Existence and uniqueness of the solution for an integral equation with supremum

Abstract

Following the idea of T. Wongyat and W. Sintunavarat, we obtain some existence and uniqueness results for the solution of an integral equation with supremum. The paper ends with the study of Gronwall-type theorems, comparison theorems and a result regarding a Ulam–Hyers stability result for the corresponding fixed point problem.

Authors

Veronica Ilea
Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania

Diana Otrocol
Technical University of Cluj-Napoca, Department of Mathematics, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

w-distance; integral equation with supremum; abstract Gronwall theorem; weakly Picard operator; Ulam-Hyers stability;

PDF

Cite this paper as:

V. Ilea, D. Otrocol, Existence and uniqueness of the solution for an integral equation with supremum, via w-distances, Symmetry, 2020, 12, 1554.

About this paper

Journal

Symmetry

Publisher Name

MDPI

Print ISSN

2073-8994

Online ISSN

Not available yet.

Google Scholar Profile

References

[1] Popov, E. , Automatic Regulation and Control; Moscow, Russia, 1966. (In Russian) [Google Scholar]
[2] Bainov, D.D.,  Hristova, S. Differential Equations with Maxima; Chapman & Hall/CRC Pure and Applied Mathematics: Boca Raton, FL, USA, 2011. [Google Scholar]
[3] Otrocol, D.,  Hybrid differential equations with maxima via Picard operators theory. Stud. Univ. Babeş-Bolyai Math. 201661, 421–428. [Google Scholar]
[4] Otrocol, D.,  Rus, I.A., Functional-differential equations with “maxima” via weakly Picard operators theory. Bull. Math. Soc. Sci. Math. Roum. 200851, 253–261. [Google Scholar]
[5] Wongyat, T.; Sintunavarat, W. The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fraction differential equations via w-distances. Adv. Diff. Equ. 20172017, 211. [Google Scholar] [CrossRef]
[6] Kada, O.; Suzuki, T., Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 199644, 381–391. [Google Scholar]
[7] Aguirre Salazar, L., Reich, S. A remark on weakly contractive mappings. J. Nonlinear Conv. Anal. 201516, 767–773. [Google Scholar]
[8] Dobriţoiu, M.,  An application of the w-weak generalized contractions theoremJ. Fixed Point Theory Appl. 201921, 93. [Google Scholar] [CrossRef]
[9] Suzuki, T., Takahashi, W. Fixed points theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. J. Juliusz Schauder Cent. 19968, 371–382. [Google Scholar] [CrossRef]{10]
[10] Takahashi, W., Wong, N.C.; Yao, J.C. Fixed point theorems for general contractive mappings with w-distances in metric spacesJ. Nonlinear Conv. Anal. 201314, 637–648. [Google Scholar]
[11] Wongyat, T.,  Sintunavarat, W. On new existence and uniqueness results concerning solutions to nonlinear Fredholm integral equations via w-distances and weak altering distance functions. J. Fixed Point Theory Appl. 201921, 7. [Google Scholar] [CrossRef]
[12] Rus, I.A., Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2001. [Google Scholar]
[13] Rus, I.A. Picard operators and applicationsSci. Math. Jpn. 200358, 191–219. [Google Scholar]
[14] Rus, I.A., Fixed points, upper and lower fixed points: Abstract Gronwall lemmas. Carpathian J. Math. 200420, 125–134. [Google Scholar]
[15] Rus, I.A., Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 200910, 305–320. [Google Scholar]
[16] Ilea, V.A.; Otrocol, D.,  An application of the Picard operator technique to functional integral equations. J. Nonlinear Conv. Anal. 201718, 405–413. [Google Scholar]

Existence and Uniqueness of the Solution for an Integral Equation with Supremum, via ww-Distances

Veronica Ilea Babeş–Bolyai University, Department of Mathematics, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania vdarzu@math.ubbcluj.ro and Diana Otrocol Technical University of Cluj-Napoca, Department of Mathematics, 28 Memorandumului Street, 400114 Cluj-Napoca, Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110 Cluj-Napoca, Romania Diana.Otrocol@math.utcluj.ro; dotrocol@ictp.acad.ro
Abstract.

Following the idea of T. Wongyat and W. Sintunavarat, we obtain some existence and uniqueness results for the solution of an integral equation with supremum. The paper ends with the study of Gronwall-type theorems, comparison theorems and a result regarding a Ulam–Hyers stability result for the corresponding fixed point problem.

Keywords: ww-distance, altering distance function, ceiling distance, integral equation with supremum, abstract Gronwall lemma, weakly Picard operator, Ulam-Hyers stability.

Mathematics Subject Classification: 47H10, 45D05, 34K05, 34K12

1. Introduction

The object of investigation of this paper is the qualitative theory of integral equations with supremum. These equations arise naturally when solving real-world problems, for example in the study of systems with automatic regulation and automatic control, problems in control theory. These types of equations are characterized by the fact that the maximum values of some regulated state parameters depend on certain time intervals, see for example [1] and the references therein. Recently, the interest in differential equations with supremum has an intensive development (see [2, 3, 4]). The aim of this paper focuses on two aspects: one is to prove existence and uniqueness results using ww-weak generalized contractions theorem; the other is to prove a Gronwall-type theorem and comparison theorems. Using this theory symmetry is important in determining the qualitative properties of the solution of the integral equation.

We consider the following class of integral equation with supremum

(1.1) x(t)=φ(t)+αtf(t,s,x(s),supθ[α,s]x(θ))𝑑s,t[α,β]x(t)=\varphi(t)+{\displaystyle\int\nolimits_{\alpha}^{t}}f(t,s,x(s),\underset{\theta\in[\alpha,s]}{\sup}x(\theta))ds,\ t\in[\alpha,\beta]

with α,β\alpha,\beta real and α<β\alpha<\beta, the functions φC([α,β],),fC([α,β]×[α,β]×2,)\varphi\in C\left([\alpha,\beta],\mathbb{R}\right),\ f\in C\left([\alpha,\beta]\times[\alpha,\beta]\times\mathbb{R}^{2},\mathbb{R}\right)\ are given. To prove our results, we shall use the ww-weak generalized contractions theorem due to T. Wongyat and W. Sintunavarat [5] and we obtain an existence and uniqueness result for the solutions of this equation.

2. Preliminaries

We consider (𝒯,d)(\mathcal{T},d) a metric space. In the sequel, we will use the following definitions and theorems, for details, see [6, 5].

Definition 2.1.

([6]) Let (𝒯,d)(\mathcal{T},d) a metric space and a function q:𝒯×𝒯[0,)q\colon\mathcal{T}\times\mathcal{T}\rightarrow[0,\infty). We say that qq is a ww-distance on 𝒯,\mathcal{T}, if the below conditions hold, for all x,y,z𝒯x,y,z\in\mathcal{T}:

  1. (1)

    q(x,y)q(x,z)+q(z,y)q(x,y)\leq q(x,z)+q(z,y);

  2. (2)

    q(x,):𝒯[0,)q(x,\cdot)\colon\mathcal{T}\rightarrow[0,\infty) is lower semicontinuous;

  3. (3)

    for each ε>0,\varepsilon>0, there exists δ>0\delta>0 such that q(x,y)δq(x,y)\leq\delta and q(x,z)δq(x,z)\leq\delta imply d(y,z)εd(y,z)\leq\varepsilon.

We recall that each metric on the nonempty set 𝒯\mathcal{T} is a ww-distance on 𝒯\mathcal{T}.

Definition 2.2 ([5]).

We say that the function ψ:𝒯×𝒯[0,)\psi\colon\mathcal{T}\times\mathcal{T}\rightarrow[0,\infty) is a w0w^{0}-distance on 𝒯,\mathcal{T}, if it is a ww-distance on 𝒯\mathcal{T} with q(x,x)=0q(x,x)=0, for all x𝒯.x\in\mathcal{T}.

Definition 2.3 ([5]).

We say that the function ψ:[0,)[0,)\psi\colon[0,\infty)\rightarrow[0,\infty) is an altering distance function, if the below assertions hold:

  1. (1)

    The function ψ\psi is continuous and nondecreasing;

  2. (2)

    ψ(t)\psi(t) is zero if and only if t=0t=0.

Definition 2.4 ([5]).

Let (𝒯,d)(\mathcal{T},d) be a metric space. We say that a ww-distance qq is a ceiling distance of dd if and only if q(x,y)d(x,y)q(x,y)\geq d(x,y), for all x,y𝒯.x,y\in\mathcal{T}.

Definition 2.5 ([5]).

We consider qq a ww-distance on the metric space (𝒯,d)(\mathcal{T},d), the altering distance function ψ:[0,)[0,)\psi\colon[0,\infty)\rightarrow[0,\infty), and the continuous function ϕ:[0,)[0,)\phi\colon[0,\infty)\rightarrow[0,\infty) with ϕ(t)\phi(t) is zero if and only if t=0t=0. If the below inequality holds we say that the operator A:𝒯𝒯A\colon\mathcal{T}\rightarrow\mathcal{T} is a ww-generalized weak contraction mapping

(2.1) ψ(q(A(x),A(y)))ψ(m(x,y)ϕ(q(x,y))),for allx,y𝒯,\psi\left(q(A(x),A(y))\right)\leq\psi\left(m(x,y)-\phi\left(q(x,y)\right)\right),\ \text{for all}\ x,y\in\mathcal{T},

where

(2.2) m(x,y):=max{q(x,y),q(x,A(y))+q(A(x),y)2}.m(x,y):=\max\left\{q(x,y),\frac{q\left(x,A(y)\right)+q\left(A(x),y\right)}{2}\right\}.

If q=d,q=d, then we say that AA is a generalized weak contraction mapping.

Now we consider (𝒯,d)(\mathcal{T},d) a complete metric space. The following fixed point result of the equation A(x)=x,x𝒯A(x)=x,\ x\in\mathcal{T} via ww-distances represents the motivation of our work.

Theorem 2.1 ([5]).

We consider q:𝒯×𝒯[0,)q\colon\mathcal{T}\times\mathcal{T}\rightarrow[0,\infty) a continuous ww-distance on 𝒯\mathcal{T} and a ceiling distance of dd, the altering distance function ψ:[0,)[0,)\psi\colon[0,\infty)\rightarrow[0,\infty), and the continuous function ϕ:[0,)[0,)\phi\colon[0,\infty)\rightarrow[0,\infty) with ϕ(t)\phi(t) is zero if and only if t=0t=0. Let A:𝒯𝒯A\colon\mathcal{T}\rightarrow\mathcal{T} a continuous operator such that

(2.3) ψ(q(A(x),A(y)))ψ(m(x,y)ϕ(q(x,y))),for allx,y𝒯.\psi\left(q\left(A(x),A(y)\right)\right)\leq\psi\left(m(x,y)-\phi\left(q\left(x,y\right)\right)\right),\ \text{for all}\ x,y\in\mathcal{T}.

Then, AA has a unique fixed point in 𝒯\mathcal{T} and the sequence of successive approximations {xn}n,\{x_{n}\}_{n\in\mathbb{N}}, defined by xn=An(x0)x_{n}=A^{n}(x_{0}), for each x0𝒯x_{0}\in\mathcal{T}, for all nn\in\mathbb{N}, converges to the unique fixed point of AA.

For other fixed points results obtained employing the theory of ww-distance, the reader is referred to [7, 8, 9, 10, 5, 11].

In this paper, we emphasize some connection between ww-generalized weak contraction mapping and the Picard operator theory.

In the sequel, we recall the following results (see [12, 13, 14]).

Let (𝒯,d)(\mathcal{T},d) be a metric space. We say that the operator A:𝒯𝒯A\colon\mathcal{T}\rightarrow\mathcal{T} is weakly a Picard operator (WPO) if the successive approximations sequence {An(x)}n\{A^{n}(x)\}_{n\in\mathbb{N}}, converges for all x𝒯x\in\mathcal{T} and its limit (which generally depend on xx) is a fixed point of AA. If an operator AA is WPO with FA={x}F_{A}=\{x^{\ast}\}, then, we say that the operator AA is a Picard operator (PO).

If A:𝒯𝒯A\colon\mathcal{T}\rightarrow\mathcal{T} is a WPO, we can define the operator A:𝒯FAA^{\infty}\colon\mathcal{T}\rightarrow F_{A}, by A(x):=limn+A^{\infty}(x):=\underset{n\rightarrow+\infty}{\lim} An(x).A^{n}(x).

Definition 2.6.

Let AA be a weakly Picard operator and c>0.c>0. We say that the operator AA\ is a cc-weakly Picard operator if

d(x,A(x))cd(x,A(x)),for allx𝒯.d(x,A^{\infty}(x))\leq cd(x,A(x)),\ \text{for all}\ x\in\mathcal{T}.

If 𝒯\mathcal{T} is a nonempty set, then (𝒯,d,)(\mathcal{T},d,\leq) is an ordered metric space, where \leq is a partial order relation on 𝒯.\mathcal{T}.

Now we present some properties regarding WPOs and POs.

Theorem 2.2 ([12]).

(Characterization theorem) Let (𝒯,d)(\mathcal{T},d) be a metric space. The operator A:𝒯𝒯A\colon\mathcal{T}\rightarrow\mathcal{T} is WPO if there exists a partition of 𝒯\mathcal{T}, 𝒯=\mathcal{T}= λΛXλ\underset{\lambda\in\Lambda}{\cup}X_{\lambda}, such that

  • (a)

    𝒯λI(A)\mathcal{T}_{\lambda}\in I(A), for all λΛ;\lambda\in\Lambda;

  • (b)

    A|𝒯λ:𝒯λ𝒯λA|_{\mathcal{T}_{\lambda}}\colon\mathcal{T}_{\lambda}\rightarrow\mathcal{T}_{\lambda} is PO, for all λΛ.\lambda\in\Lambda.

Theorem 2.3 ([13]).

(Abstract Gronwall Theorem) Let (𝒯,d,)(\mathcal{T},d,\leq) be an ordered metric space and we consider the operator A:𝒯𝒯A\colon\mathcal{T}\rightarrow\mathcal{T}. We suppose

  • (i)

    The operator AA is increasing with respect to ;\leq;

  • (ii)

    AA is a Picard operator with FA={x}.F_{A}=\{x^{\ast}\}.

Then the below conclusions hold:

  • (i)

    for x𝒯,xA(x)xx,x\in\mathcal{T},x\leq A(x)\Rightarrow x\leq x^{\ast},

  • (ii)

    for x𝒯,xA(x)xx.x\in\mathcal{T},x\geq A(x)\Rightarrow x\geq x^{\ast}.

Theorem 2.4 ([13]).

(Abstract Comparison Lemma) Let (𝒯,d,)(\mathcal{T},d,\leq) be an ordered metric space and we consider the operators A,B,C:𝒯𝒯A,B,C\colon\mathcal{T}\rightarrow\mathcal{T} with the properties:

  • (i)

    ABC;A\leq B\leq C;

  • (ii)

    A,B,CA,B,C are WPOs;

  • (iii)

    BB is an increasing operator.

Then, for x,y,z𝒯,xyzA(x)B(y)C(z)x,y,z\in\mathcal{T},x\leq y\leq z\Rightarrow A^{\infty}(x)\leq B^{\infty}(y)\leq C^{\infty}(z).

We present now the concept of Hyers–Ulam stability in the setting of metric spaces given by I.A. Rus in [15].

Definition 2.7.

Let (𝒯,d)(\mathcal{T},d) be a metric space and we consider the operator A:𝒯𝒯A\colon\mathcal{T}\rightarrow\mathcal{T}. Then, we say that the fixed point equation

(2.4) x=A(x)x=A(x)

is Ulam–Hyers stable if there exists cA+c_{A}\in\mathbb{R^{*}_{+}} such that: for any ε>0\varepsilon>0 and for each solution y𝒯y^{\ast}\in\mathcal{T} of (2.4), i.e., d(y,A(y))ε,d(y^{\ast},A(y^{\ast}))\leq\varepsilon, there exists a solution xx^{\ast} of (2.4) such that

d(y,x)cAε.d(y^{\ast},x^{\ast})\leq c_{A}\varepsilon.

We recall the following abstract result of the Ulam–Hyers stability of the fixed point Equation (2.4).

Theorem 2.5.

(Ulam–Hyers stability, [15]) Let (𝒯,d)(\mathcal{T},d) be a metric space. Suppose that A:𝒯𝒯A\colon\mathcal{T}\rightarrow\mathcal{T} is a cc-Picard operator. Then, Equation (2.4) is Ulam–Hyers stable.

For more results regarding WPOs and POs, see [16, 3, 4, 14, 15].

3. Main Result

Let the operator A:C([α,β],)C([α,β],)A\colon C([\alpha,\beta],\mathbb{R})\rightarrow C([\alpha,\beta],\mathbb{R}) expressed by

(3.1) A(x)(t):=φ(t)+αtf(t,s,x(s),supθ[α,s]x(θ))𝑑s,A(x)(t):=\varphi(t)+{\displaystyle\int\nolimits_{\alpha}^{t}}f(t,s,x(s),\underset{\theta\in[\alpha,s]}{\sup}x(\theta))ds,

where fC([α,β]×[α,β]×2,),xC([α,β],)\ f\in C\left([\alpha,\beta]\times[\alpha,\beta]\times\mathbb{R}^{2},\mathbb{R}\right),\ x\in C([\alpha,\beta],\mathbb{R}) and t[α,β].t\in[\alpha,\beta].

Our first result is the following theorem.

Theorem 3.1.

We consider the integral Equation (1.1) with α,β\alpha,\beta real and α<β\alpha<\beta, the functions φC([α,β],),fC([α,β]×[α,β]×2,)\varphi\in C\left([\alpha,\beta],\mathbb{R}\right),\ f\in C\left([\alpha,\beta]\times[\alpha,\beta]\times\mathbb{R}^{2},\mathbb{R}\right)\ are given. We assume the following:

  • (i)

    The operator A:C([α,β],)C([α,β],)A\colon C([\alpha,\beta],\mathbb{R})\rightarrow C([\alpha,\beta],\mathbb{R}) defined by (3.1) is continuous;

  • (ii)

    The altering distance function ψ:[0,)[0,)\psi\colon[0,\infty)\rightarrow[0,\infty) satisfies ψ(t)<t\psi(t)<t, for all t>0t>0, and the continuous function ϕ:[0,)[0,)\phi\colon[0,\infty)\rightarrow[0,\infty) satisfies ϕ(t)\phi(t) is zero if and only if t=0;t=0;

  • (iii)

    The below inequality holds

    |f(t,s,x(s),supθ[α,s]x(θ))|+|f(t,s,y(s),supθ[α,s]y(θ))|\displaystyle\left|f(t,s,x(s),\underset{\theta\in[\alpha,s]}{\sup}x(\theta))\right|+\left|f(t,s,y(s),\underset{\theta\in[\alpha,s]}{\sup}y(\theta))\right|
    ψ(|x(s)|+|y(s)|+|supθ[α,s]x(θ)|+|supθ[α,s]y(θ)|)βα\displaystyle\leq\frac{\psi\left(\left|x(s)\right|+\left|y(s)\right|+\left|\underset{\theta\in[\alpha,s]}{\sup}x(\theta)\right|+\left|\underset{\theta\in[\alpha,s]}{\sup}y(\theta)\right|\right)}{\beta-\alpha}
    ϕ(supl[α,β]|x(l)|+supl[α,β]|y(l)|+supl[α,β]|supθ[α,l]x(θ)|+supl[α,β]|supθ[α,l]y(θ)|)βα\displaystyle-\frac{\phi\left(\underset{l\in[\alpha,\beta]}{\sup}\left|x(l)\right|+\underset{l\in[\alpha,\beta]}{\sup}\left|y(l)\right|+\underset{l\in[\alpha,\beta]}{\sup}\left|\underset{\theta\in[\alpha,l]}{\sup}x(\theta)\right|+\underset{l\in[\alpha,\beta]}{\sup}\left|\underset{\theta\in[\alpha,l]}{\sup}y(\theta)\right|\right)}{\beta-\alpha}
    2|φ(t)|βα,for allx,yC([α,β],),t,s[α,β].\displaystyle-\frac{2\left|\varphi(t)\right|}{\beta-\alpha},\ \text{for all}\ x,y\in C([\alpha,\beta],\mathbb{R}),\ t,s\in[\alpha,\beta].

Then the integral equation with supremum (1.1) has a unique solution and the sequence of successive approximations {xn}n\{x_{n}\}_{n\in\mathbb{N}}, defined by xn=An(x0)x_{n}=A^{n}(x_{0}), for each x0C([α,β],)x_{0}\in C([\alpha,\beta],\mathbb{R}), for all nn\in\mathbb{N}, converges to the unique solution of Equation (1.1).

Proof.

Let 𝒯=C([α,β],)\mathcal{T}=C([\alpha,\beta],\mathbb{R}) and we consider the metric d:𝒯×𝒯[0,)d\colon\mathcal{T}\times\mathcal{T}\rightarrow[0,\infty) defined as below

(3.2) d(x,y):=supt[α,β]|x(t)y(t)|,for allx,yC([α,β],).d(x,y):=\underset{t\in[\alpha,\beta]}{\sup}\left|x(t)-y(t)\right|,\ \text{for all}\ x,y\in C([\alpha,\beta],\mathbb{R}).

It is clear that (𝒯,d)(\mathcal{T},d) is a complete metric space. We consider the function q:C([α,β],)×C([α,β],)[0,)q\colon C([\alpha,\beta],\mathbb{R})\times C([\alpha,\beta],\mathbb{R})\rightarrow[0,\infty) defined by:

(3.3) q(x,y):=supt[α,β]|x(t)|+supt[α,β]|y(t)|,for allx,yC([α,β],).q(x,y):=\underset{t\in[\alpha,\beta]}{\sup}\left|x(t)\right|+\underset{t\in[\alpha,\beta]}{\sup}\left|y(t)\right|,\ \text{for all}\ x,y\in C([\alpha,\beta],\mathbb{R}).

We get that qq is a ww-distance on 𝒯\mathcal{T} and also a ceiling distance of dd.

We will show that AA satisfies the contraction condition (2.3).

|A(x)(t)|+|A(y)(t)|\displaystyle\left|A(x)(t)\right|+\left|A(y)(t)\right|
=|φ(t)+αtf(t,s,x(s),supθ[α,s]x(θ))𝑑s|+|φ(t)+αtf(t,s,y(s),supθ[α,s]y(θ))𝑑s|\displaystyle=\left|\varphi(t)+{\displaystyle\int\nolimits_{\alpha}^{t}}f(t,s,x(s),\underset{\theta\in[\alpha,s]}{\sup}x(\theta))ds\right|+\left|\varphi(t)+{\displaystyle\int\nolimits_{\alpha}^{t}}f(t,s,y(s),\underset{\theta\in[\alpha,s]}{\sup}y(\theta))ds\right|
|φ(t)|+|αtf(t,s,x(s),supθ[α,s]x(θ))𝑑s|+|φ(t)|\displaystyle\leq\left|\varphi(t)\right|+\left|{\displaystyle\int\nolimits_{\alpha}^{t}}f(t,s,x(s),\underset{\theta\in[\alpha,s]}{\sup}x(\theta))ds\right|+\left|\varphi(t)\right|
+|αtf(t,s,y(s),supθ[α,s]y(θ))𝑑s|\displaystyle+\left|{\displaystyle\int\nolimits_{\alpha}^{t}}f(t,s,y(s),\underset{\theta\in[\alpha,s]}{\sup}y(\theta))ds\right|
2|φ(t)|+αt(|f(t,s,x(s),supθ[α,s]x(θ))|+|f(t,s,y(s),supθ[α,s]y(θ))|)𝑑s\displaystyle\leq 2\left|\varphi(t)\right|+{\displaystyle\int\nolimits_{\alpha}^{t}}\left(\left|f(t,s,x(s),\underset{\theta\in[\alpha,s]}{\sup}x(\theta))\right|+\left|f(t,s,y(s),\underset{\theta\in[\alpha,s]}{\sup}y(\theta))\right|\right)ds
2|φ(t)|+1βααt[ψ(|x(s)|+|y(s)|+|supθ[α,s]x(θ)|+|supθ[α,s]y(θ)|)\displaystyle\leq 2\left|\varphi(t)\right|+\frac{1}{\beta-\alpha}{\displaystyle\int\nolimits_{\alpha}^{t}}\left[\psi\left(\left|x(s)\right|+\left|y(s)\right|+\left|\underset{\theta\in[\alpha,s]}{\sup}x(\theta)\right|+\left|\underset{\theta\in[\alpha,s]}{\sup}y(\theta)\right|\right)\right.
ϕ(supl[α,β]|x(l)|+supl[α,β]|y(l)|+supl[α,β]|supθ[α,l]x(θ)|+supl[α,β]|supθ[α,l]y(θ)|)2|φ(t)|]ds\displaystyle\left.-\phi\left(\underset{l\in[\alpha,\beta]}{\sup}\left|x(l)\right|+\underset{l\in[\alpha,\beta]}{\sup}\left|y(l)\right|+\underset{l\in[\alpha,\beta]}{\sup}\left|\underset{\theta\in[\alpha,l]}{\sup}x(\theta)\right|+\underset{l\in[\alpha,\beta]}{\sup}\left|\underset{\theta\in[\alpha,l]}{\sup}y(\theta)\right|\right)-2\left|\varphi(t)\right|\right]ds
ψ(q(x,y)ϕ(q(x,y))).\displaystyle\leq\psi\left(q(x,y)-\phi\left(q(x,y)\right)\right).

We obtain that

supt[α,β]|Ax(t)|+supt[α,β]|Ay(t)|ψ(q(x,y)ϕ(q(x,y)))\underset{t\in[\alpha,\beta]}{\sup}\left|Ax(t)\right|+\underset{t\in[\alpha,\beta]}{\sup}\left|Ay(t)\right|\leq\psi\left(q(x,y)-\phi\left(q(x,y)\right)\right)

and using (3.3) we get

q(Ax,Ay)ψ(q(x,y)ϕ(q(x,y))),for allx,y𝒯.q(Ax,Ay)\leq\psi\left(q(x,y)-\phi\left(q(x,y)\right)\right),\ \text{for all}\ x,y\in\mathcal{T}.

Hence we have

ψ(q(Ax,Ay))q(Ax,Ay)ψ(q(x,y))ϕ(q(x,y)),for allx,y𝒯.\psi\left(q(Ax,Ay)\right)\leq q(Ax,Ay)\leq\psi(q(x,y))-\phi(q(x,y)),\ \text{for all}\ x,y\in\mathcal{T}.

Therefore the condition (2.3) holds and thus we may conclude that AA has a unique fixed point. So there exists a unique solution for the integral equation with supremum (1.1). ∎

From the above theorem, the operator AA defined in (3.1) is a PO. Now we establish a Gronwall-type theorem for Equation (1.1).

Theorem 3.2.

We consider the integral Equation (1.1) with α,β\alpha,\beta real, α<β,\alpha<\beta, and the functions φC([α,β],),fC([α,β]×[α,β]×,)\varphi\in C\left([\alpha,\beta],\mathbb{R}\right),\ f\in C\left([\alpha,\beta]\times[\alpha,\beta]\times\mathbb{R},\mathbb{R}\right) are given. We assume that the conditions (i)-(iii) from Theorem 3.1 hold. Furthermore, we suppose that

  • (iv)

    f(t,s,):f(t,s,\cdot)\colon\mathbb{R}\rightarrow\mathbb{R} is an increasing function with respect to the last argument, for all t,s[α,β].t,s\in[\alpha,\beta].

Let xC([α,β],)x^{\ast}\in C([\alpha,\beta],\mathbb{R}) be the unique solution of the integral Equation (1.1). Then, the following conditions are satisfied:

  1. (1)

    for all xC([α,β],)x\in C([\alpha,\beta],\mathbb{R}) with

    x(t)φ(t)+αtf(t,s,supθ[α,s]x(θ))𝑑s,t[α,β],x(t)\leq\varphi(t)+{\displaystyle\int\nolimits_{\alpha}^{t}}f(t,s,\underset{\theta\in[\alpha,s]}{\sup}x(\theta))ds,\ t\in[\alpha,\beta],

    we have xx;x\leq x^{\ast};

  2. (2)

    for all xC([α,β],)x\in C([\alpha,\beta],\mathbb{R}) with

    x(t)φ(t)+αtf(t,s,supθ[α,s]x(θ))𝑑s,t[α,β],x(t)\geq\varphi(t)+{\displaystyle\int\nolimits_{\alpha}^{t}}f(t,s,\underset{\theta\in[\alpha,s]}{\sup}x(\theta))ds,\ t\in[\alpha,\beta],

    we have xx.x\geq x^{\ast}.

Proof.

From (iv), we have that the operator AA defined in (3.1) is increasing with respect to the partial order.

By the proof of Theorem 3.1, it follows that A is a Picard operator. The conclusion of the theorem follows from Theorem 2.3. ∎

We establish now a comparison theorem for Equation (1.1), using Theorem 2.4.

Theorem 3.3.

We consider the integral Equation (1.1) with α,β\alpha,\beta real, α<β,\alpha<\beta, and we suppose that φiC([α,β],)\varphi_{i}\in C\left([\alpha,\beta],\mathbb{R}\right) and fiC([α,β]×[α,β]×,),i=1,2,3\ f_{i}\in C\left([\alpha,\beta]\times[\alpha,\beta]\times\mathbb{R},\mathbb{R}\right),\ i=1,2,3 are given. We assume that the conditions (i)-(iii) from Theorem 3.1 hold. Furthermore, we suppose that

  • (i)

    φ1φ2φ3,f1f2f3\varphi_{1}\leq\varphi_{2}\leq\varphi_{3},\ f_{1}\leq f_{2}\leq f_{3};

  • (ii)

    φ2,f2\varphi_{2},\ f_{2} are increasing.

Let xiC([α,β],)x_{i}\in C([\alpha,\beta],\mathbb{R}) be a solution of the equation

xi(t)=φi(t)+αtfi(t,s,supθ[α,s]x(θ))𝑑s,t[α,β],i=1,2,3.x_{i}(t)=\varphi_{i}(t)+{\displaystyle\int\nolimits_{\alpha}^{t}}f_{i}(t,s,\underset{\theta\in[\alpha,s]}{\sup}x(\theta))ds,\ t\in[\alpha,\beta],\ i=1,2,3.

If x1(α)x2(α)x3(α)x_{1}(\alpha)\leq x_{2}(\alpha)\leq x_{3}(\alpha), then x1x2x3.x_{1}\leq x_{2}\leq x_{3}.

Proof.

The proof follows from the Theorem 2.4. ∎

Now we prove a Ulam–Hyers stability result for the integral Equation (1.1).

Theorem 3.4.

We consider the integral equation with supremum (1.1) and we suppose that all the conditions of Theorem 3.1 are satisfied. Then, the integral Equation (1.1) is Ulam–Hyers stable.

Proof.

Applying Theorem 3.1 and Theorem 2.5 we get the conclusion of the theorem. ∎

4. Conclusions

The purpose of this paper is to establish some fixed point results for generalized contraction operators with respect to ww-distances. The operators considered here contain a supremum over a certain time interval. Section 3 begins with an existence and uniqueness theorem proved using the method of ww-distances. Adding to the hypotheses that sustain the existence and uniqueness of the solution, the fact that ff is an increasing function, we obtain Gronwall-type and comparison theorems. In the last part of the paper we study the Ulam–Hyers stability using Picard operators techniques. We define a fixed point equation from the integral equation with supremum. If the defined operator is cc-weakly Picard we have Ulam–Hyers stability of the corresponding fixed point problem.

References

  • [1] Popov, E. Automatic Regulation and Control; Moscow , 1966. (In Russian)
  • [2] Bainov, D.D.; Hristova, S. Differential Equations with Maxima; Chapman & Hall/CRC Pure and Applied Mathematics; 2011.
  • [3] Otrocol, D. Hybrid differential equations with maxima via Picard operators theory. Stud. Univ. Babeş-Bolyai Math. 2016, 61, 421–428.
  • [4] Otrocol, D.; Rus, I.A. Functional-differential equations with “maxima” via weakly Picard operators theory. Bull. Math. Soc. Sci. Math. Roumanie. 2008, 51, 253–261.
  • [5] Wongyat, T.; Sintunavarat, W. The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fraction differential equations via ww-distances. Adv. Diff. Equ. 2017, 2017, 211.
  • [6] Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 1996, 44, 381–391.
  • [7] Aguirre Salazar, L.; Reich, S. A remark on weakly contractive mappings. J. Nonlinear Conv. Anal. 201516, 767–773.
  • [8] Dobriţoiu, M. An application of the ww-weak generalized contractions theorem. J. Fixed Point Theory Appl. 2019, 21 ,93.
  • [9] Suzuki, T.; Takahashi, W. Fixed points theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. J. Juliusz Schauder Cent. 1996, 8, 371–382.
  • [10] Takahashi, W.; Wong, N.C.; Yao, J.C. Fixed point theorems for general contractive mappings with ww-distances in metric spaces. J. Nonlinear Conv. Anal. 2013, 14, 637–648.
  • [11] Wongyat, T.; Sintunavarat, W. On new existence and uniqueness results concerning solutions to nonlinear Fredholm integral equations via w-distances and weak altering distance functions. J. Fixed Point Theory Appl. 2019, 21, 7.
  • [12] Rus, I.A. Generalized Contractions and Applications; Cluj University Press: 2001.
  • [13] Rus, I.A. Picard operators and applications. Sci. Math. Jpn. 2003, 58, 191–219.
  • [14] Rus, I.A. Fixed points, upper and lower fixed points: abstract Gronwall lemmas. Carpathian J. Math. 200420, 125–134.
  • [15] Rus, I.A. Remarks on Ulam stability of the operatorial equations. Fixed Point Theory. 2009, 10, 305–320.
  • [16] Ilea, V.A.; Otrocol, D. An application of the Picard operator technique to functional integral equations. J. Nonlinear Conv. Anal. 2017, 18, 405–413.
2020

Related Posts