On some maximum problems of Stieltjes

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur certaines problèmes de maximum de Stieltjes, Bull. Math. de la Soc. Roum. des Sci., 38 (1936) no. 1, pp. 73-96 (in French).

PDF

About this paper

Journal

Bulletin mathématique de la Société Roumaine des Sciences

Publisher Name

Societatea de Științe Matematice din România

Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON SOME PROBLEMS OF MAXIMUM STIELTJES

BY
TIBERIU POPOVICIU
(Cluj)

On some theorems of Stieltjes and MI Schur

  1. 1.

    Let us designate byV(α1,α2,,αn)V\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\right)the Van Der Monde determinant of numbers (or points)α1,α2,,αn\alpha_{1},\alpha_{2},\ldots,\alpha_{n}The square of this determinant is the discriminant of the numbersαi\alpha_{i}, or the discriminant of the degree polynomialnnhaving as zeros the pointsαL\alpha_{l}.

In a note Stieljes stated the following theorem 2 ):
Theorem 1. Whenα>0,β>0\alpha>0,\beta>0and that thex1\mathrm{x}_{1}remain within the interval (0,1), the expression

D=D(x1,x2,,xn)=[i=1nxiα(1xi)β]V2(x1,x2,,xn)\mathrm{D}=\mathrm{D}\left(x_{1},x_{2},\ldots,x_{n}\right)=\left[\prod_{i=1}^{n}x_{i}^{\alpha}\left(1-x_{i}\right)^{\beta}\right]\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when thex1\mathrm{x}_{1}are the zeros of the Jacobi polynomialPn(x)=F(n,α+β+n1,α,x)=x1α(1x)1βα(α+1)(α+n1)dndxnxα+n1(1x)β+n1\mathrm{P}_{n}(x)=\mathrm{F}(-n,\alpha+\beta+n-1,\alpha,x)=\frac{x^{1-\alpha}(1-x)^{1-\beta}}{\alpha(\alpha+1)\ldots(\alpha+n-1)}\frac{d^{n}}{dx^{n}}x^{\alpha+n-1}(1-x)^{\beta+n-1}

The value of this maximum is

Mn(α,β)=i=1nii(α+i1)α+i1(β+i1)β+i1(α+β+n+i2)α+β+n+i2\mathrm{M}_{n}(\alpha,\beta)=\prod_{i=1}^{n}\frac{i^{i}(\alpha+i-1)^{\alpha+i-1}(\beta+i-1)^{\beta+i-1}}{(\alpha+\beta+n+i-2)^{\alpha+\beta+n+i-2}}

Stieltjes gave the demonstration in another work 3 ), to which we will return later. The calculation ofMn(x,β)\mathrm{M}_{n}(x,\beta)is not indicated by Stieltjes but it can be done by following the method, developed on certain particular cases, of MI Schur 4 ).

  1. 1.

    I undertook this work following discussions I had with Prof. Th. Angheluta at the Mathematical Institute of the University of Cluj.
    2 ) Th. J. Stieltjes „On Jacobi Polynomials", CR Acad. Sc., Paris, t. 100 (1885), p. 620.
    3 ) Th. J. Stieltjes "On Certain Polynomials Which Verify a Linear Differential Equation of the Second Order and on the Theory of LamÉ Functions". Acta Math., t. 6 (1885), p. 321.
    4) I. Schur „Uber die Verteilung der Warzeln gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten". Maih. Zeitschrift, t. 1 (1918), p. 377.

  1. 2.

    Theorem I can be easily proven. Let us first note thatD(x1,x2,,xn)\mathrm{D}\left(x_{1},x_{2},\ldots,x_{n}\right)has a maximum for0xi10\leq x_{i}\leq 1which is necessarily achieved and in particular for valuesxix_{i}all distinct and not coinciding with 0 and 1.

It can easily be seen that this maximum can only be achieved for a single point systemxi\mathrm{x}_{\mathrm{i}}. Let us suppose, in fact, that
max.D(x1,x2,xn)=D(y1,y2,,yn)=D(y1,y2,,yn)\operatorname{max.\penalty 10000\ }\mathrm{D}\left(x_{1},x_{2}\ldots,x_{n}\right)=\mathrm{D}\left(y_{1},y_{2},\ldots,y_{n}\right)=\mathrm{D}\left(y_{1}^{\prime},y_{2}^{\prime},\ldots,y_{n}^{\prime}\right)
(0.1)(0,1)and (1)

0<y1<y2<<yn<1;0<y1<y2<<yn<1|y1y1|+|y2y2|++|ynyn|>0\begin{gathered}0<y_{1}<y_{2}<\ldots<y_{n}<1;0<y_{1}^{\prime}<y_{2}^{\prime}<\ldots<y_{n}^{\prime}<1\\ \left|y_{1}-y_{1}^{\prime}\right|+\left|y_{2}-y_{2}^{\prime}\right|+\ldots+\left|y_{n}-y_{n}^{\prime}\right|>0\end{gathered}

If we pose

yi"=yi+yi2,i=1.2,,ny_{i}^{\prime\prime}=\frac{y_{i}+y_{i}^{\prime}}{2},\quad i=1,2,\ldots,n

We have

(yi")2yiyi,(1yi")2(1yi)(1yi),(yi"yI")2|(yiyI)(yiyI)|\left(y_{i}^{\prime\prime}\right)^{2}\geqslant y_{i}y_{i}^{\prime},\left(1-y_{i}^{\prime\prime}\right)^{2}\geqslant\left(1-y_{i}\right)\left(1-y_{i}^{\prime}\right),\left(y_{i}^{\prime\prime}-y_{j}^{\prime\prime}\right)^{2}\geqslant\left|\left(y_{i}-y_{j}\right)\left(y_{i}^{\prime}-y_{j}^{\prime}\right)\right|

equality, in one of these formulas, can only take place ifyi=yiy_{i}=y_{i}^{\prime}, resp.yiyI=yiyIy_{i}-y_{j}=y_{i}^{\prime}-y_{j}^{\prime}.

It follows that
(2)D(y1",y2",,yn")VD(y1,y2,,yn)D(y1,y2,,yn)¯\quad\mathrm{D}\left(y_{1}^{\prime\prime},y_{2}^{\prime\prime},\ldots,y_{n}^{\prime\prime}\right)\geq V\overline{\mathrm{D}\left(y_{1},y_{2},\ldots,y_{n}\right)\mathrm{D}\left(y_{1}^{\prime},y_{2}^{\prime},\ldots,y_{n}^{\prime}\right)}
equality being possible only if the sequences (1) coincide. This is in contradiction with our hypotheses and the reported uniqueness results.

We deduce, in particular, that ifα=β\alpha=\betathe points for which the maximum is reached are symmetrically distributed with respect to the middle of the interval(0.1)(0,1)This results from the fact that ifα=β\alpha=\beta, we have
D(1x1,1x2,,1xn)=D(x1,x2,,xn)(0xi1)\mathrm{D}\left(1-x_{1},1-x_{2},\ldots,1-x_{n}\right)=\mathrm{D}\left(x_{1},x_{2},\ldots,x_{n}\right)\quad\left(0\leq x_{i}\leq 1\right)
3. Stieltjes demonstrated that the determination of the maximum is done using differential calculus. Let us set

P(x)=(xx1)(xx2)(xxn)\mathrm{P}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{n}\right)

The maximum is given by the system

Dxi=0,i=1.2,,n\frac{\partial\mathrm{D}}{\partial x_{i}}=0,i=1,2,\ldots,n

which admits, as will result later, a single solution under the hypothesis that thexix_{i}are distinct from each other. This uniqueness can also be demonstrated directly using inequality (2).

A simple calculation gives us

1DDxi=αxiβ1xi+2I=1n1xixI=αxiβ1xi+P"(xi)P(xi)\frac{1}{\mathrm{D}}\frac{\partial\mathrm{D}}{\partial x_{i}}=\frac{\alpha}{x_{i}}-\frac{\beta}{1-x_{i}}+2\sum_{j=1}^{n}\frac{1}{x_{i}-x_{j}}=\frac{\alpha}{x_{i}}-\frac{\beta}{1-x_{i}}+\frac{\mathrm{P}^{\prime\prime}\left(x_{i}\right)}{\mathrm{P}^{\prime}\left(x_{i}\right)}

Σ\Sigma^{\prime}designating a summation where the valueI=ij=iis excluded.

The maximum will therefore be given by the system

xL(1xi)P"(xi)+[α(α+β)xi]P(xI)=0i=1.2,,n.\begin{gathered}x_{l}\left(1-x_{i}\right)\mathrm{P}^{\prime\prime}\left(x_{i}\right)+\left[\alpha-(\alpha+\beta)x_{i}\right]\mathrm{P}^{\prime}\left(x_{j}\right)=0\\ i=1,2,\ldots,n.\end{gathered}

We immediately see that the polynomialP(x)\mathrm{P}(x), which is of degreenn, must verify the differential equation

x(1x)y"+[α(α+β)x]y+λy=0x(1-x)y^{\prime\prime}+[\alpha-(\alpha+\beta)x]y^{\prime}+\lambda y=0

λ\lambdabeing a constant. We findλ=n(n+α+β1)\lambda=n(n+\alpha+\beta-1)and we see thatP(x)\mathrm{P}(x)is expressed using the Gauss hypergeometric series,F(α,β,γ,x)\mathrm{F}(\alpha,\beta,\gamma,x). We actually find that this polynomial, up to a constant factor, is equal toF(n,α+β+n1,α,x)\mathrm{F}(-n,\alpha+\beta+n-1,\alpha,x)so it is a Jacobi polynomial of degreenn.
4. To calculate the value of the maximumMn(x,β)M_{n}(x,\beta)We will first make some slightly more general considerations.

Either

Q0(x),Q1(x),,Qn(x),\mathrm{Q}_{0}(x),\mathrm{Q}_{1}(x),\ldots,\mathrm{Q}_{n}(x),\ldots

a sequence of polynomials defined by the recurrence relations
(3)Q0=1,Q1=b1x+c1,Qn=(bnx+cn)Qn1+hasnQn2\mathrm{Q}_{0}=1,\mathrm{Q}_{1}=b_{1}x+c_{1},\mathrm{Q}_{n}=\left(b_{n}x+c_{n}\right)\mathrm{Q}_{n-1}+a_{n}\mathrm{Q}_{n-2}

n=2.3,n=2,3,\ldots

where we assume that thehasia_{i}and thebtb_{t}are different from zero.
Let us denote byξ1(n),ξ2(n),,ξn(n)\xi_{1}^{(n)},\xi_{2}^{(n)},\ldots,\xi_{n}^{(n)}the zeros of the polynomialQn(x)Q_{n}(x)and by

Δn=L=1nQn\Delta_{n}=\prod_{l=1}^{n}\mathrm{Q}_{n} (i)

the result of the polynomialsQn1,QnQ_{n-1},Q_{n}(this resultant being defined in this way).

From (3) we deduce that the coefficient ofxnx^{n}InQn(x)\mathrm{Q}_{n}(x)is equal tob1b2bnb_{1}b_{2}\ldots b_{n}. Then doing successivelyx=ξ1(n1),ξ2(n1),,ξn1(n1)x=\xi_{1}^{(n-1)},\xi_{2}^{(n-1)},\ldots,\xi_{n-1}^{(n-1)}, we deduce from this

i=1n1Qn(ξi(n1))=hasnn1i=1n1Qn2(ξi(n1))hasnn1Δn1\prod_{i=1}^{n-1}\mathrm{Q}_{n}\left(\xi_{i}^{(n-1)}\right)=a_{n}^{n-1}\prod_{i=1}^{n-1}\mathrm{Q}_{n-2}\left(\xi_{i}^{(n-1)}\right)\doteq a_{n}^{n-1}\Delta_{n-1}

But

L=1n1Qn(ξL(n1))=bnn1b1b2bn1Δn\prod_{l=1}^{n-1}\mathrm{Q}_{n}\left(\xi_{l}^{(n-1)}\right)=\frac{b_{n}^{n-1}}{b_{1}b_{2}\ldots b_{n-1}}\Delta_{n}

SO

Δn=b1b2bn1bnn1hasnn1Δn1\Delta_{n}=\frac{b_{1}b_{2}\ldots b_{n-1}}{b_{n}^{n-1}}a_{n}^{n-1}\Delta_{n-1}

If we now notice thatΔ1=1\Delta_{1}=1, we obtain

Δn=has2b2(has3b3)2(hasn1bn1)n2(hasnbn)n1b1n1b2n2bn22bn1\Delta_{n}=\frac{a_{2}}{b_{2}}\left(\frac{a_{3}}{b_{3}}\right)^{2}\cdots\left(\frac{a_{n-1}}{b_{n-1}}\right)^{n-2}\left(\frac{a_{n}}{b_{n}}\right)^{n-1}b_{1}^{n-1}b_{2}^{n-2}\ldots b_{n-2}^{2}b_{n-1} (4)

In particular, polynomialsPn(x)=F(n,α+β+n1,α,x)\mathrm{P}_{n}(x)=\mathrm{F}(-n,\alpha+\beta+n-1,\alpha,x)are linked by relations of the form (3). In this case
(5)bn=(α+β+2n2)(α+β+2n3)(α+n1)(α+β+n2),(b1=α+βα)\quad b_{n}=-\frac{(\alpha+\beta+2n-2)(\alpha+\beta+2n-3)}{(\alpha+n-1)(\alpha+\beta+n-2)},\left(b_{1}=-\frac{\alpha+\beta}{\alpha}\right)and we find

hasnbn=(n1)(β+n2)(α+β+2n3)(x+β+2n4)\frac{a_{n}}{b_{n}}=\frac{(n-1)(\beta+n-2)}{(\alpha+\beta+2n-3)(x+\beta+2n-4)}

(6)Δn=(1)n(n1)2i=1n1ii(β+i1)i(α+i1)ni(α+β+n+i2)i\quad\Delta_{n}=(-1)^{\frac{n(n-1)}{2}\prod_{i=1}^{n-1}\frac{i^{i}(\beta+i-1)^{i}}{(\alpha+i-1)^{n-i}(\alpha+\beta+n+i-2)^{i}}\text{. }}
5. Now let's move on to the calculation ofMn(α,β)M_{n}(\alpha,\beta). Ifξ1,ξ2,,ξn\xi_{1},\xi_{2},\ldots,\xi_{n}are the zeros of the polynomialPn(x)\mathrm{P}_{n}(x), We have

Mn(α,β)=[i=1nξiα(1ξi)β]V2(ξ1,ξ2,,ξn).M_{n}(\alpha,\beta)=\left[\prod_{i=1}^{n}\xi_{i}^{\alpha}\left(1-\xi_{i}\right)^{\beta}\right]V^{2}\left(\xi_{1},\xi_{2},\ldots,\xi_{n}\right).

Relationships

Pn(0)=1,Pn(1)=(1)ni=1nβ+i1α+i1Pn(x)=(1)n[i=1nα+β+n+i2α+i1](xξ1)(xξ2)(xξn)\begin{gathered}P_{n}(0)=1,\quad P_{n}(1)=(-1)^{n}\prod_{i=1}^{n}\frac{\beta+i-1}{\alpha+i-1}\\ P_{n}(x)=(-1)^{n}\left[\prod_{i=1}^{n}\frac{\alpha+\beta+n+i-2}{\alpha+i-1}\right]\left(x-\xi_{1}\right)\left(x-\xi_{2}\right)\ldots\left(x-\xi_{n}\right)\end{gathered}

give us

{ξ1ξ2ξn=i=1nα+i1α+β+n+i2(1ξ1)(1ξ2)(1ξn)=i=1nβ+i1α+β+n+i2\left\{\begin{array}[]{c}\xi_{1}\xi_{2}\ldots\xi_{n}=\prod_{i=1}^{n}\frac{\alpha+i-1}{\alpha+\beta+n+i-2}\\ \left(1-\xi_{1}\right)\left(1-\xi_{2}\right)\ldots\left(1-\xi_{n}\right)=\prod_{i=1}^{n}\frac{\beta+i-1}{\alpha+\beta+n+i-2}\end{array}\right.

We now have

V2(ξ1,ξ2,,ξn)=(1)n(n1)2i=1(b1b2bn)nPn(ξi)\mathrm{V}^{2}\left(\xi_{1},\xi_{2},\ldots,\xi_{n}\right)=(-1)^{\frac{n(n-1)}{2}}\prod_{\frac{i=1}{\left(b_{1}b_{2}\ldots b_{n}\right)^{n}}\mathrm{P}_{n}^{\prime}\left(\xi_{i}\right)} (8)

But the polymonesPn,Pn1\mathrm{P}_{n},\mathrm{P}_{n-1}and the derivative of the first still verify the following relation

x(1x)Pn(x)=(dnx+en)Pn(x)n(β+n1)α+β+2n2Pn1(x)x(1-x)\mathrm{P}_{n}^{\prime}(x)=\left(d_{n}x+e_{n}\right)\mathrm{P}_{n}(x)-\frac{n(\beta+n-1)}{\alpha+\beta+2n-2}\mathrm{P}_{n-1}(x)

dn,end_{n},e_{n}being two constants of no importance to us.
If we successively dox=ξ1,ξ2,,ξnx=\xi_{1},\xi_{2},\ldots,\xi_{n}we get

L=1nPn(ξL)=(1)nnn(β+n1)n(α+β+2n2)nΔnL=1nξL(1ξL)\prod_{l=1}^{n}\mathrm{P}_{n}^{\prime}\left(\xi_{l}\right)=(-1)^{n}\frac{n^{n}(\beta+n-1)^{n}}{(\alpha+\beta+2n-2)^{n}}\frac{\Delta_{n}}{\prod_{l=1}^{n}\xi_{l}\left(1-\xi_{l}\right)} (9)

Finally, taking into account (5), (6), (7), (8), (9) we obtain

Mn(α,β)=i=1nii(α+i1)α+i1(β+i1)β+i1(α+9+n+i2)α+β+n+i2\mathrm{M}_{n}(\alpha,\beta)=\prod_{i=1}^{n}\frac{i^{i}(\alpha+i-1)^{\alpha+i-1}(\beta+i-1)^{\beta+i-1}}{(\alpha+9+n+i-2)^{\alpha+\beta+n+i-2}}

which is precisely the requested formula.
6. A simple linear transformation allows us to state the following theorem:

Theorem II. Whenα>0,β>0\alpha>0,\beta>0and that thexi\mathrm{x}_{\mathrm{i}}remain within the interval(has,b),has<b(\mathrm{a},\mathrm{b}),\mathrm{a}<\mathrm{b}, the expression

[i=1n(xihas)α(bxi)β]V2(x1,x2,,xn)\left[\prod_{i=1}^{n}\left(x_{i}-a\right)^{\alpha}\left(b-x_{i}\right)^{\beta}\right]\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when thexi\mathrm{x}_{\mathrm{i}}are the zeros of the polynomial

(xhas)1α(bx)1βdndxn(xhas)α+n1(bx)β+n1(x-a)^{1-\alpha}(b-x)^{1-\beta}\frac{d^{n}}{dx^{n}}(x-a)^{\alpha+n-1}(b-x)^{\beta+n-1}

The value of this maximum is

(bhas)n(α+f+n1)Mn(α,β)(b-a)^{n(\alpha+f+n-1)}\mathrm{M}_{n}(\alpha,\beta)

Especially ifhas=1,b=1,α=β=1a=-1,b=1,\alpha=\beta=1we obtain another theorem of Stieltjes 5 ):

Theorem III. When the𝐱𝐢\mathbf{x}_{\mathbf{i}}remain in the meantime(1.1)(-1,1), the expression

(1x12)(1x22)(1xn2)V2(x1,x2,,xn)\left(1-x_{1}^{2}\right)\left(1-x_{2}^{2}\right)\ldots\left(1-x_{n}^{2}\right)V^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when thexi\mathrm{x}_{\mathrm{i}}are the zeros of the polynomialXn\mathrm{X}_{\mathrm{n}}of legendre of degree n. The value of this maximum is

2436n2n3355(2n1)2n1\frac{2^{4}3^{6}\ldots n^{2n}}{3^{3}5^{5}\ldots(2n-1)^{2n-1}}
  1. 7.

    Stieltjes further stated the following theorem 6 ):

Theorem IV. When thexi\mathrm{x}_{\mathrm{i}}are in the interval(1.1)(-1,1)the expression

V2(x1,x2,,xn)\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when thexi\mathrm{x}_{\mathrm{i}}are the zeros of the polynomialVn\mathrm{V}_{n}which comes from development

12xz+z2=n=0Vn(x)zn\sqrt{1-2xz+z^{2}}=\sum_{n=0}^{\infty}V_{n}(x)z^{n}

The value of this maximum, which can be designated by2n(n1)Mn(0.0)2^{\mathrm{n}(\mathrm{n}-1)}\mathrm{M}_{\mathrm{n}}(0,0), East

2233(n2)n22233nn3355(2n3)2n3\frac{2^{2}3^{3}\ldots(n-2)^{n-2}2^{2}3^{3}\ldots n^{n}}{3^{3}5^{5}\ldots(2n-3)^{2n-3}}
0 0 footnotetext: 5) Th. J. Stieltjes „On some theorems of algebra", CR Acad. Sc., Paris, t. 100 (1885) p. 439.
6 ) Loc cit. 5 ).

This theorem corresponds to the case whereα=β=0\alpha=\beta=0. It was demonstrated by MI Schur 7 ). The previous results are not applicable without precautions, but we can easily see that this property results from Theorem II. We see, in fact, that this maximum can only be reached if thexix_{i}are all distinct and if one coincides with 0 and another with 1. We therefore deduce Theorem IV from Theorem II byyydoinghas=1a=-1,b=1,α=β=2b=1,\alpha=\beta=2and takingn2n-2insteadnn.

Note that

12n1(n1)!dn2dxn2(x21)n1=n(x21)2n1(n2)!dndxn(x21)n1==1xXn1(x)dx=Vn(x)\begin{gathered}\frac{1}{2^{n-1}(n-1)!}\frac{d^{n-2}}{dx^{n-2}}\left(x^{2}-1\right)^{n-1}=-\frac{n\left(x^{2}-1\right)}{2^{n-1}(n-2)!}\frac{d^{n}}{dx^{n}}\left(x^{2}-1\right)^{n-1}=\\ =-\int_{-1}^{x}X_{n-1}(x)dx=V_{n}(x)\end{gathered}

We can also, in the same way, deal with cases whereα=0\alpha=0Orβ=0\beta=0only. For example the caseα=0,β0\alpha=0,\beta\neq 0results from Theorem II inyydoingx=2x=2and takingn1n-1instead ofnn. We define the numbers in this wayMn(0,p),Mn(α,0)\mathrm{M}_{n}(0,\mathrm{p}),\mathrm{M}_{n}(\alpha,0).

We actually find 8 )

Mn(α,0)=Mn(0,α)=Mn1(α,2)=i=1n1ii(i+1)i+1(α+i1)α+i1(α+n+i1)α+n+i1M_{n}(\alpha,0)=M_{n}(0,\alpha)=M_{n-1}(\alpha,2)=\prod_{i=1}^{n-1}\frac{i^{i}(i+1)^{i+1}(\alpha+i-1)^{\alpha+i-1}}{(\alpha+n+i-1)^{\alpha+n+i-1}}
  1. 8.

    On numbersMn(α,β)M_{n}(\alpha,\beta)We can make a few remarks. Let us first delimit the numberMn(α,β)M_{n}(\alpha,\beta)with the help ofMn(0.0)M_{n}(0,0).

We have
(10)Mn(x,β)<max(0.1)V2(x1,x2,,xn)=Mn(0.0)(α+β>0)(0.1)M_{n}(x,\beta)<\max_{(0,1)}V^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)=M_{n}(0,0)\quad(\alpha+\beta>0)(0,1)
Note that

V2(η1,η2,,ηn)=V2(η0,η1,,ηn,ηn+1)(η0ηn+1)2i=1n(η0ηL)2(ηn+1ηL)2\mathrm{V}^{2}\left(\eta_{1},\eta_{2},\ldots,\eta_{n}\right)=\frac{\mathrm{V}^{2}\left(\eta_{0},\eta_{1},\ldots,\eta_{n},\eta_{n+1}\right)}{\left(\eta_{0}-\eta_{n+1}\right)^{2}\prod_{i=1}^{n}\left(\eta_{0}-\eta_{l}\right)^{2}\left(\eta_{n+1}-\eta_{l}\right)^{2}}

Ifη0=1,η1,,ηn,ηn+1=1\eta_{0}=-1,\eta_{1},\ldots,\eta_{n},\eta_{n+1}=1are the zeros of the polynomialVn+2(x)V_{n+2}(x), We have

2n(α+β+n1)Mn(α,β)[i=1n(1+ηi)α(1ηi)β]V2(η1,η2,,ηn)==2(n+2)(n+1)2Mn+2(0.0)[i=1n(1+ηi)α2(1ηi)β2]\begin{gathered}2^{n(\alpha+\beta+n-1)}M_{n}(\alpha,\beta)\geqslant\left[\prod_{i=1}^{n}\left(1+\eta_{i}\right)^{\alpha}\left(1-\eta_{i}\right)^{\beta}\right]V^{2}\left(\eta_{1},\eta_{2},\ldots,\eta_{n}\right)=\\ =2^{(n+2)}(n+1)-2M_{n+2}(0,0)\left[\prod_{i=1}^{n}\left(1+\eta_{i}\right)^{\alpha-2}\left(1-\eta_{i}\right)^{\beta-2}\right]\end{gathered}

7 ) Loc cit. 4 ).

Mn(α,0)=limβ0Mn(α,β);Mn(0.0)=limα0Mn(α,β)β0\displaystyle\qquad\begin{aligned} \mathrm{M}_{n}(\alpha,0)=\lim_{\beta\rightarrow 0}\mathrm{M}_{n}(\alpha,\beta)&;\mathrm{M}_{n}(0,0)=\lim_{\alpha\rightarrow 0}\mathrm{M}_{n}(\alpha,\beta)\\ &\beta\rightarrow 0\end{aligned}
taking into account αα1 when α0.\displaystyle\text{ compte tenant de }\alpha^{\alpha}\rightarrow 1\text{ lorsque }\alpha\rightarrow 0.

We have

Vn+1(x)=(2n+1)!2nn!(n+2)!xn+2+\mathrm{V}_{n+1}(x)=-\frac{(2n+1)!}{2^{n}n!(n+2)!}x^{n+2}+\cdots

SO

i=1n(1ηi)=2nn!(n+2)!(2n+1)!lim\displaystyle\prod_{i=1}^{n}\left(1-\eta_{i}\right)=-\frac{2^{n}n!(n+2)!}{(2n+1)!}\lim Vn+2(x)x21=2n1n!(n+2)!(2n+1)!Vn+2(1)\displaystyle\frac{\mathrm{V}_{n+2}(x)}{x^{2}-1}=-\frac{2^{n-1}n!(n+2)!}{(2n+1)!}\mathrm{V}_{n+2}^{\prime}(1)
x1\displaystyle x\rightarrow 1
i=1n(1+ηi)=(1)n+12nn!(n+2)!(2n+1)!\displaystyle\prod_{i=1}^{n}\left(1+\eta_{i}\right)=(-1)^{n+1}\frac{2^{n}n!(n+2)!}{(2n+1)!} limVn+2(x)x21\displaystyle\lim\cdot\frac{\mathrm{V}_{n+2}(x)}{x^{2}-1}
=1\displaystyle=-1
=(1)n+22n+1n!(n+2)!(2n+1)!Vn+2(1)\displaystyle=(-1)^{n+2}\frac{2^{n+1}n!(n+2)!}{(2n+1)!}\mathrm{V}_{n+2}^{\prime}(-1)

But

Vn+2(1)=1,Vn+2(1)=(1)n+2\mathrm{V}_{n+2}^{\prime}(1)=-1,\mathrm{\penalty 10000\ V}_{n+2}^{\prime}(-1)=(-1)^{n+2}

SO

i=1n(1+ηi)=i=1n(1ηi)=2n1n!(n+2)!(2n+1)!\prod_{i=1}^{n}\left(1+\eta_{i}\right)=\prod_{i=1}^{n}\left(1-\eta_{i}\right)=\frac{2^{n-1}n!(n+2)!}{(2n+1)!}

Taking into account the formula
2(n+2)(n+1)Mn+2(0.0)=2n(n1)(n1)n1nn(n+1)n+1(n+2)n+2(2n1)2n1(2n+1)2n+1Mn(0.0)2^{(n+2)(n+1)}\mathrm{M}_{n+2}(0,0)=\frac{2^{n(n-1)}(n-1)^{n-1}n^{n}(n+1)^{n+1}(n+2)^{n+2}}{(2n-1)^{2n-1}(2n+1)^{2n+1}}\mathrm{M}_{n}(0,0)we deduce from this

Mn(α,β)\displaystyle\mathrm{M}_{n}(\alpha,\beta) =(n1)n1nn(n+1)n+1(n+2)n+22α+β+2(2n+1)(2n1)2n1(2n+1)2n+1\displaystyle=\frac{(n-1)^{n-1}n^{n}(n+1)^{n+1}(n+2)^{n+2}}{2^{\alpha+\beta+2(2n+1)}(2n-1)^{2n-1}(2n+1)^{2n+1}} (11)
[n!(n+2)!(2n+1)!]α+β4Mn(0.0)\displaystyle\because\left[\frac{n!(n+2)!}{(2n+1)!}\right]^{\alpha+\beta-4}\mathrm{M}_{n}(0,0)

and this formula is obviously valid forα0,β0\alpha\geqslant 0,\beta\geqslant 0.
Taking into account Stirling's formula, we see that the rootn(n1)eme n(n-1)^{\text{éme }}of the coefficient ofMn(0.0)\mathrm{M}_{n}(0,0)in (11) tends to 1 fornn\longrightarrow\infty. On the other hand, MM Fekete 9 ) has already noticed that

Mn(0.0)n(n1)14n\begin{gathered}\sqrt[n(n-1)]{\mathrm{M}_{n}(0,0)}\longrightarrow\frac{1}{4}\\ n\longrightarrow\infty\end{gathered}

this number being the transfinite diameter of the segment010-1. Formulas (10), (11) therefore show us that:

Theorem V.α,β\alpha,\betabeing two non-negative numbers, the expression

Mn(α,β)n(n1)\sqrt[n(n-1)]{\mathrm{M}_{n}(\alpha,\beta)}

9 ) M. Fekete “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten” Math. Zeitschrift,t. 17 (1923), p. 228.
tends, forn\mathrm{n}\longrightarrow\infty, towards the transfinite diameter14\frac{1}{4}of the segment01100-1^{10}).

It is easily established thatMn(α,β)M_{n}(\alpha,\beta)is a decreasing function ofα\alphaand ofβ\beta. We immediately check that the function

(α+i1)log(α+i1)+(β+i1)log(β+i1)(α+β+n+i2)log(α+β+n+i2)\begin{gathered}(\alpha+i-1)\log(\alpha+i-1)+(\beta+i-1)\log(\beta+i-1)-\\ -(\alpha+\beta+n+i-2)\log(\alpha+\beta+n+i-2)\end{gathered}

is convex with respect toα\alphaAndβ\betawhenin,α>0,β>0i\leq n,\alpha>0,\beta>0.
The functionlogMn(α,β)\log M_{n}(\alpha,\beta)is a sum of convex functions and we can therefore state the following property:

Theorem VI. The functionMn(α,β)M_{n}(\alpha,\beta)is decreasing and its logarithm is a convex function with respect to the two variables a andβ\beta.

It can easily be seen that the property holds forα0,β0\alpha\geq 0,\beta\geq 0.
The corresponding properties are easily found when, instead of the interval ( 0,1 ), we take any finite interval (has,ba,b).
9. Let us takehas=0,b=βa=0,b=\betain Theorem II; we deduce that for0xLβ0\leq x_{l}\leq\betathe expression

[L=1nxiα(1xLβ)β]V2(x1,x2,,xn)\left[\prod_{l=1}^{n}x_{i}^{\alpha}\left(1-\frac{x_{l}}{\beta}\right)^{\beta}\right]\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when thexix_{i}are the zeros of the polynomial (written in a suitable form)

x1α(1xβ)1βn!dndxnxα+n1(1xβ)β+n1.\frac{x^{1-\alpha}\left(1-\frac{x}{\beta}\right)^{1-\beta}}{n!}\frac{d^{n}}{dx^{n}}x^{\alpha+n-1}\left(1-\frac{x}{\beta}\right)^{\beta+n-1}.

If we do nowβ\beta\longrightarrow\infty, we obtain
Theorem VII. Whenx>0x>0and that thex1x_{1}remain non-negative, expression
(12)(x1x2xn)αe(x1+x2++xn)V2(x1,x2,,xn)\quad\left(x_{1}x_{2}\ldots x_{n}\right)^{\alpha}e^{-\left(x_{1}+x_{2}+\ldots+x_{n}\right)}\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)
10 ) Mr. Fekete established the existence of the limitn(n1)n(n-1)that the continuation

{Mn(0.0)n}n=2.3,\left\{\sqrt[n]{\mathrm{M}_{n}(0,0)}\right\}\quad n=2,3,\ldots

is decreasing.α,β\alpha,\betagiven, the more general sequence

{VMn(α,β)¯}n=k,k+1,\left\{V\overline{M_{n}(\alpha,\beta)}\right\}\quad n=k,k+1,\ldots

is also decreasing if we take the numberkklarge enough.
becomes maximum when thexi\mathrm{x}_{\mathrm{i}}are the zeros of the generalized Laguerre polynomial

Ln(α)(x)=exx1αn!dndxnexxα+n1L_{n}^{(\alpha)}(x)=\frac{e^{x}x^{1-\alpha}}{n!}\frac{d^{n}}{dx^{n}}e^{-x}x^{\alpha+n-1}

The value of this maximum is

Nn(α)=en(α+n1)i=1nii(α+i1)α+i1.\mathrm{N}_{n}(\alpha)=e^{-n(\alpha+n-1)}\prod_{i=1}^{n}i^{i}(\alpha+i-1)^{\alpha+i-1}.

The passage to the limit is justified by the fact - which is demonstrated as in No. 2 - that expression (12) admits a maximum reached for a single system of pointsxi0\mathrm{x}_{\mathrm{i}}\geq 0.

Ifα=1\alpha=1the corresponding problem is solved by the Laguerre polynomial itself.

The caseα=0\alpha=0can also be related to the caseα=2\alpha=2. Indeed ifα=0\alpha=0for (12) to be maximum one of the points mustxix_{i}coincides with 0 . So makingα=2\alpha=2and takingn1n-1instead ofnnwe deduce the

Theorem VIII. When thex1\mathrm{x}_{1}remain non-negative, the expression

e(x1+x2++xn)V2(x1,x2,,xn)e^{-\left(x_{1}+x_{2}+\ldots+x_{n}\right)}\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when thex1\mathrm{x}_{1}are the zeros of the polynomial

exxn!dndxnexxn1=exn!dn1dxn1exxn=0xLn1(x)dx=Gn(x)-\frac{e^{x}x}{n!}\frac{d^{n}}{dx^{n}}e^{-x}x^{n-1}=\frac{e^{x}}{n!}\frac{d^{n-1}}{dx^{n-1}}e^{-x}x^{n}=\int_{0}^{x}\mathrm{\penalty 10000\ L}_{n-1}(x)dx=\mathrm{G}_{n}(x)

The value of this maximum is

Nn(0)=en(n1)2233(n1)n12233nn\mathrm{N}_{n}(0)=e^{-n(n-1)}2^{2}3^{3}\ldots(n-1)^{n-1}2^{2}3^{3}\ldots n^{n}

Ln1(x)\mathrm{L}_{n-1}(x)is the Laquerre polynomial

Ln1(x)=ex(n1)!dn1dxn1exxn1\mathrm{L}_{n-1}(x)=\frac{e^{x}}{(n-1)!}\frac{d^{n-1}}{dx^{n-1}}e^{-x}x^{n-1}

of degreen1n-1.
10. Let us make some remarks about numbers.Nn(α)\mathrm{N}_{n}(\alpha).

Ifξ1,ξ2,,ξn\xi_{1},\xi_{2},\ldots,\xi_{n}are the zeros ofLn(α)(x)L_{n}^{(\alpha)}(x), We have

Nn(α)(ξ1ξ2ξn)αNn(0)11)\left.\mathrm{N}_{n}(\alpha)\leq\left(\xi_{1}\xi_{2}\ldots\xi_{n}\right)^{\alpha}\mathrm{N}_{n}(0)^{11}\right)

Ifη0=0,η1,η2,,ηn\eta_{0}=0,\eta_{1},\eta_{2},\ldots,\eta_{n}are the zeros ofGn+1(x)G_{n+1}(x)

Nn(α)(η1η2ηn)αe(η1+η2++ηn)V2(η1,η2,,ηn)==(η1η2ηn)α2e(η0+η1++ηn)V2(η0,η1,,ηn)==(η1η2ηn)α2Nn+1(0)\begin{gathered}\mathrm{N}_{n}(\alpha)\geqslant\left(\eta_{1}\eta_{2}\ldots\eta_{n}\right)^{\alpha}e^{-\left(\eta_{1}+\eta_{2}+\ldots+\eta_{n}\right)}\mathrm{V}^{2}\left(\eta_{1},\eta_{2},\ldots,\eta_{n}\right)=\\ =\left(\eta_{1}\eta_{2}\ldots\eta_{n}\right)^{\alpha-2}e^{-\left(\eta_{0}+\eta_{1}+\ldots+\eta_{n}\right)}\mathrm{V}^{2}\left(\eta_{0},\eta_{1},\ldots,\eta_{n}\right)=\\ =\left(\eta_{1}\eta_{2}\ldots\eta_{n}\right)^{\alpha-2}\mathrm{\penalty 10000\ N}_{n+1}(0)\end{gathered}

But, a simple calculation gives us
ξ1ξ2ξn=α(x+1)(x+n1),η1η2ηn=(n+1)!\xi_{1}\xi_{2}\ldots\xi_{n}=\alpha(x+1)\ldots(x+n-1),\eta_{1}\eta_{2}\ldots\eta_{n}=(n+1)!
so
(13)[(n+1)!]α2Nn+1(0)Nn(x)[x(α+1)(α+n1)]αNn(0)[(n+1)!]^{\alpha-2}\mathrm{\penalty 10000\ N}_{n+1}(0)\leq\mathrm{N}_{n}(x)[x(\alpha+1)\ldots(\alpha+n-1)]^{\alpha}\mathrm{N}_{n}(0).
11 ) Equality is only possible ifα=0\alpha=0.

However, the order of magnitude of the product22332^{2}3^{3}.nnn^{n}East

nn22+n2+112en24n^{\frac{n^{2}}{2}}+\frac{n}{2}+\frac{1}{12}e^{-\frac{n^{2}}{4}}

which means that

V2233nnn(n1)n1e4n.\begin{gathered}\frac{\sqrt[n(n-1)]{V2^{2}3^{3}\cdots n^{n}}}{\sqrt{n}}\rightarrow\frac{1}{\sqrt[4]{e}}\\ n\rightarrow\infty.\end{gathered}

We deduce that

Vn(n1)Nn(0)¯n\displaystyle\frac{\sqrt[n(n-1)]{V}\overline{\mathrm{\penalty 10000\ N}_{n}(0)}}{n} 1eVe¯\displaystyle\rightarrow\frac{1}{eV\bar{e}}
n\displaystyle n\rightarrow\infty

Let us also note thatNn(α)\mathrm{N}_{n}(\alpha)is not a monotonic function but its logarithm is convex. Also taking into account (13) andNn+1(0)=e2nnn(n+1)n+1Nn(0)\mathrm{N}_{n+1}(0)=e^{-2n}n^{n}(n+1)^{n+1}\mathrm{\penalty 10000\ N}_{n}(0)we have the

Theorem IX. The logarithm of the functionNn(α)\mathrm{N}_{n}(\alpha)is convex forα0\alpha\geqslant 0. given that we have

Nn(α)n(n1)n1ee\frac{\sqrt[n(n-1)]{\mathrm{N}_{n}(\alpha)}}{n}\rightarrow\frac{1}{e\sqrt{e}}
  1. 11.

    Let us now takehas=2β,b=2β,α=βa=-\sqrt{2\beta,}b=\sqrt{2\beta,}\alpha=\betain Theorem II. We deduce that for2βxi2β-\sqrt{2\beta}\leq x_{i}\leq\sqrt{2\beta}the expression

[i=1n(1xi22β)β]V2(x1,x2,,xn)\left[\prod_{i=1}^{n}\left(1-\frac{x_{i}^{2}}{2\beta}\right)^{\beta}\right]\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when thexix_{i}are the zeros of the polynomial (written in a suitable form)

(1)n(1x22β)1βdndxn(1x22β)β+n1(-1)^{n}\left(1-\frac{x^{2}}{2\beta}\right)^{1-\beta}\frac{d^{n}}{dx^{n}}\left(1-\frac{x^{2}}{2\beta}\right)^{\beta+n-1}

Doingβ\beta\longrightarrow\inftywe obtain a third theorem stated by Stieltjes 12 ).
12 ) Loc. cit. 5 ).

Theorem X. The expression

e12(x12+x22++xn2)V2(x1,x2,xn)(xi real )e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)}\mathrm{V}^{2}\left(x_{1},x_{2},\ldots x_{n}\right)\quad\left(x_{i}\text{ réels }\right)

becomes maximum when thexi\mathrm{x}_{\mathrm{i}}are the zeros of the Hermite polynomial

Hn(x)=(1)nex22dndxnex22\mathrm{H}_{n}(x)=(-1)^{n}e^{\frac{x^{2}}{2}}\frac{d^{n}}{dx^{n}}e^{-\frac{x^{2}}{2}}

The value of this maximum is

Nn=en(n1)22233nn\mathrm{N}_{n}^{*}=e^{-\frac{n(n-1)}{2}}2^{2}3^{3}\ldots n^{n}

The passage to the limit, as is easily demonstrated, is perfectly justified.

We have

Nnn(n1)n¯1e¯34\frac{\sqrt[n(n-1)]{\mathrm{N}_{n}^{*}}}{\sqrt{\bar{n}}}\rightarrow\frac{1}{\sqrt[4]{\bar{e}^{3}}}
  1. 12.

    Note that we have

(1)nn!Ln(α)(x)=xnn(α+n1)xn1+(-1)^{n}n!\mathrm{L}_{n}^{(\alpha)}(x)=x^{n}-n(\alpha+n-1)x^{n-1}+\cdots

We see that the sum of the zeros of the polynomialLn(α)(x)L_{n}^{(\alpha)}(x). is equal ton(α+n1)n(\alpha+n-1). Theorem VII then shows us that ifα>0,xi\alpha>0,x_{i}are non-negative and

x1+x2++xnn(α+n1)x_{1}+x_{2}+\ldots+x_{n}\leq n(\alpha+n-1) (14)

the expression

(x1x2,xn)αV2(x1,x2,,xn)\left(x_{1}x_{2},\ldots x_{n}\right)^{\alpha}\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

reaches its maximum, equal toi=1niL(x+i1)x+i1\prod_{i=1}^{n}i^{l}(x+i-1)^{x+i-1}, when thexix_{i}are the zeros of the polynomialLn(α)(x)L_{n}^{(\alpha)}(x). We were able to remove the factore(x1+x2++xn)e^{-\left(x_{1}+x_{2}+\ldots+x_{n}\right)}since the functionexe^{x}grows whenxxincreases from the value zero. We see that we must take the equality in (14) to have the maximum.

The substitutionxn(x+n1),xx\mid n(x+n-1),xallows us to state the following theorem:

Theorem XI. Whenx>0x>0, THExix_{i}are non-negative and
the expression

x1+x2++xn1(x1x2xn)αV2(x1,x2,,xn)\begin{gathered}x_{1}+x_{2}+\ldots+x_{n}\leq 1\\ \left(x_{1}x_{2}\ldots x_{n}\right)^{\alpha}\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)\end{gathered}

becomes maximum when then(α+n1)xi\mathrm{n}(\alpha+\mathrm{n}-1)\mathrm{x}_{\mathrm{i}}are the zeros of the generalized Laguerre polynomialLn(α)(x)\mathrm{L}_{\mathrm{n}}^{(\alpha)}(\mathrm{x}). The value of this maximum is

Mn(α)=i=1nii(α+n1)α+n1[n(α+n1)]n(α+n1)M_{n}^{*}(\alpha)=\frac{\prod_{i=1}^{n}i^{i}(\alpha+n-1)^{\alpha+n-1}}{[n(\alpha+n-1)]^{n(\alpha+n-1)}}\ldots

We have, in particular,
Theorem XII. When thex1\mathrm{x}_{1}are non-negative and

x1+x2++xn1x_{1}+x_{2}+\ldots+x_{n}\leq 1

the discriminant

V2(x1,x2,,xn)\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when then(n1)xi\mathrm{n}(\mathrm{n}-1)\mathrm{x}_{\mathrm{i}}are the zeros of the polynomialGn(x)\mathrm{G}_{n}(\mathrm{x}). The value of this maximum is

Mn(0)=2233nn2233(n1)n1[n(n1)]n(n1)M_{n}^{*}(0)=\frac{2^{2}3^{3}\ldots n^{n}2^{2}3^{3}\ldots(n-1)^{n-1}}{[n(n-1)]^{n(n-1)}}

Similarly, noticing that

Hn(x)=xnn(n1)2xn2+\mathrm{H}_{n}(x)=x^{n}-\frac{n(n-1)}{2}x^{n-2}+\ldots

we see that the sum of the squares of the zeros of the polynomialHn(x)\mathrm{H}_{n}(x)is equal ton(n1)n(n-1). We then obtain, as above, the

Theorem XIII. When real numbersxi\mathrm{x}_{\mathrm{i}}verify the inequality

x12+x22++xn21x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\leq 1

the discriminant

V2(x1,x2,,xn)\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

becomes maximum when theVn(n1)¯x1V\overline{\mathrm{n}(\mathrm{n}-1)}\mathrm{x}_{1}are the zeros of the Hermite polynomialHn(x)\mathrm{H}_{\mathrm{n}}(\mathrm{x}). The value of this maximum is

Mn=2233nn[n(n1)]n(n1)2\mathrm{M}_{n}^{*}=\frac{2^{2}3^{3}\cdots n^{n}}{[n(n-1)]^{\frac{n(n-1)}{2}}}

Theorems XII, XIII are due to MI Schur who demonstrated them by another route 13 ).
13. Exactly as above we demonstrate that:

Theorem XIV. The functionMn(x)\mathrm{M}_{n}^{*}(x)is decreasing and its logarithm is convex forα0\alpha\geq 0We have the limit

nMn(α)¯nn1e\begin{gathered}n{}_{n\rightarrow\infty}\overline{M_{n}^{*}(\alpha)}\\ n\rightarrow\frac{1}{\sqrt{e}}\end{gathered}

for any given value ofxx.

0 0 footnotetext: 13 ) Loc. cit. 4 ).

We also have

nn(n1)VM¯n1V4en\begin{gathered}\sqrt{n}^{\frac{n(n-1)}{V}}\overline{\mathrm{M}}_{n}^{*}\longrightarrow\frac{1}{V^{\frac{4}{e}}}\\ n\longrightarrow\infty\end{gathered}

II.

Generalization of the Stieltjes problem

  1. 14.

    Now consider the expression

En=E(x1,x2,,xn;f)=f(x1)f(x2)f(xn)V2(x1,x2,,xn)\mathrm{E}_{n}=\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};f\right)=f\left(x_{1}\right)f\left(x_{2}\right)\ldots f\left(x_{n}\right)\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

which we will seek to study as much as possible when thexix_{i}remain in a finite interval. We can always refer to the interval(0.1)(0,1), but it goes without saying that we move on to analogous problems for any interval by simple transformations.

Of course, to have interesting properties we will limit ourselves to the case where the functionf(x)f(x)has a certain particular form. Let us first clarify the assumptions we make about the functionf(x)f(x).

We will say that the functionf(x)f(x), real, defined and uniform in the closed interval ( 0,1 ) verifies the conditions ( C ) or that it is a function (C), if:
101^{0}. it is positive in the open interval(0.1)(0,1).
202^{0}. it is continuous at points 0 and 1.
30.f(0)=f(1)=03^{0}.f(0)=f(1)=0.
404^{0}. it is exponentially concave in the interval(0.1)(0,1).
We will also say thatf(x)f(x)checks the conditions (C\mathrm{C}^{\prime}) or that it is a function (C\mathrm{C}^{\prime}) if, apart from the properties10,20,30,401^{0},2^{0},3^{0},4^{0}, it also verifies the following property:
50.f(x)5^{0}.\mathrm{f}(\mathrm{x})has a derivative at every point in the open interval(0.1)(0,1).
The property404^{0}is understood in the restrictive sense (and not in Jensen's sense), therefore

f(x2)>f(x1)x3x2x3x1f(x3)x2x1x3x1f\left(x_{2}\right)>f\left(x_{1}\right)^{\frac{x_{3}-x_{2}}{x_{3}-x_{1}}}f\left(x_{3}\right)^{\frac{x_{2}-x_{1}}{x_{3}-x_{1}}} (15)

whatever the pointsx1<x2<x3x_{1}<x_{2}<x_{3}of the interval(0.1)(0,1).
In particular we have

f(x1+x22)>Vf(x1)f(x2)¯f\left(\frac{x_{1}+x_{2}}{2}\right)>V\overline{f\left(x_{1}\right)f\left(x_{2}\right)} (16)

for two pointsx1,x2x_{1},x_{2}of(0.1)(0,1). The functionlogf(x)\log f(x)is concave in any interval completely interior to(0.1)(0,1).

Well-known properties result that a function (C) is upper bounded in(0.1)(0,1)and is continuous not only internally but, as a result of the property202^{0}, everywhere in(0.1)(0,1).

The problem we propose to examine is the following:
The functionf(x)\mathrm{f}(\mathrm{x})verifying the conditions (C), determine and study the maximum of the expressionEn\mathrm{E}_{\mathrm{n}}when thexi\mathrm{x}_{\mathrm{i}}remain in the meantime(0.1)(0,1).

We could study this problem also when the functionf(x)f(x)does not verify conditions (C), but our hypotheses appear to be the most interesting. For example, the functionf(x)f(x)equal to 1 for0<x<10<x<1Andf(0)=f(1)=0f(0)=f(1)=0. This function checks the properties10,30,401^{0},3^{0},4^{0}. In this case we have

max(0.1)E(x1x2,)=1\max_{(0,1)}\mathrm{E}\left(x_{1}x_{2},\right)=1

but it is clear that this maximum is not reached.
Let us now move on to the study of our problem.
15. The expressionEn\mathrm{E}_{n}is a symmetric function and is continuous in the domain0x1x2xn10\leq x_{1}\leq x_{2}\leq\ldots\leq x_{n}\leq 1. It is zero on the boundary of this domain, therefore

Theorem XV. Iff(x)\mathrm{f}(\mathrm{x})is a function (C) the expressionEn\mathrm{E}_{\mathrm{n}}admits in(0.1)(0,1)a maximum reached for at least one point systemxi\mathrm{x}_{\mathrm{i}}distinct and located within the interval(0.1)(0,1).

Suppose the maximum is reached for two different point systemsxix_{i}

0<y1<y2<<yn<1,0<y1<y2<<yn<1\displaystyle 0<y_{1}<y_{2}<\ldots<y_{n}<1,\quad 0<y_{1}^{\prime}<y_{2}^{\prime}<\ldots<y_{n}^{\prime}<1 (17)
|y1y2|+|y2y2|++|ynyn|>0.\displaystyle\left|y_{1}-y_{2}^{\prime}\right|+\left|y_{2}-y_{2}^{\prime}\right|+\ldots+\left|y_{n}-y_{n}^{\prime}\right|>0.

Then taking the points

yi"=yi+yi2,i=1.2,,ny_{i}^{\prime\prime}=\frac{y_{i}+y_{i}^{\prime}}{2},\quad i=1,2,\ldots,n

and taking into account (16) we deduce, exactly as in No. 2, that

E(y1",yn",,yn";f)E(y1,y2,,yn;f)E(y1,y2,,yn;f)\mathrm{E}\left(y_{1}^{\prime\prime},y_{n}^{\prime\prime},\ldots,y_{n}^{\prime\prime};f\right)\geq\sqrt{\mathrm{E}\left(y_{1},y_{2},\ldots,y_{n};f\right)\mathrm{E}\left(y_{1}^{\prime},y_{2}^{\prime},\ldots,y_{n}^{\prime};f\right)}

equality being possible only if the two sequences (17) coincide. This is in contradiction with our hypotheses. We therefore have the

Theorem XVI. Iff(x)\mathrm{f}(\mathrm{x})is a function ( C ) the expressionEn\mathrm{E}_{\mathrm{n}}admits in(0.1)(0,1)a maximum reached for a single points systemxi\mathrm{x}_{\mathrm{i}}distinct and located within the interval(0.1)(0,1)

We will designate by0<ξn,1<ξn,2<<ξn,n<10<\xi_{n,1}<\xi_{n,2}<\ldots<\xi_{n,n}<1the points for which this maximum is reached. We call see system the maximizing system ofEn\mathrm{E}_{\mathrm{n}}. The polynomial

Pn(x)=(xξn,1)(xξn,2)(xξn,n)\mathrm{P}_{n}(x)=\left(x-\xi_{n,1}\right)\left(x-\xi_{n,2}\right)\ldots\left(x-\xi_{n,n}\right)

will be called the maximizing polynomial ofEn\mathrm{E}_{\mathrm{n}}.

Finally we will designate by

Mn(f)=max(0.1)En=E(ξn,1,ξn,2,,ξn,n,f)\mathrm{M}_{n}(f)=\max_{(0,1)}\mathrm{E}_{n}=\mathrm{E}\left(\xi_{n,1},\xi_{n,2},\ldots,\xi_{n,n},f\right)

which is obviously a positive number.
16. We will now demonstrate that the correspondence between a function(C)(\mathrm{C})and its maximizing system or maximizing polynomial is continuous.

We need the following property:
Lemma I. We can match any positive numberε\varepsilonanother positive numberη\etasuch that if
we also have

E(x1,x2,,xn;f)Mn(f)<η\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};f\right)-\mathrm{M}_{n}(f)\mid<\eta
|xiξn,i|<ε(x1<x2<<xn)i=1.2,,n\begin{gathered}\left|x_{i}-\xi_{n,i}\right|<\varepsilon\left(x_{1}<x_{2}<\ldots<x_{n}\right)\\ i=1,2,\ldots,n\end{gathered}

This property is a consequence of uniqueness. Let us suppose, in fact, that the property is not true. By classical reasoning we see that there would then exist a positive numberε\varepsilonand a series of points systems

x1(m)x2(m)xn(m),m=1.2,x_{1}^{(m)}\leq x_{2}^{(m)}\leq\ldots\leq x_{n}^{(m)}\quad,\quad m=1,2,\ldots

such that we have

|E(x1(m),x2(m),,xn(m);f)Mn(f)|<1m,m=1.2,\left|\mathrm{E}\left(x_{1}^{(m)},x_{2}^{(m)},\ldots,x_{n}^{(m)};f\right)-\mathrm{M}_{n}(f)\right|<\frac{1}{m}\quad,\quad m=1,2,\ldots

and that at least one of the inequalities

|xi(m)ξn,i|ε,i=1.2,,n\left|x_{i}^{(m)}-\xi_{n,i}\right|\geq\varepsilon,\quad i=1,2,\ldots,n

be checked for everythingmm. We deduce the existence of a system

x1x2xn)14\left.x_{1}\leq x_{2}\leq\ldots\leq x_{n}{}^{14}\right)

such as

E(x1,x2,,xn;f)=Mn(f)|x1ξn,1|+|x2ξn,2|++|xnξn,n|ε\begin{gathered}\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};f\right)=\mathrm{M}_{n}(f)\\ \left|x_{1}-\xi_{n,1}\right|+\left|x_{2}-\xi_{n,2}\right|+\ldots+\left|x_{n}-\xi_{n,n}\right|\geq\varepsilon\end{gathered}

which is in contradiction with Theorem XVI.
Now consider two functions (C),f(x),g(x)f(x),g(x).
Letξn,1<ξn,2<<ξn,n\xi_{n,1}<\xi_{n,2}<\ldots<\xi_{n,n}Andξn,1<ξn,2<<ξn,n\xi_{n,1}^{\prime}<\xi_{n,2}^{\prime}<\ldots<\xi_{n,n}^{\prime}the
corresponding maximizing systems. Let A be the upper bound of the functionf(x)f(x)and B the upper bound of|f(x)g(x)||f(x)-g(x)|,

HAS=max.f(x),B=max.|f(x)g(x)|\mathrm{A}=\max.f(x),\quad\mathrm{B}=\max.|f(x)-g(x)|

(0.1)(0,1)
(0.1)(0,1)

0 0 footnotetext: 14) We also know that everywhere we have the sign <.


So we have

f(x)g(x)+B,g(x)f(x)+Bf(x)\leq g(x)+\mathrm{B},\quad g(x)\leq f(x)+\mathrm{B}
f(x1)f(x2)f(xn)g(x1)g(x2)g(xn)+Cg(x1)g(x2)g(xn)f(x1)f(x2)(xn)+C\begin{gathered}f\left(x_{1}\right)f\left(x_{2}\right)\ldots f\left(x_{n}\right)\leq g\left(x_{1}\right)g\left(x_{2}\right)\ldots g\left(x_{n}\right)+\mathrm{C}\\ g\left(x_{1}\right)g\left(x_{2}\right)\ldots g\left(x_{n}\right)\leq f\left(x_{1}\right)f\left(x_{2}\right)\ldots\left(x_{n}\right)+\mathrm{C}\end{gathered}

OrC=(HAS+B)nHASn\mathrm{C}=(\mathrm{A}+\mathrm{B})^{n}-\mathrm{A}^{n}.
We deduce from this
E(x1,x2,,xn;f)E(x1,x2,,xn;g)+resume2(x1,x2,,xn)\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};f\right)\leq\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};g\right)+\mathrm{CV}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

E(x1,x2,,xn;g)E(x1,x2,,xn;f)+resume2(x1,x2,,xn)\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};g\right)\leq\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};f\right)+\mathrm{CV}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)

from where

E(x1,x2,,xn;f)Mn(g)+CMn(0.0)\displaystyle\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};f\right)\leq\mathrm{M}_{n}(g)+\mathrm{CM}_{n}(0)
E(x1,x2,,xn;g)Mn(f)+CMn(0.0)\displaystyle\mathrm{E}\left(x_{1},x_{2},\ldots,x_{n};g\right)\leq\mathrm{M}_{n}(f)+\mathrm{CM}_{n}(0)

We have, in particular,

Mn(f)Mn(g)+CMn(0.0),Mn(g)Mn(f)+CMn(0.0)|Mn(f)Mn(g)|CMn(0.0)\begin{gathered}M_{n}(f)\leqslant M_{n}(g)+\mathrm{CM}_{n}(0,0),\quad M_{n}(g)\leqslant M_{n}(f)+\mathrm{CM}_{n}(0,0)\\ \therefore\quad\left|M_{n}(f)-M_{n}(g)\right|\leqslant\mathrm{CM}_{n}(0,0)\end{gathered}

HereMn(0.0)M_{n}(0,0)is the number defined in§\Sprevious.
We also have

E(ξn,1,ξn,2,,ξn,1;f)Mn(g)+CMn(0.0)\displaystyle\mathrm{E}\left(\xi_{n,1}^{\prime},\xi_{n,2}^{\prime},\ldots,\xi_{n,1}^{\prime};f\right)\leq\mathrm{M}_{n}(g)+\mathrm{CM}_{n}(0)
Mn(g)E(ξn,1,ξn,2,ξn,n;f)+CMn(0.0)\displaystyle\mathrm{M}_{n}(g)\leq\mathrm{E}\left(\xi_{n,1}^{\prime},\xi_{n,2}^{\prime},\ldots\xi_{n,n}^{\prime};f\right)+\mathrm{CM}_{n}(0)
|E(ξn,1,ξn,2,,ξn,n;f)Mn(g)|CMn(0.0).\displaystyle\left|\mathrm{E}\left(\xi_{n,1}^{\prime},\xi_{n,2}^{\prime},\ldots,\xi_{n,n}^{\prime};f\right)-\mathrm{M}_{n}(g)\right|\leq\mathrm{CM}_{n}(0).

We deduce that

|E(ξn,1,ξn,2,,ξn,n;f)Mn(f)|2CMn(0.0).\left|E\left(\xi_{n,1}^{\prime},\xi_{n,2}^{\prime},\ldots,\xi_{n,n}^{\prime};f\right)-M_{n}(f)\right|\leq 2\mathrm{CM}_{n}(0,0).

Now, C tends to zero with B. Taking into account Lemma I, it results in the

Theorem XVII. We can match any positive number to another positive numberη\etasuch that, for the function (C)f(x)\mathrm{f}(\mathrm{x})and for any other function (C)g(x)\mathrm{g}(\mathrm{x})which verifies the inequality
we also have

|f(x)g(x)|<η In (0.1)|f(x)-g(x)|<\eta\text{ dans }(0,1)
|ξn,iξn,i|<ε,i=1.2,,n\left|\xi_{n,i}-\xi_{n,i}^{\prime}\right|<\varepsilon,i=1,2,\ldots,n

for the corresponding maximizing systems.
This is the property we had in mind.
We deduce from it, in particular,
Theorem XVIII. If a sequence of functions (C)

f1(x),f2(x),,fn(x),f_{1}(x),f_{2}(x),\ldots,f_{n}(x),\ldots

converges uniformly to a function (C),f(x)\mathrm{f}(\mathrm{x}), the maximizing systemξn,1(m)<ξn,2(m)<<ξn,n(m)\xi_{\mathrm{n},1}^{(\mathrm{m})}<\xi_{\mathrm{n},2}^{(\mathrm{m})}<\ldots<\xi_{\mathrm{n},\mathrm{n}}^{(\mathrm{m})}corresponding tofm(x)\mathrm{f}_{\mathrm{m}}(\mathrm{x})tends, for
m\mathrm{m}\longrightarrow\infty, towards the maximizing systemξn,1<ξn,2<ξn,n\xi_{\mathrm{n},1}<\xi_{\mathrm{n},2}\ldots<\xi_{\mathrm{n},\mathrm{n}}corresponding tof(x)15\mathrm{f}(\mathrm{x})^{15}).

ξn,i(m)ξn,ii=1.2,,nm\begin{gathered}\xi_{n,i}^{(m)}\longrightarrow\xi_{n,i}\quad i=1,2,\ldots,n\\ m\longrightarrow\infty\end{gathered}

This property will be fundamental for us in what follows.
17. Let us now suppose thatf(x)f(x)be a function(C)\left(\mathrm{C}^{\prime}\right). To determine the maximum then we can apply differential calculus. The maximum is therefore determined by the system

1EnhasEndxi=P"(xi)P(xi)+f(xi)f(xi),i=1.2,,n\frac{1}{\mathrm{E}_{n}}\frac{a\mathrm{E}_{n}}{dx_{i}}=\frac{\mathrm{P}^{\prime\prime}\left(x_{i}\right)}{\mathrm{P}^{\prime}\left(x_{i}\right)}+\frac{f^{\prime}\left(x_{i}\right)}{f\left(x_{i}\right)},i=1,2,\ldots,n (18)
P(x)=(xx1)(xx2)(xxn).P(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{n}\right). (Or)

It is easy to see that, as a result of the assumptions made and especially because of the property404^{0}(concavity), we have the

Lemma II. Iff(x)\mathrm{f}(\mathrm{x})is a function (C\mathrm{C}^{\prime}) the system (18) admits one solution and only one such that thex1\mathrm{x}_{1}are in the interval(0.1)(0,1).

Given Theorem XV, we have
Theorem XIX. Iff(x)\mathrm{f}(\mathrm{x})is a function(C)\left(\mathrm{C}^{\prime}\right), We have

f(ξn,i)Pn"(ξn,i)+(ξn,i)Pn(ξn,i)=0i=1.2,,n\begin{gathered}f\left(\xi_{n,i}\right)\mathrm{P}_{n}^{\prime\prime}\left(\xi_{n,i}\right)+\left(\xi_{n,i}\right)\mathrm{P}_{n}^{\prime}\left(\xi_{n,i}\right)=0\\ i=1,2,\ldots,n\end{gathered}
  1. 18.

    Before going further, we must show how the demonstrations of the properties stated for the functions (C) and which will follow are deduced from the demonstrations of the corresponding properties for the functions (C\mathrm{C}^{\prime}).

Let us first prove
Lemma III. If

0<x1<x2<<xm<10<x_{1}<x_{2}<\ldots<x_{m}<1

is a sequence of points located inside the interval(0.1)(0,1)and if

c1>c2>>cmc_{1}>c_{2}>\ldots>c_{m}

is a sequence of non-increasing numbers, there exists a function '(C)\left(\mathrm{C}^{\prime}\right)whose logarithmic derivative takes the valuesci\mathrm{c}_{\mathrm{i}}at the corresponding points𝐱1\mathbf{x}_{1}.

Eitherφ(x)\varphi(x)the continuous function defined in the interval (x1,xmx_{1},x_{m}) such as

φ(xL)=ci,i=1.2,,m\varphi\left(x_{l}\right)=c_{i},\quad i=1,2,\ldots,m

φ(x)=\varphi(x)=a linear function in(xi,xi+1),i=1.2,,m1\left(x_{i},x_{i+1}\right),i=1,2,\ldots,m-1.
15) That the limit is a function (C) is not essential, but we will apply this theorem in this form in the following.

The function

φ1(x)=x1xφ(x)dx\varphi_{1}(x)=\int_{x_{1}}^{x}\varphi(x)dx

is concave in the interval (x1,xmx_{1},x_{m}).
We will now suitably extend this function in the interval(0.1)(0,1). Let us take the functionφ2(x)\varphi_{2}(x)defined as follows:

φ2(x)=(|c1|+1c1)(x1x)+x1(|c1|+1)x12(|c1|+1)x,0<xx1φ2(x)=φ1(x),xxmφ2(x)=(cm1|cm|)(xxm)+φ1(xm)+(1xm)(|cm|+1)(1xm)2(|cm|+1)1x,xmx<1.\begin{gathered}\varphi_{2}(x)=\left(\left|c_{1}\right|+1-c_{1}\right)\left(x_{1}-x\right)+x_{1}\left(\left|c_{1}\right|+1\right)-\frac{x_{1}^{2}\left(\left|c_{1}\right|+1\right)}{x},0<x\leq x_{1}\\ \varphi_{2}(x)=\varphi_{1}(x),\quad\leq x\leq x_{m}\\ \varphi_{2}(x)=\left(c_{m}-1-\left|c_{m}\right|\right)\left(x-x_{m}\right)+\varphi_{1}\left(x_{m}\right)+\left(1-x_{m}\right)\left(\left|c_{m}\right|+1\right)-\\ -\frac{\left(1-x_{m}\right)^{2}\left(\left|c_{m}\right|+1\right)}{1-x},\quad x_{m}\leq x<1.\end{gathered}

Finally the functionf(x)f(x)defined as follows

f(0)=f(1)=0\displaystyle f(0)=f(1)=0
f(x)=eΦ2(x) For 0<x<1\displaystyle f(x)=e^{\Phi_{2}(x)}\quad\text{ pour }0<x<1

is a function (C\mathrm{C}^{\prime}) and verifies the conditions of Lemma III.
The extension of the functionφ1(x)\varphi_{1}(x)is done in short by connection using arcs of suitably chosen hyperbolas. Ifc1c_{1}is non-negative the functionφ2(x)\varphi_{2}(x)is increasing in the interval(0,x1)\left(0,x_{1}\right)and ifcmc_{m}is non-positiveρ2(x)\rho_{2}(x)is decreasing in the interval (xm,1x_{m},1). This remark will be useful to us for the following property.

Lemma III has an important consequence:
IfPn1(x),Pn2(x),,Pnk(x)\mathrm{P}_{\mathrm{n}_{1}}(\mathrm{x}),\mathrm{P}_{\mathrm{n}_{2}}(\mathrm{x}),\ldots,\mathrm{P}_{\mathrm{n}_{\mathrm{k}}}(\mathrm{x})are the maximizing polynomials corresponding to a function ( C ) and to k values ​​of n , these polynomials are also the maximizing polynomials corresponding to a function (C\mathrm{C}^{\prime}) and at the same values ​​of n.

The demonstration presents no difficulty and follows immediately from Lemma II and Theorem XIX.

In the following we will apply this property for polynomialsPn(x),Pn1(x)\mathrm{P}_{n}(x),\mathrm{P}_{n-1}(x).

We still have
Lemma IV. Every function (C) is the limit of a sequence of functions (C\mathrm{C}^{\prime}) converging uniformly in the interval ( 0,1 ).

First there is a positive numberρ\rhosuch that in the interval(0,ρ)(0,\rho)the functionf(x)f(x)is non-decreasing and in the interval (1p,11-p,1) non-increasing. (We take of courseρ12\rho\leq\frac{1}{2}). Now let'sε\varepsilonan arbitrary positive number. There exists a positive numberδ<ρ\delta<\rhosuch as

f(x)<εf(x)<\varepsilon

For0xδ0\leq x\leq\delta, and for1δx11-\delta\leq x\leq 1.

In the closed interval (δ,1δ\delta,1-\delta) the functionF(x)=logf(x)\mathrm{F}(x)=\log f(x)is continuous and concave. There exists a number A such that in this interval|F(x)|HAS|\mathrm{F}(x)|\leq\mathrm{A}. Now consider the sequence of polynomials 16 )

Q1(x),Q2(x),,Qm(x),\mathrm{Q}_{1}(x),\mathrm{Q}_{2}(x),\ldots,\mathrm{Q}_{m}(x),\ldots (19)

Qm(x)=1(12δ)mi=1mF(δi12δm)(mi)(xδ)i(1δx)mi\mathrm{Q}_{m}(x)=\frac{1}{(1-2\delta)^{m}}\sum_{i=1}^{m}\mathrm{\penalty 10000\ F}\left(\delta-i\frac{1-2\delta}{m}\right)\binom{m}{i}(x-\delta)^{i}(1-\delta-x)^{m-i}
which verify the following properties:
10.Qm(δ)=F(δ),Qm(1δ)=F(1δ)1^{0}.\quad\mathrm{Q}_{m}(\delta)=\mathrm{F}(\delta),\mathrm{Q}_{m}(1-\delta)=\mathrm{F}(1-\delta)
20.|Qm(x)|HAS2^{0}.\left|\mathrm{Q}_{m}(x)\right|\leq\mathrm{A}, In(δ,1δ)(\delta,1-\delta)
303^{0}.Qm(x)\quad\mathrm{Q}_{m}(x)is concave in (δ,1δ\delta,1-\delta)
4.𝐐m(δ)=m12δ[F(δ+12δm)F(δ)]\quad\mathbf{Q}_{m}^{\prime}(\delta)=\frac{m}{1-2\delta}\left[\mathrm{\penalty 10000\ F}\left(\delta+\frac{1-2\delta}{m}\right)-\mathrm{F}(\delta)\right]

Qm(1δ)=m12δ[F(1δ)F(1δ12δm)]\mathrm{Q}_{m}^{\prime}(1-\delta)=\frac{m}{1-2\delta}\left[\mathrm{\penalty 10000\ F}(1-\delta)-\mathrm{F}\left(1-\delta-\frac{1-2\delta}{m}\right)\right]

505^{0}. The sequence (19) converges uniformly toF(x)\mathrm{F}(x)throughout the interval (δ,1δ\delta,1-\delta).

We extend the polynomialQm(x)\mathrm{Q}_{m}(x)exactly as we did withΦ1(x)\Phi_{1}(x)and we designate byQm(x)Q_{m}^{*}(x)the function thus defined in the entire open interval (0,1). Finally, let us define the functionfm(x)f_{m}(x)by

fm(0)=fm(1)=0\displaystyle f_{m}(0)=f_{m}(1)=0
fm(x)=eQm(x),0<x<1\displaystyle f_{m}(x)=e^{Q^{*}m(x)}\quad,\quad 0<x<1

The functionsfm(x)f_{m}(x)check the conditions (C\mathrm{C}^{\prime}).
Form>ρδ12δm>\frac{\rho-\delta}{1-2\delta}We haveQm(δ)0,Qm(1δ)0Q_{m}^{\prime}(\delta)\geq 0,Q_{m}^{\prime}(1-\delta)\leq 0, SOfm(x)f_{m}(x)is respectively increasing and decreasing in the intervals(0,δ)(0,\delta), (1δ,11-\delta,1), therefore a fortiori

fm(x)<ε For 0xδ,1δx1,m>pδ12δf_{m}(x)<\varepsilon\text{ pour }0\leq x\leq\delta,1-\delta\leq x\leq 1,m>\frac{p-\delta}{1-2\delta}

On the other hand, we can determine a numbermm^{\prime}such as form>mm>m^{\prime}we have

|Qm(x)F(x)|<log(ε+eHAS)HAS,δx1δ\left|\mathrm{Q}_{m}(x)-\mathrm{F}(x)\right|<\log\left(\varepsilon+e^{\mathrm{A}}\right)-\mathrm{A},\quad\delta\leq x\leq 1-\delta

10 ) PolynomialsQm(x)\mathrm{Q}_{m}(x)are the MS Bernstein polynomials. For the proof of the properties of the text see: Tiberiu Popoviciu „On the approximation of convex functions of higher order" Mathematica t. X (1935), p. 49.

We deduce from this

|fm(x)f(x)|<ε,δx1δ,m>m\left|f_{m}(x)-f(x)\right|<\varepsilon,\quad\delta\leq x\leq 1-\delta,\quad m>m^{\prime}

So finally
|fm(x)f(x)|<ε\left|f_{m}(x)-f(x)\right|<\varepsilonFor0x1,m>max.(m,ρδ12o)0\leq x\leq 1,m>\max.\left(m^{\prime},\frac{\rho-\delta}{1-2o}\right)
which proves Lemma IV.
19. We will say that two sequences

x1<x2<<xn And x1<x2<<xn1x_{1}<x_{2}<\ldots<x_{n}\text{ et }x_{1}^{\prime}<x_{2}^{\prime}<\ldots<x_{n-1}^{\prime} (20)

ofnnand ofn1n-1points respectively, separate in the strict sense if we have

x1<x1<x2<x2<<xn1<xn1<xnx_{1}<x_{1}^{\prime}<x_{2}<x_{2}^{\prime}<\ldots<x_{n-1}<x_{n-1}^{\prime}<x_{n}

We will also say that the two sequences (20) separate in the broad sense if we have

x1x1x2x2xn1xn1xnx_{1}\leq x_{1}^{\prime}\leq x_{2}\leq x_{2}^{\prime}\leq\ldots\leq x_{n-1}\leq x_{n-1}^{\prime}\leq x_{n}

and if the sequences have at least one point in common.
We can also say that the zeros of the polynomials

P(x)=(xx1)(xx2)(xxn),P1(x)=(xx1)(xx2)(xxn1)\mathrm{P}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{n}\right),\mathrm{P}_{1}(x)=\left(x-x_{1}^{\prime}\right)\left(x-x_{2}^{\prime}\right)\ldots\left(x-x_{n-1}^{\prime}\right)

separate respectively in the strict and broad senses.
The polynomialP1(x)\mathrm{P}_{1}(x)can always be written in the form

P1(x)=P(x)i=1nsixxi(i=1nsi=1)\mathrm{P}_{1}(x)=\mathrm{P}(x)\sum_{i=1}^{n}\frac{s_{i}}{x-x_{i}}\quad\left(\sum_{i=1}^{n}s_{i}=1\right)

which is none other than the Lagrange interpolation formula. The constantssis_{i}are completely determined.

We have
Lemma V. The necessary and sufficient condition for the zeros of the polynomialsP(x)\mathrm{P}(\mathrm{x})AndP1(x)\mathrm{P}_{1}(\mathrm{x})separate in the strict sense is that the coefficients si are all positive. The necessary and sufficient condition for the zeros of these polynomials to separate in the broad sense is that the si are all non-negative, at least one being zero.

These properties are well known, the demonstration being immediate. Let us now return to the maximizing polynomialsPn(x),Pn1(x)\mathrm{P}_{n}(x),\mathrm{P}_{n-1}(x)corresponding to a function (C\mathrm{C}^{\prime}). We have the

Theorem XX. The Zeros of Maximizing PolynomialsPn(x)\mathrm{P}_{\mathrm{n}}(\mathrm{x}),Pn1(x)\mathrm{P}_{\mathrm{n}-1}(\mathrm{x})corresponding to a function (C\mathrm{C}^{\prime}) cannot separate in the broad sense.

The proof is easy. Let's assume the opposite. We can then write

Pn1(x)=Pn(x)i=1nsixξn,i\mathrm{P}_{n-1}(x)=\mathrm{P}_{n}(x)\sum_{i=1}^{n}\frac{s_{i}}{x-\xi_{n,i}}

Orsi0,i=1nsi=1s_{i}\geq 0,\sum_{i=1}^{n}s_{i}=1. To fix the ideas, let us suppose thats1=0s_{1}=0. We then haveξn,1=ξn1.1\xi_{n,1}=\xi_{n-1,1}. Drifting twice in a row we have

Pn1(x)=Pn(x)i=1nsixξn,iPn(x)i=1nsi(xξn,i)2\mathrm{P}_{n-1}^{\prime}(x)=\mathrm{P}_{n}^{\prime}(x)\sum_{i=1}^{n}\frac{s_{i}}{x-\xi_{n,i}}-\mathrm{P}_{n}(x)\sum_{i=1}^{n}\frac{s_{i}}{\left(x-\xi_{n,i}\right)^{2}}
Pn1"(x)=Pn"(x)i=1nsixξn,i2Pn(x)i=1n\displaystyle\mathrm{P}_{n-1}^{\prime\prime}(x)=\mathrm{P}_{n}^{\prime\prime}(x)\sum_{i=1}^{n}\frac{s_{i}}{x-\xi_{n,i}}-2\mathrm{P}_{n}^{\prime}(x)\sum_{i=1}^{n} si(xξn,i)2+\displaystyle\frac{s_{i}}{\left(x-\xi_{n,i}\right)^{2}}+
+2Pn(x)i=1nsi(xξn,i)3\displaystyle+2\mathrm{P}_{n}(x)\sum_{i=1}^{n}\frac{s_{i}}{\left(x-\xi_{n,i}\right)^{3}}

from where

Pn1(ξn,1)=Pn(ξn,1)i=2nsiξn,1ξn,iPn1"(ξn,1)=Pn"(ξn,1)i=2nsiξn,1ξn,i2Pn(ξn,1)i=2nsi(ξn,1ξn,i)2\begin{gathered}\mathrm{P}_{n-1}^{\prime}\left(\xi_{n,1}\right)=\mathrm{P}_{n}^{\prime}\left(\xi_{n,1}\right)\sum_{i=2}^{n}\frac{s_{i}}{\xi_{n,1}-\xi_{n,i}}\\ \mathrm{P}_{n-1}^{\prime\prime}\left(\xi_{n,1}\right)=\mathrm{P}_{n}^{\prime\prime}\left(\xi_{n,1}\right)\sum_{i=2}^{n}\frac{s_{i}}{\xi_{n,1}-\xi_{n,i}}-2\mathrm{P}_{n}^{\prime}\left(\xi_{n,1}\right)\sum_{i=2}^{n}\frac{s_{i}}{\left(\xi_{n,1}-\xi_{n,i}\right)^{2}}\end{gathered}

Taking into accountξn,1=ξn,1\xi_{n,1}=\xi_{n,1}and from Theorem XIX we deduce

f(ξn,1)Pn(ξn,1)i=2nsi(ξn,1ξn,L)2=0f\left(\xi_{n,1}\right)\mathrm{P}_{n}^{\prime}\left(\xi_{n,1}\right)\sum_{i=2}^{n}\frac{s_{i}}{\left(\xi_{n,1}-\xi_{n,l}\right)^{2}}=0

But,f(ξn,1)Pn(ξn,1)0f\left(\xi_{n,1}\right)\mathrm{P}_{n}^{\prime}\left(\xi_{n,1}\right)\neq 0, it therefore follows that

s2=s3==sn=0s_{2}=s_{3}=\ldots=s_{n}=0

This is in contradiction with the hypothesisi=1nsi=1\sum_{i=1}^{n}s_{i}=1and Theorem XX is therefore demonstrated.
20. We now propose to demonstrate the property that we had in mind and which is expressed by the

Theorem XXI. The zeros of two consecutive maximizing polynomialsPn(x),Pn1(x)\mathrm{P}_{\mathrm{n}}(\mathrm{x}),\mathrm{P}_{\mathrm{n}-1}(\mathrm{x})corresponding to a function(C)(\mathrm{C})separate in the strict sense.

Let us first show that it is sufficient to demonstrate the property for functions(C)\left(\mathrm{C}^{\prime}\right). Indeed, if the property is true for functions(C)\left(\mathrm{C}^{\prime}\right), Theorem XVIII and Lemma IV show us that for a function (C) the zeros separate either in the strict sense or in the broad sense. But, by virtue of the consequence of Lemma III, it is indeed the first case that occurs.

It remains to demonstrate ownership in the case wheref(x)f(x)is a function (C\mathrm{C}^{\prime}). Let us consider for this the function

fm(x)=[x(1x)]1m[f(x)]m0m1,f0(x)=x(1x),f1(x)=f(x)\begin{gathered}f_{m}(x)=[x(1-x)]^{1-m}[f(x)]^{m}\\ 0\leq m\leq 1,f_{0}(x)=x(1-x),f_{1}(x)=f(x)\end{gathered}

fm(x)f_{m}(x)is a function(C)\left(\mathrm{C}^{\prime}\right). Whenmmincreases from 0 to 1, the functionf0(x)f_{0}(x)Orx(1x)x(1-x)deforms continuously and tends uniformly towardsf1(x)f_{1}(x)Orf(x)f(x).

Theorems XVIII and XX then show us that it is sufficient to demonstrate the property for the functionf0(x)=x(1x)\mathrm{f}_{0}(\mathrm{x})=\mathrm{x}(1-\mathrm{x}). Now, in this case

Pn(x)=F(n,n+1.1,x),Pn1(x)=F(n+1,n,1,x)\mathrm{P}_{n}(x)=\mathrm{F}(-n,n+1,1,x),\mathrm{P}_{n-1}(x)=\mathrm{F}(-n+1,n,1,x)

and it is well known that the zeros of these Jacobi polynomials separate in the strict sense. The theorem is therefore completely demonstrated.
21. We now propose to say a few words about the maximumMn(f)M_{n}(f).

Let A be the maximum (or the upper bound) off(x)f(x). We have

Mn(f)HASn.max(0.1)V2(x1,x2,,xn)=HASnMn(0.0)\mathrm{M}_{n}(f)\leqslant\mathrm{A}^{n}.\max_{(0,1)}\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)=\mathrm{A}^{n}\mathrm{M}_{n}(0,0) (0.1)

MM Fekete's theorem therefore shows us that
(21)

lim¯nlimn(f)n(n1)14\varlimsup_{n\rightarrow\infty}\sqrt[n(n-1)]{\lim_{n}(f)}\leq\frac{1}{4}

Eitherε<14\varepsilon<\frac{1}{4}an arbitrary positive number. In the interval(2ε,12ε)(2\varepsilon,1-2\varepsilon)the functionf(x)f(x)has a positive minimumhasa. Letξ1,ξ2,,ξn\xi_{1},\xi_{2},\ldots,\xi_{n}the points for which

max.V2(x1,x2,,xn)=mn(ε)\displaystyle\quad\max.\mathrm{V}^{2}\left(x_{1},x_{2},\ldots,x_{n}\right)=m_{n}(\varepsilon)
(2ε,12ε)\displaystyle(2\varepsilon 1-2\varepsilon)

is reached. We have

f(ξ1)f(ξ2)f(ξn)mn(ε)E(ξ1,ξ2,,ξn;f)Mn(f)f\left(\xi_{1}\right)f\left(\xi_{2}\right)\ldots f\left(\xi_{n}\right)m_{n}(\varepsilon)\leq\mathrm{E}\left(\xi_{1},\xi_{2},\ldots,\xi_{n};f\right)\leq M_{n}(f)

from where

hasnmn(ε)Mn(f)a^{n}m_{n}(\varepsilon)\leq M_{n}(f)

But

hasnn(n1)1, For nmn(ε)n(n1)14ε, For n\begin{gathered}\sqrt[n(n-1)]{a^{n}}\longrightarrow 1,\text{ pour }n\longrightarrow\infty\\ \sqrt[n(n-1)]{m_{n}(\varepsilon)}\longrightarrow\frac{1}{4}-\varepsilon,\text{ pour }n\longrightarrow\infty\end{gathered}

and it follows that

lim.nMn(f)n(n1)14ε\underset{n\rightarrow\infty}{\lim.}\sqrt[n(n-1)]{\mathrm{M}_{n}(f)}\geq\frac{1}{4}-\varepsilon (22)

however smallε\varepsilon. Relations (21) and (22) therefore show us that:

Theorem XXII. Iff(x)\mathrm{f}(\mathrm{x})is a function (C) the expression

Mn(f)n(n1)\sqrt[n(n-1)]{\mathrm{M}_{n}(f)}

a, forn\mathrm{n}\longrightarrow\infty, a limit which is equal to the transfinite diameter14\frac{1}{4}of the segment 0–1.
22. We will now consider a special case.

Either
f(x)=|xhas1|σ1|xhas2|σ2|xhash|σh|xhash+1|σh+1|xhash+k|σh+kf(x)=\left|x-a_{1}\right|^{\sigma_{1}}\left|x-a_{2}\right|^{\sigma_{2}}\ldots\left|x-a_{h}\right|^{\sigma_{h}}\left|x-a_{h+1}\right|^{\sigma_{h+1}}\ldots\left|x-a_{h+k}\right|^{\sigma_{h+k}}Orhas1<has2<<hash1<hash=0<hash+1=1<hash+2<<hash+ka_{1}<a_{2}<\ldots<a_{h-1}<a_{h}=0<a_{h+1}=1<a_{h+2}<\ldots<a_{h+k}Andσ1,σ2,,σh+k\sigma_{1},\sigma_{2},\ldots,\sigma_{h+k}areh+kh+kpositive numbers. It is a function (C\mathrm{C}^{\prime}). The maximizing polynomialPn(x)\mathrm{P}_{n}(x)is then a solution to the homogeneous linear differential equation of order 2

y"+(σ1xhas1+σ2xhas2++σh+kxhash+k)y+\displaystyle y^{\prime\prime}+\left(\frac{\sigma_{1}}{x-a_{1}}+\frac{\sigma_{2}}{x-a_{2}}+\ldots+\frac{\sigma_{h+k}}{x-a_{h+k}}\right)y^{\prime}+\ldots (23)
+ψ(x)(xhas1)(xhas2)(xhash+k)y=0\displaystyle\cdots+\frac{\psi(x)}{\left(x-a_{1}\right)\left(x-a_{2}\right)\ldots\left(x-a_{h+k}\right)}y=0

Orψ(x)\psi(x)is a polynomial of degreeh+k2h+k-2suitably chosen. Our results therefore allow us to say that an equation of the form (23) admits a polynomial solution of degreennand only one such that this polynomial has all its real zeros and is included in one of the intervals (hasi,hasi+1a_{i},a_{i+1}). EitherPn(x)\mathrm{P}_{n}(x)the degree solutionnnwhich has its zeros in the interval (hasi,hasi+1a_{i},a_{i+1}) AndPn1(x)\mathrm{P}_{n-1}(x)the degree solutionn1n-1which has its zeros in the same interval. We can then say that the zeros of the polynomialsPn(x)\mathrm{P}_{\mathrm{n}}(\mathrm{x})AndPn1(x)\mathrm{P}_{\mathrm{n}-1}(\mathrm{x})separate in the strict sense.

It was Stieltjes who first studied the polynomial solutions of equation (23) 17 ). He showed, taking into account that the equation has at most

(n+h+k2h+k2)=(n+1)(n+2)(n+h+k2)1.2(h+k2)\binom{n+h+k-2}{h+k-2}=\frac{(n+1)(n+2)\cdots(n+h+k-2)}{1.2\cdots(h+k-2)}

polynomial solutions of degreenn, that this equation has exactly(n+h+k2h+k2)\binom{n+h+k-2}{h+k-2}solutions of this form which have all their zeros real and included in the interval (has1,hash+ka_{1},a_{h+k}). The zeros of these polynomials are distributed in all possible ways in the intervals (hasi,hasi+1a_{i},a_{i+1}), to each distribution corresponding only one solution. Moreover to each solution corresponds a maximum problem. These maxima problems, which constitute a generalization of the problem studied in this work, as well as other problems on the distribution of the zeros of the polynomial solutions of an equation of the form (23) will be examined by us in another work which will appear soon 18 ).

0 0 footnotetext: 17 ) Loc. cit. 3 )
18) We have stated more general results in our note: "On a problem of maximum Stielties". CR Acad. Sc., Paris, t. 202 (1936) p. 1645.
1936

Related Posts