Existence results for systems with coupled nonlocal conditions

Abstract

In this paper an existence theory is developed for first-order differential systems with coupled nonlocal conditions given by Stieltjes integrals. The approach is based on the fixed point theorems of Perov, Schauder and Schaefer and on a vector method for treating systems which uses matrices having spectral radius less than one. When the nonlocal conditions depend on functionals restricted to a proper subinterval, the nonlinear integral operator associated to the system splits into two parts, one of Fredholm type and another one of Volterra type. Correspondingly, the sufficient conditions for the existence results will differ in the two parts of the interval. Some examples are presented to illustrate the theory.

Authors

Octavia Bolojan-Nica
Departamentul de Matematică, Universitatea Babeş-Bolyai, Cluj 400084, Romania

Gennaro Infante
Dipartimento di Matematica ed Informatica, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy

Radu Precup
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Nonlinear differential system; Nonlocal condition; Fixed point; Vector-valued norm; Inverse-positive matrix

Paper coordinates

O. Bolojan-Nica, G. Infante, R. Precup, Existence results for systems with coupled nonlocal conditions, Nonlinear Anal. 94 (2014), 231-242, https://doi.org/10.1016/j.na.2013.08.019

PDF

??

About this paper

Journal

Nonlinear Analysis: Theory, Methods & Applications

Publisher Name

Elsevier Ltd

Print ISSN
Online ISSN

0362546X

google scholar link

[1] R. Precup, D. Trif, Multiple positive solutions of non-local initial value problems for first order differential systems, Nonlinear Anal., 75 (2012), pp. 5961-5970, ArticleDownload PDFView Record in ScopusGoogle Scholar

[2] S. Aizicovici, H. Lee, Nonlinear nonlocal Cauchy problems in Banach spaces, Appl. Math. Lett., 18 (2005), pp. 401-407, ArticleDownload PDFView Record in ScopusGoogle Scholar

[3] M. Benchohra, A. Boucherif, On first order multivalued initial and periodic value  problems, Dynam. Systems Appl., 9 (2000), pp. 559-568, View Record in ScopusGoogle Scholar

[4] M. Benchohra, E.P. Gatsori, L. Gorniewicz, S.K. Ntouyas, Nondensely defined evolution impulsive differential equations with nonlocal conditions, Fixed Point Theory, 4 (2003), pp. 185-204, View Record in ScopusGoogle Scholar

[5] A. Boucherif, Differential equations with nonlocal boundary conditions, Nonlinear Anal., 47 (2001), pp. 2419-2430, ArticleDownload PDFView Record in ScopusGoogle Scholar

[6] A. Boucherif, First-order differential inclusions with nonlocal initial conditions, Appl. Math. Lett., 15 (2002), pp. 409-414, ArticleDownload PDFGoogle Scholar

[7] A. Boucherif, Nonlocal Cauchy problems for first-order multivalued differential equations, Electron. J. Differential Equations, 2012 (47) (2012), pp. 1-9, Google Scholar

[8] A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4 (2003), pp. 205-212, View Record in ScopusGoogle Scholar

[9] A. Boucherif, R. Precup, Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 16 (2007), pp. 507-516, View Record in ScopusGoogle Scholar

[10] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), pp. 494-505, ArticleDownload PDFView Record in ScopusGoogle Scholar

[11] L. Byszewski, Abstract nonlinear nonlocal problems and their physical interpretation, H. Akca, V. Covachev, E. Litsyn (Eds.), Biomathematics, Bioinformatics and Applications of Functional Differential Difference Equations, Akdeniz Univ. Publ., Antalya, Turkey (1999), Google Scholar

[12] L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1990), pp. 11-19, Google Scholar

[13] G. Infante, F.M. Minhós, P. Pietramala, Non-negative solutions of systems of ODEs with coupled boundary conditions, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), pp. 4952-4960, ArticleDownload PDFView Record in ScopusGoogle Scholar

[14] G. Infante, P. Pietramala, Eigenvalues and non-negative solutions of a system with nonlocal BCs, Nonlinear Stud., 16 (2009), pp. 187-196, View Record in ScopusGoogle Scholar

[15] G. Infante, P. Pietramala, Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations, Nonlinear Anal., 71 (2009), pp. 1301-1310, ArticleDownload PDFView Record in ScopusGoogle Scholar

[16] G. Infante, J.R.L. Webb, Loss of positivity in a nonlinear scalar heat equation, NoDEA Nonlinear Differential Equations Appl., 13 (2006), pp. 249-261, CrossRefView Record in ScopusGoogle Scholar

[17] D. Jackson, Existence and uniqueness of solutions to semilinear nonlocal parabolic equations, J. Math. Anal. Appl., 172 (1993), pp. 256-265, ArticleDownload PDFView Record in ScopusGoogle Scholar

[18] G.L. Karakostas, P.Ch. Tsamatos, Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal., 19 (2002), pp. 109-121, View Record in ScopusGoogle Scholar

[19] R. Ma, A survey on nonlocal boundary value problems, Appl. Math. E-Notes, 7 (2001), pp. 257-279, View Record in ScopusGoogle Scholar

[20] O. Nica, Initial-value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differential Equations, 2012 (74) (2012), pp. 1-15, View PDF, CrossRefGoogle Scholar

[21] O. Nica, Existence results for second order three-point boundary value problems, Differ. Equ. Appl., 4 (2012), pp. 547-570, CrossRefView Record in ScopusGoogle Scholar

[22] O. Nica, Nonlocal initial value problems for first order differential systems, Fixed Point Theory, 13 (2012), pp. 603-612, View Record in ScopusGoogle Scholar

[23] O. Nica, R. Precup, On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babeş-Bolyai Math., 56 (3) (2011), pp. 125-137, Google Scholar

[24] S.K. Ntouyas, Nonlocal initial and boundary value problems: a survey, Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, Elsevier B.V., Amsterdam (2005), pp. 461-557, Google Scholar

[25] S.K. Ntouyas, P.Ch. Tsamatos, Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 210 (1997), pp. 679-687, ArticleDownload PDFView Record in ScopusGoogle Scholar

[26] J.R.L. Webb, A unified approach to nonlocal boundary value problems, Dynamic Systems and Applications Vol. 5. Proceedings of the 5th International Conference, Morehouse College, Atlanta, GA, USA, May 30–June 2, 2007, pp. 510–515, Google Scholar

[27] J.R.L. Webb, G. Infante, Positive solutions of nonlocal initial boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl., 15 (2008), pp. 45-67, CrossRefView Record in ScopusGoogle Scholar

[28] J.R.L. Webb, G. Infante, Non-local boundary value problems of arbitrary order, J. Lond. Math. Soc., 79 (2009), pp. 238-258, CrossRefView Record in ScopusGoogle Scholar

[29] J.R.L. Webb, G. Infante, Semi-positone nonlocal boundary value problems of arbitrary order, Commun. Pure Appl. Anal., 2 (2010), pp. 563-581, View Record in ScopusGoogle Scholar

[30] J.R.L. Webb, K.Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27 (2006), pp. 91-115, Google Scholar

[31] X. Xue, Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces, Electron. J. Differential Equations, 2005 (64) (2005), pp. 1-7, Google Scholar

[32] X. Xue, Existence of semilinear differential equations with nonlocal initial conditions, Acta Math. Sin. (Engl. Ser.), 23 (2007), pp. 983-988, Google Scholar

[33] Z. Yang, Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Anal., 62 (2005), pp. 1251-1265, Google Scholar

[34] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of m-point nonlinear boundary value problems, Math. Model. Anal., 13 (2008), pp. 357-370, Google Scholar

[35] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Modelling, 49 (2009), pp. 703-708, Google Scholar

[36] C.S. Goodrich, Nonlocal systems of BVPs with asymptotically superlinear boundary conditions, Comment. Math. Univ. Carolin., 53 (2012), pp. 79-97, Google Scholar

[37] C.S. Goodrich, Nonlocal systems of BVPs with asymptotically sublinear boundary conditions, Appl. Anal. Discrete Math., 6 (2012), pp. 174-193, Google Scholar

[38] C. Yuan, D. Jiang, D. O’Regan, R.P. Agarwal, Multiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions, Electron. J. Qual. Theory Differ. Equ. (13) (2012), pp. 1-13, Google Scholar

[39] R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht (2002), Google Scholar

[40] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia (1994) Google Scholar

[41] R.S. Varga, Matrix Iterative Analysis, (second ed.), Springer, Berlin (2000), Google Scholar

[42] M. Frigon, J.W. Lee, Existence principle for Carathéodory differential equations in Banach spaces, Topol. Methods Nonlinear Anal., 1 (1993), pp. 95-111,  Google Scholar

2014

Related Posts