Abstract
We discuss a simple case of the planar inverse problem of Dynamics, considering a one-dimension potential \(V=v(x)\). For the families which satisfy a differential condition, the specific potentials can be obtained by quadratures. The isoenergetic families of orbits which can be described under the action of a potential \(V=v(x)\) are displayed too.
Authors
Mira-Cristiana Anisiu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
George Bozis
Department of Physics University of Thessaloniki GR-54006, Greece
Keywords
Inverse problem; families of orbits; conservative fields.
Paper coordinates
M.C. Anisiu, G. Bozis, Families of planar orbits in one-variable conservative fields, Didactica Mathematica 26 (2008), pp. 9-17
About this paper
Journal
Publisher Name
DOI
Print ISSN
Online ISSN
google scholar link
[1] Anisiu, M.-C., The Equations of the Inverse Problem of Dynamics, House of the Book of Science, Cluj-Napoca 2003 (Romanian)
[2] Anisiu, M.-C., An alternative point of view on the equations of the inverse problem of Dynamics, Inverse Problems 20 (2004), 1865-1872
[3] Bertrand, J., Sur la possibilit´e de d´eduire d’une seule des lois de Kepler le principe de l’attraction, Compt. Rend. 84 (1877), 671-673
[4] Borghero, F., Bozis, G., Isoenergetic families of planar orbits generated by homogeneous potentials, Meccanica 37 (2002), 545-554
[5] Bozis, G., Inverse problem with two-parametric families of planar orbits, Celest. Mech. 31 (1983), 129-143
[6] Bozis, G., Szebehely inverse problem for finite symmetrical material concentrations, Astron. Astrophys. 134 (1984), 360-364
[7] Bozis, G., Ichtiaroglou, S., Boundary curves for families of planar orbits, Celest. Mech. Dyn. Astron. 58 (1994), 371-385
[8] Bozis, G., The inverse problem of Dynamics: basic facts, Inverse Problems 11 (1995),
687-708
[9] Bozis, G., Anisiu, M.-C., Blaga, C., A solvable version of the direct problem of Dynamics, Rom. Astronom. J. 10 (2000), 59-70
[10] Dainelli, U., Sul movimento per una linea qualunque, Giorn. Mat. 18 (1880), 271-300
[11] Jukovsky, N. E., Determination of force function by given family of trajectories, Izv. Imper. Obsch. Lubit. Estestv. 65 (1890), No.2, 43 (Russian)
[12] Newton, I., Philosophiae Naturalis Principia Mathematica, London 1687
[13] Szebehely, V., On the determination of the potential by satellite observations, in G. Proverbio (ed.), Proc. of the Internat. Meeting on Earth’s Rotation by Satellite Observation, The Univ. of Cagliari, Bologna, Italy, 1974, 31-35
[14] Whittaker, E. T., Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press 1904.