ) d r d s 1 t exp ( t K ( x , y ) ) 0 x L ( x , s ) exp ( t K ( x , s ) ) d s 1 t exp ( t K ( x , y ) ) 0 x L ( r , y ) exp ( t K ( r , y ) ) d r 1 t exp ( t K ( x , y ) ) y l l y L ( r , s ) exp ( t K ( r , s ) ) d r d s 1 t exp ( t K ( x , y ) ) 0 x L ( x , s ) exp ( t K ( x , s ) ) d s 1 t exp ( t K ( x , y ) ) 0 x L ( r , y ) exp ( t K ( r , y ) ) d r 1 t exp ( t K ( x , y ) ) {:[int_(y)^(l)int_(l)^(y)L(r","s)exp(tK(r","s))drds <= (1)/(t)exp(tK(x","y))],[int_(0)^(x)L(x","s)exp(tK(x","s))ds <= (1)/(t)exp(tK(x","y))],[int_(0)^(x)L(r","y)exp(tK(r","y))dr <= (1)/(t)exp(tK(x","y))]:}\begin{aligned} & \int_{y}^{l} \int_{l}^{y} L(r, s) \exp (t K(r, s)) d r d s \leq \frac{1}{t} \exp (t K(x, y)) \\ & \int_{0}^{x} L(x, s) \exp (t K(x, s)) d s \leq \frac{1}{t} \exp (t K(x, y)) \\ & \int_{0}^{x} L(r, y) \exp (t K(r, y)) d r \leq \frac{1}{t} \exp (t K(x, y)) \end{aligned}yllyL(r,s)exp(tK(r,s))drds1texp(tK(x,y))0xL(x,s)exp(tK(x,s))ds1texp(tK(x,y))0xL(r,y)exp(tK(r,y))dr1texp(tK(x,y))

We prove now

THEOREM 3. If
(a) f C ( E × R 2 ) f C E × R 2 quad f in C(E xxR^(2))\quad f \in C\left(E \times R^{2}\right)fC(E×R2) is Lipschitz with respect to the last two variables such that
| f ( x , y , z 1 , z 2 ) f ( x , y , t 1 , t 2 ) | L ( x , y ) ( | z 1 t 1 | + | z 2 t 2 | ) f x , y , z 1 , z 2 f x , y , t 1 , t 2 L ( x , y ) z 1 t 1 + z 2 t 2 |f(x,y,z_(1),z_(2))-f(x,y,t_(1),t_(2))| <= L(x,y)(|z_(1)-t_(1)|+|z_(2)-t_(2)|)\left|f\left(x, y, z_{1}, z_{2}\right)-f\left(x, y, t_{1}, t_{2}\right)\right| \leq L(x, y)\left(\left|z_{1}-t_{1}\right|+\left|z_{2}-t_{2}\right|\right)|f(x,y,z1,z2)f(x,y,t1,t2)|L(x,y)(|z1t1|+|z2t2|) and
| f ( x , y , 0 , 0 ) | L ( x , y ) | f ( x , y , 0 , 0 ) | L ( x , y ) |f(x,y,0,0)| <= L(x,y)|f(x, y, 0,0)| \leqslant L(x, y)|f(x,y,0,0)|L(x,y), where J C ( E ) J C ( E ) J in C(E)J \in C(E)JC(E) is nonnegative
(b) φ C 2 ( E 0 ) φ C 2 E 0 varphi inC^(2)(E_(0))\varphi \in C^{2}\left(E_{0}\right)φC2(E0) and sup { | φ ( x 0 y ) | : ( x , y ) E 0 } = S < sup φ x 0 y : ( x , y ) E 0 = S < s u p{|varphi(x_(0)y)|:(x,y)inE_(0)}=S < oo\sup \left\{\left|\varphi\left(x_{0} y\right)\right|:(x, y) \in E_{0}\right\}=S<\inftysup{|φ(x0y)|:(x,y)E0}=S<
(c) g C ( E ) , g : E E E 0 , g = ( h , k ) g C ( E ) , g : E E E 0 , g = ( h , k ) g in C(E),g:E rarr E uuE_(0),g=(h,k)g \in C(E), g: E \rightarrow E \cup E_{0}, g=(h, k)gC(E),g:EEE0,g=(h,k) with h ( x , y ) x , k ( x , y ) y h ( x , y ) x , k ( x , y ) y h(x,y) <= x,k(x,y) <= yh(x, y) \leq x, k(x, y) \leq yh(x,y)x,k(x,y)y
for any ( x , y ) E ( x , y ) E (x,y)in E(x, y) \in E(x,y)E,
then the problem (1) with the condition (13) has in the space X X XXX de fined below a unique solution.
Proof. Let u C ( E U E 0 ) u C E U E 0 u in C(EUE_(0))u \in C\left(E U E_{0}\right)uC(EUE0). We deflae K : B U E 0 R K : B U E 0 R K:BUE_(0)rarr RK: B U E_{0} \rightarrow RK:BUE0R by K ( x , y ) = 0 π 0 y L ( p ; q ) d p d q K ( x , y ) = 0 π 0 y L ( p ; q ) d p d q K(x,y)=int_(0)^(pi)int_(0)^(y)L(p;q)dpdqK(x, y)=\int_{0}^{\pi} \int_{0}^{y} L(p ; q) d p d qK(x,y)=0π0yL(p;q)dpdq for ( x , y ) E ( x , y ) E (x,y)in E(x, y) \in E(x,y)E and K ( x , y ) = 0 K ( x , y ) = 0 K(x,y)=0K(x, y)=0K(x,y)=0 for ( x , y ) E D 9 ( x , y ) E D 9 (x,y)inE_(D^(9))(x, y) \in E_{D^{9}}(x,y)ED9 and consider
(14) | u | 2 = sup { | u ( x , y ) | exp ( tR ( x , y ) ) : ( x , y ) E E 0 } | u | 2 = sup | u ( x , y ) | exp ( tR ( x , y ) ) : ( x , y ) E E 0 quad|u|_(2)=s u p{|u(x,y)|exp(-tR(x,y)):(x,y)in E uuE_(0)}\quad|u|_{2}=\sup \left\{|u(x, y)| \exp (-\operatorname{tR}(x, y)):(x, y) \in E \cup E_{0}\right\}|u|2=sup{|u(x,y)|exp(tR(x,y)):(x,y)EE0} with t > 2 t > 2 t > 2t>2t>2. We denote X = { u C ( E E D ) : u 2 < } X = u C E E D : u 2 < X={u in C(E uuE_(D)):||u||_(2) < oo}X=\left\{u \in C\left(E \cup E_{D}\right):\|u\|_{2}<\infty\right\}X={uC(EED):u2<} and observe that ( x , 2 x , 2 x,||*||_(2)x,\|\cdot\|_{2}x,2 ) is a Banach space.
For u X u X u in Xu \in XuX, we define T u T u TuT uTu as in (7) respectively on E E EEE and E 0 E 0 E_(0)E_{0}E0 and prove that the raage of T T TTT is contained in X X XXX.
Let ( x , y ) E 0 ( x , y ) E 0 (x,y)inE_(0)(x, y) \in E_{0}(x,y)E0. Then | T u ( x , y ) | = | φ ( x , y ) | S | T u ( x , y ) | = | φ ( x , y ) | S |Tu(x,y)|=|varphi(x,y)| <= S|T u(x, y)|=|\varphi(x, y)| \leqslant S|Tu(x,y)|=|φ(x,y)|S. For ( x , y ) E ( x , y ) E (x,y)in E(x, y) \in E(x,y)E,
| T u ( x , y ) | 0 x 0 0 y L ( x , s ) ( | u ( x , s ) | + | u ( g ( x , s ) ) | + 1 ) d x d s | T u ( x , y ) | 0 x 0 0 y L ( x , s ) ( | u ( x , s ) | + | u ( g ( x , s ) ) | + 1 ) d x d s |Tu(x,y)| <= int_(0)^(x_(0))int_(0)^(y)L(x,s)(|u(x,s)|+|u(g(x,s))|+1)dxds <=|T u(x, y)| \leqslant \int_{0}^{x_{0}} \int_{0}^{y} L(x, s)(|u(x, s)|+|u(g(x, s))|+1) d x d s \leqslant|Tu(x,y)|0x00yL(x,s)(|u(x,s)|+|u(g(x,s))|+1)dxds
( 2 u 2 + 1 ) 0 π 0 g L ( x , s ) exp ( t K ( x 0 s ) ) d r d s 2 u 2 + 1 0 π 0 g L ( x , s ) exp t K x 0 s d r d s <= (2||u||_(2)+1)int_(0)^(pi)int_(0)^(g)L(x,s)exp(tK(x_(0)s))drds\leqslant\left(2\|u\|_{2}+1\right) \int_{0}^{\pi} \int_{0}^{g} L(x, s) \exp \left(t K\left(x_{0} s\right)\right) d r d s(2u2+1)0π0gL(x,s)exp(tK(x0s))drds. Applying Lenma I we obtaix
| T u ( x , y ) | exp ( t K ( x , y ) ) 1 1 4 ( u 2 + 1 ) | T u ( x , y ) | exp ( t K ( x , y ) ) 1 1 4 u 2 + 1 |Tu(x,y)|exp(-tK(x,y)) <= (1)/((1)/(4))(||u||_(2)+1)|T u(x, y)| \exp (-t K(x, y)) \leq \frac{1}{\frac{1}{4}}\left(\|u\|_{2}+1\right)|Tu(x,y)|exp(tK(x,y))114(u2+1), hence T u 2 ≤≤ max { s , 1 t ( u 2 + 1 ) } < T u 2 ≤≤ max s , 1 t u 2 + 1 < ||Tu||_(2)≤≤max{s,(1)/(t)(||u||_(2)+1)} < oo\|T u\|_{2} \leq \leq \max \left\{s, \frac{1}{t}\left(\|u\|_{2}+1\right)\right\}<\inftyTu2≤≤max{s,1t(u2+1)}<
We prove that T T TTT is Lipschitz with a constant which is less than I 0 I 0 I_(0)I_{0}I0 Let u , v X u , v X u,v in Xu, v \in Xu,vX. For ( x , y ) E 0 ( x , y ) E 0 (x,y)inE_(0)(x, y) \in E_{0}(x,y)E0, we have | T u ( x , y ) = Tv ( x , y ) | = 0 | T u ( x , y ) = Tv ( x , y ) | = 0 |Tu(x,y)=Tv(x,y)|=0|T u(x, y)=\operatorname{Tv}(x, y)|=0|Tu(x,y)=Tv(x,y)|=0. For
( x , y ) Σ ( x , y ) Σ (x,y)in Sigma(x, y) \in \Sigma(x,y)Σ, we obtain
| T u ( x , y ) T v ( x , y ) | 2 u 2 0 e 0 y L ( r , s ) exp ( t K ( r , s ) ) d r d s | T u ( x , y ) T v ( x , y ) | 2 u 2 0 e 0 y L ( r , s ) exp ( t K ( r , s ) ) d r d s |Tu(x,y)-Tv(x,y)| <= 2||u||_(2)int_(0)^(e)int_(0)^(y)L(r,s)exp(tK(r,s))drds <=|T u(x, y)-T v(x, y)| \leqslant 2\|u\|_{2} \int_{0}^{e} \int_{0}^{y} L(r, s) \exp (t K(r, s)) d r d s \leqslant|Tu(x,y)Tv(x,y)|2u20e0yL(r,s)exp(tK(r,s))drds
2 t u 2 exp ( tK ( x , y ) ) 2 t u 2 exp ( tK ( x , y ) ) <= (2)/(t)||u||_(2)exp(tK(x,y))\leqslant \frac{2}{t}\|u\|_{2} \exp (\operatorname{tK}(x, y))2tu2exp(tK(x,y)).
It follows that T u T v 2 2 t u v 2 T u T v 2 2 t u v 2 ||Tu-Tv||_(2) <= (2)/(t)||u-v||_(2)\|T u-T v\|_{2} \leq \frac{2}{t}\|u-v\|_{2}TuTv22tuv2 and for t > 2 t > 2 t > 2t>2t>2 we have a unique solution in X X XXX.
THEOREM 4。If
(a) f C ( E × R 6 ) f C E × R 6 f in C(E xxR^(6))f \in C\left(E \times R^{6}\right)fC(E×R6) is Lipschitz with respect to the last six variables such that
| f ( x , y , z 1 , , z 6 ) f ( x , y , t 1 , , t 6 ) | L ( x , y ) i 1 6 | z i t i | f x , y , z 1 , , z 6 f x , y , t 1 , , t 6 L ( x , y ) i 1 6 z i t i |f(x,y,z_(1),dots,z_(6))-f(x,y,t_(1),dots,t_(6))| <= L(x,y)sum_(i_(1))^(6)|z_(i)-t_(i)|\left|f\left(x, y, z_{1}, \ldots, z_{6}\right)-f\left(x, y, t_{1}, \ldots, t_{6}\right)\right| \leqslant L(x, y) \sum_{i_{1}}^{6}\left|z_{i}-t_{i}\right||f(x,y,z1,,z6)f(x,y,t1,,t6)|L(x,y)i16|ziti| and | f ( x , y , 0 , , 0 ) | L ( x , y ) | f ( x , y , 0 , , 0 ) | L ( x , y ) |f(x,y,0,dots,0)| <= L(x,y)|f(x, y, 0, \ldots, 0)| \leq L(x, y)|f(x,y,0,,0)|L(x,y) for any ( x , y ) E ( x , y ) E (x,y)in E(x, y) \in E(x,y)E, with L , L x L , L x L,L_(x)L, L_{x}L,Lx and L y L y L_(y)L_{y}Ly in O ( E ) O ( E ) O(E)O(E)O(E) and nonnegative on I
(b) φ C 1 ( E 0 ) φ C 1 E 0 quad varphi inC^(1)(E_(0))\quad \varphi \in \mathbb{C}^{1}\left(\mathrm{E}_{0}\right)φC1(E0) with | φ | , | φ x | , | φ y | S < | φ | , φ x , φ y S < |varphi|,|varphi_(x)|,|varphi_(y)| <= S < oo|\varphi|,\left|\varphi_{x}\right|,\left|\varphi_{y}\right| \leq S<\infty|φ|,|φx|,|φy|S<, where | φ | == sup { | φ ( x , y ) | : ( x , y ) E 0 } | φ | == sup | φ ( x , y ) | : ( x , y ) E 0 |varphi|==s u p{|varphi(x,y)|:(x,y)inE_(0)}|\varphi|= =\sup \left\{|\varphi(x, y)|:(x, y) \in E_{0}\right\}|φ|==sup{|φ(x,y)|:(x,y)E0}, and φ φ varphi\varphiφ xy exists such that f ( 0 , y , z 1 , , z 6 ) = φ x y ( 0 , y ) , f ( x , 0 , z 1 , , z 6 ) = φ x y ( x , 0 ) f 0 , y , z 1 , , z 6 = φ x y ( 0 , y ) , f x , 0 , z 1 , , z 6 = φ x y ( x , 0 ) f(0,y,z_(1),dots,z_(6))=varphi_(xy)(0,y),f(x,0,z_(1),dots,z_(6))=varphi_(xy)(x,0)f\left(0, y, z_{1}, \ldots, z_{6}\right)=\varphi_{x y}(0, y), f\left(x, 0, z_{1}, \ldots, z_{6}\right)=\varphi_{x y}(x, 0)f(0,y,z1,,z6)=φxy(0,y),f(x,0,z1,,z6)=φxy(x,0), for any ( x 6 y ) x , ( z 1 , , z 6 ) R 6 x 6 y x , z 1 , , z 6 R 6 (x_(6)y)inx_(,)(z_(1),dots,z_(6))inR^(6)\left(x_{6} y\right) \in x_{,}\left(z_{1}, \ldots, z_{6}\right) \in R^{6}(x6y)x,(z1,,z6)R6
(c) g j C ( E ) , g i : E E E o , g i = ( h i , k i ) mith h i ( x , y ) x , k i ( x , y ) g j C ( E ) , g i : E E E o , g i = h i , k i mith _ h i ( x , y ) x , k i ( x , y ) quadg_(j)in C(E),g_(i):E rarr E uuE_(o),g_(i)=(h_(i),k_(i))mith _h_(i)(x,y) <= x,k_(i)(x,y) <=\quad g_{j} \in C(E), g_{i}: E \rightarrow E \cup E_{o}, g_{i}=\left(h_{i}, k_{i}\right) \underline{\operatorname{mith}} h_{i}(x, y) \leq x, k_{i}(x, y) \leqslantgjC(E),gi:EEEo,gi=(hi,ki)mithhi(x,y)x,ki(x,y) if y y yyy for any ( x , y ) E , i = 1 , 3 ( x , y ) E , i = 1 , 3 ¯ (x,y)in E,i= bar(1,3)(x, y) \in E, i=\overline{1,3}(x,y)E,i=1,3,
then the problem (2) with the condition (13) has in the space Y Y YYY defined bellow a unique solution.
Proof Let u C 1 ( E E 0 ) u C 1 E E 0 u inC^(1)(E uuE_(0))u \in C^{1}\left(E \cup E_{0}\right)uC1(EE0). We define K : E E 0 R K : E E 0 R K:E uuE_(0)rarr RK: E \cup E_{0} \rightarrow RK:EE0R by K ( x , y ) = 0 x 0 y L ( p , q ) d p d q + 0 z L ( p , y ) d p + 0 y L ( x , q ) d q , ( x , y ) E K ( x , y ) = 0 x 0 y L ( p , q ) d p d q + 0 z L ( p , y ) d p + 0 y L ( x , q ) d q , ( x , y ) E K(x,y)=int_(0)^(x)int_(0)^(y)L(p,q)dpdq+int_(0)^(z)L(p,y)dp+int_(0)^(y)L(x,q)dq,(x,y)in EK(x, y)=\int_{0}^{x} \int_{0}^{y} L(p, q) d p d q+\int_{0}^{z} L(p, y) d p+\int_{0}^{y} L(x, q) d q,(x, y) \in EK(x,y)=0x0yL(p,q)dpdq+0zL(p,y)dp+0yL(x,q)dq,(x,y)E and K ( x , y ) = 0 , ( x , y ) E 0 K ( x , y ) = 0 , ( x , y ) E 0 K(x,y)=0,(x,y)inE_(0)K(x, y)=0,(x, y) \in E_{0}K(x,y)=0,(x,y)E0. We consider also
u 3 = u 2 + u x 2 + u y 2 u 3 = u 2 + u x 2 + u y 2 ||u||_(3)=||u||_(2)+||u_(x)||_(2)+||u_(y)||_(2)\|u\|_{3}=\|u\|_{2}+\left\|u_{x}\right\|_{2}+\left\|u_{y}\right\|_{2}u3=u2+ux2+uy2, where 2 2 ||*||_(2)\|\cdot\|_{2}2 is given by (14) with t > 6 t > 6 t > 6t>6t>6.
Let Y = { u C 1 ( E E 0 ) : u ; < } Y = u C 1 E E 0 : u ; < Y={u inC^(1)(E uuE_(0)):||u||; < oo}Y=\left\{u \in C^{1}\left(E \cup E_{0}\right):\|u\| ;<\infty\right\}Y={uC1(EE0):u;<} which is a Banach space with respect to the norm . 3 . 3 ||.||_(3)\|.\|_{3}.3. For u Y u Y u in Yu \in YuY, we define T u T u TuT uTu by (10), respectively on F and E 0 E 0 E_(0)\mathrm{E}_{0}E0.
We prove that the range of T T TTT is contained in Y Y YYY.
We havo T u C l ( E E 0 ) because of the condition (b). Iet ( x , y ) J 0 ; then | T u ( x , y ) | = | φ ( x , y ) | S. For ( x , y ) E we have | T u ( x , y ) | ( 2 u 3 + 1 ) 0 ξ 0 y L ( x , s ) exp ( t K ( x , s ) ) d r d s . yoliowing Lemma 2 we obtain | T u ( x 9 y ) | exp ( tK ( x , y ) ) 1 4 ( 2 u 3 + 1 ) , ( x , y ) E and I u 2 max { s , 1 t ( 2 u 3 + 1 ) } . Similarly ( Tu ) x a max { S , 1 t ( 2 u 3 + 1 ) } ( Tu ) y 2 max { s , 1 t ( 2 u 3 + 1 ) } 9 hence T u 3 3 max { s , 1 t ( 2 u 3 + 1 ) } < and T u Y . Using again Lema 2 we prove that T is a Lipschitz operator. Let u , v Y ; for ( x , y ) E 0 , we have | Tu ( x , y ) Tv ( x , y ) | = 0 . For ( x , y ) E | T u ( x , y ) T v ( x , y ) | 2 u v z 0 x 0 y L ( x , s ) exp ( t K ( x , s ) ) d x d s 2 t u v 3 exp ( t K ( x , y ) ) . It follows that T u T v 2 2 t u v 3 and similarly ( T u ) x ( T v ) x 2 2 t u v 3 ( Tu ) y ( Tv ) y 2 2 t u v 3 From the last three inequalities we obtain Tu Tv 3 6 t u v 3 , and for t > 6 the problem has in Y a unique solution. REMARK 4. The results of Theorem 3 and 4 remain true imposing suitable conditions on f in the case of the equations (9) and (11). REffASK 5. Because all the theorems were proved using the Banach fixed point theorem, the solutions may be approximated by the method of successive approximations.  We havo  T u C l E E 0  because of the condition (b). Iet (  x , y  )  J 0 ; then  | T u ( x , y ) | = | φ ( x , y ) |  S. For  ( x , y ) E  we have  | T u ( x , y ) | 2 u 3 + 1 0 ξ 0 y L ( x , s ) exp ( t K ( x , s ) ) d r d s .  yoliowing Lemma  2  we obtain  T u x 9 y exp ( tK ( x , y ) ) 1 4 2 u 3 + 1 ( x , y ) E  and  I u 2 max s , 1 t 2 u 3 + 1 .  Similarly  ( Tu ) x a max S , 1 t 2 u 3 + 1 ( Tu ) y 2 max s , 1 t 2 u 3 + 1 9  hence  T u 3 3 max s , 1 t 2 u 3 + 1 <  and  T u Y .  Using again Lema  2  we prove that  T  is a Lipschitz operator. Let  u , v Y ;  for  ( x , y ) E 0 ,  we have  | Tu ( x , y ) Tv ( x , y ) | = 0 . For ( x , y ) E | T u ( x , y ) T v ( x , y ) | 2 u v z 0 x 0 y L ( x , s ) exp ( t K ( x , s ) ) d x d s 2 t u v 3 exp ( t K ( x , y ) ) .  It follows that  T u T v 2 2 t u v 3  and similarly  ( T u ) x ( T v ) x 2 2 t u v 3 ( Tu ) y ( Tv ) y 2 2 t u v 3  From the last three inequalities we obtain  Tu Tv 3 6 t u v 3 ,  and for  t > 6  the problem has in  Y  a unique solution.   REMARK 4. The results of Theorem  3  and  4  remain true imposing   suitable conditions on  f  in the case of the equations (9) and (11).   REffASK 5. Because all the theorems were proved using the Banach   fixed point theorem, the solutions may be approximated by the method   of successive approximations.  {:[" We havo "Tu inC^(l)(E uuE_(0))" because of the condition (b). Iet ( "x","y" ) "in],[ inJ_(0)"; then "|Tu(x","y)|=|varphi(x","y)| <= " S. For "(x","y)in E" we have "],[|Tu(x","y)| <= (2||u||_(3)+1)int_(0)^(xi)int_(0)^(y)L(x","s)exp(tK(x","s))drds.],[" yoliowing Lemma "2" we obtain "|Tu(x_(9)y)|exp(-tK(x","y)) <= (1)/(4)(2||u||_(3^(+))1)", "],[(x","y)in E" and "],[||Iu||_(2) <= max{s,(1)/(t)(2||u||_(3)+1)}.],[" Similarly "],[||(Tu)_(x)||_(a) <= max{S,(1)/(t)(2||u||_(3)+1)}],[||(Tu)_(y)||_(2) <= max{(s),(1)/(t)(2||u||_(3)+1)}_(9)" hence "],[||Tu||_(3) <= 3max{s,(1)/(t)(2||u||_(3)+1)} < oo" and "Tu in Y.],[" Using again Lema "2" we prove that "T" is a Lipschitz operator. Let "],[u","v in Y;" for "(x","y)inE_(0)","" we have "|Tu(x","y)-Tv(x","y)|=0.For(x","y)in E],[|Tu(x","y)-Tv(x","y)| <= 2||u-v||zint_(0)^(x)int_(0)^(y)L(x","s)exp(tK(x","s))dxds <= ],[ <= (2)/(t)||u-v||_(3)exp(tK(x","y)).],[" It follows that "],[||Tu-Tv||_(2) <= (2)/(t)||u-v||_(3)],[" and similarly "],[||(Tu)_(x)-(Tv)_(x)||_(2) <= (2)/(t)||u-v||_(3)],[||(Tu)_(y)-(Tv)_(y)||_(2) <= (2)/(t)||u-v||_(3)],[" From the last three inequalities we obtain "],[:'||Tu-Tv||_(3) <= (6)/(t)||u-v||_(3)","],[" and for "t > 6" the problem has in "Y" a unique solution. "],[" REMARK 4. The results of Theorem "3" and "4" remain true imposing "],[" suitable conditions on "f" in the case of the equations (9) and (11). "],[" REffASK 5. Because all the theorems were proved using the Banach "],[" fixed point theorem, the solutions may be approximated by the method "],[" of successive approximations. "]:}\begin{aligned} & \text { We havo } T u \in C^{l}\left(E \cup E_{0}\right) \text { because of the condition (b). Iet ( } x, y \text { ) } \in \\ & \in J_{0} \text {; then }|T u(x, y)|=|\varphi(x, y)| \leqslant \text { S. For }(x, y) \in E \text { we have } \\ & |T u(x, y)| \leq\left(2\|u\|_{3}+1\right) \int_{0}^{\xi} \int_{0}^{y} L(x, s) \exp (t K(x, s)) d r d s . \\ & \text { yoliowing Lemma } 2 \text { we obtain }\left|T u\left(x_{9} y\right)\right| \exp (-\operatorname{tK}(x, y)) \leqslant \frac{1}{4}\left(2\|u\|_{3^{+}} 1\right) \text {, } \\ & (x, y) \in E \text { and } \\ & \|I u\|_{2} \leq \max \left\{s, \frac{1}{t}\left(2\|u\|_{3}+1\right)\right\} . \\ & \text { Similarly } \\ & \left\|(\mathrm{Tu})_{\mathrm{x}}\right\|_{\mathrm{a}} \leq \max \left\{\mathrm{S}, \frac{1}{\mathrm{t}}\left(2\|\mathrm{u}\|_{3}+1\right)\right\} \\ & \left\|(\mathrm{Tu})_{\mathrm{y}}\right\|_{2} \leqslant \max \left\{\mathrm{~s}, \frac{1}{\mathrm{t}}\left(2\|\mathrm{u}\|_{3}+1\right)\right\}_{9} \text { hence } \\ & \|T u\|_{3} \leq 3 \max \left\{s, \frac{1}{t}\left(2\|u\|_{3}+1\right)\right\}<\infty \text { and } T u \in Y . \\ & \text { Using again Lema } 2 \text { we prove that } T \text { is a Lipschitz operator. Let } \\ & u, v \in Y ; \text { for }(x, y) \in E_{0}, \text { we have }|\operatorname{Tu}(x, y)-\operatorname{Tv}(x, y)|=0 . \operatorname{For}(x, y) \in E \\ & |T u(x, y)-T v(x, y)| \leq 2\|u-v\| z \int_{0}^{x} \int_{0}^{y} L(x, s) \exp (t K(x, s)) d x d s \leq \\ & \leqslant \frac{2}{t}\|u-v\|_{3} \exp (t K(x, y)) . \\ & \text { It follows that } \\ & \|T u-T v\|_{2} \leq \frac{2}{t}\|u-v\|_{3} \\ & \text { and similarly } \\ & \left\|(T u)_{x}-(T v)_{x}\right\|_{2} \leqslant \frac{2}{t}\|u-v\|_{3} \\ & \left\|(\mathrm{Tu})_{y}-(\mathrm{Tv})_{y}\right\|_{2} \leq \frac{2}{t}\|u-v\|_{3} \\ & \text { From the last three inequalities we obtain } \\ & \because\|\mathrm{Tu}-\operatorname{Tv}\|_{3} \leqslant \frac{6}{\mathrm{t}}\|\mathrm{u}-\mathrm{v}\|_{3}, \\ & \text { and for } t>6 \text { the problem has in } Y \text { a unique solution. } \\ & \text { REMARK 4. The results of Theorem } 3 \text { and } 4 \text { remain true imposing } \\ & \text { suitable conditions on } f \text { in the case of the equations (9) and (11). } \\ & \text { REffASK 5. Because all the theorems were proved using the Banach } \\ & \text { fixed point theorem, the solutions may be approximated by the method } \\ & \text { of successive approximations. } \end{aligned} We havo TuCl(EE0) because of the condition (b). Iet ( x,y ) J0; then |Tu(x,y)|=|φ(x,y)| S. For (x,y)E we have |Tu(x,y)|(2u3+1)0ξ0yL(x,s)exp(tK(x,s))drds. yoliowing Lemma 2 we obtain |Tu(x9y)|exp(tK(x,y))14(2u3+1)(x,y)E and Iu2max{s,1t(2u3+1)}. Similarly (Tu)xamax{S,1t(2u3+1)}(Tu)y2max{ s,1t(2u3+1)}9 hence Tu33max{s,1t(2u3+1)}< and TuY. Using again Lema 2 we prove that T is a Lipschitz operator. Let u,vY; for (x,y)E0, we have |Tu(x,y)Tv(x,y)|=0.For(x,y)E|Tu(x,y)Tv(x,y)|2uvz0x0yL(x,s)exp(tK(x,s))dxds2tuv3exp(tK(x,y)). It follows that TuTv22tuv3 and similarly (Tu)x(Tv)x22tuv3(Tu)y(Tv)y22tuv3 From the last three inequalities we obtain TuTv36tuv3, and for t>6 the problem has in Y a unique solution.  REMARK 4. The results of Theorem 3 and 4 remain true imposing  suitable conditions on f in the case of the equations (9) and (11).  REffASK 5. Because all the theorems were proved using the Banach  fixed point theorem, the solutions may be approximated by the method  of successive approximations. 

REWERENCISS

  1. AGABWAL, R.P., THANDAPANI, I., Existence and Uniqueness of Solutions of Hyperbolic Delay Differential Equations, Math. Sem. Notes 2(1979), 531-541
  2. ALIOU, M.C., The Darboux Problem for Partial Differentiel Functio nal Equations of Hyperbolic ilppa, Mathemstica 19(42), 2(1977), 117-122
  3. BIBLECKI, A., Une remarque sur l'application de la méthode de Banach-Cacciopoli-Tikhonov dans ia théorie de 1 1 1^(')1^{\prime}1 &quatinn s = f ( x , y , z , p , q ) s = f ( x , y , z , p , q ) s=f(x,y,z,p,q)s=f(x, y, z, p, q)s=f(x,y,z,p,q), Bull. Acad. Polon. Sci. 4(1956), 265-268
  4. IONESCU, D.V., Sur une classe d'équations fonctiomelles, Thèse, Paris 1927
  5. KWAPISZ, M., TURO, J., On the Bxistence and Uniqueness of Solutions of Darboux Problem for Partial Diffe-Fential-Functional Equations, Colloq. Math. 29(1974), 279-302
  6. KWAPISZ, M., TURO, J., Some Integral Functional Equations, Punk. Mkv. 18(1975), 107-162
  7. RADULFSCV, D., Sur un problème de D.V.Ionescu, Studia Univ. Babeş-Bolyai, Math.26(2)(1981), 51-55
    B. WS, A.T. Qn the Eroblem of Darbon-Lonegen, "Babes-Bolyai" Univ Faculty of Bath. Research Semo, Frepnint n.' 1 , 1931 , 1 32 1 , 1931 , 1 32 1,1931,1-321,1931,1-321,1931,132
1984

Related Posts