Functional differential equations with maxima, via step by step contraction principle

Abstract

T. A. Burton presented in some examples of integral equations a notion of progressive contractions on C([a, ∞[). In 2019, I. A. Rus formalized this notion (I. A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, 3 (2019) no. 3, 111–120), put ”step by step” instead of ”progressive” in this notion, and give some variant of step by step contraction principle in the case of operators with Volterra property on C([a, b], B) and C([a, ∞[, B) where B is a Banach space. In this paper we use the abstract result given by I. A. Rus, to study some classes of functional differential equations with maxima.

Authors

Veronica Ilea
Department of Mathematics Babes-Bolyai University , Faculty Mathematics and Computer Science, Cluj-Napoca, Romania


Diana Otrocol
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy
Technical University of Cluj-Napoca, Romania

Keywords

G-contraction; step by step contraction; Picard operator; weaakly Picard operator; generalized fibre contraction theorem; functional differential equation; functional integral equation; equation with maxima.

References

PDF

Cite this paper as:

V. Ilea, D. Otrocol, Functional differential equations with maxima, via step by step contraction principle, Carpathian J. Math., 37 (2021) no. 2, pp. 195-202, DOI: 10.37193/CJM.2021.02.05

About this paper

Journal

Carpathian J. Mathematics

Publisher Name
Print ISSN

1584 – 2851

Online ISSN

1843 – 4401

Google Scholar Profile

soon

[1] Bainov, D. D. and Hristova, S., Differential equations with maxima, Chapman & Hall/CRC Pure and Applied Mathematics, 2011
[2] Berzig, M., Coincidence and common fixed point results on metric spaces endowed with an arbitrary binary relation and applications, J. Fixed Point Theory Appl., 12 (2012), No. 1-2, 221–238
[3] Burton, T. A., Integral equations, transformations, and a Krasnoselskii–Schaefer type fixed point theorem, Electron. J. Qual. Theory Differ. Equ., (2016), No. 66, 1–13; doi: 10.14232/ejqtde.2016.1.66
[4] Burton, T. A., Existence and uniqueness results by progressive contractions for integro- differential equations, Nonlinear Dyn. Syst. Theory, 16 (2016), No. 4, 366–371
[5] Burton, T. A., An existence theorem for a fractional differential equation using progressive contractions, J. Fract. Calc. Appl, 8 (2017), No. 1, 168–172
[6] Burton, T. A., A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20 (2019), No. 1, 107–112
[7] Corduneanu, C., Abstract Volterra equations: a survey, Math. and Computer Model., 32 (2000), No. (11–13) 1503–1528
[8] Halanay, A., Differential Equations: Stability, Oscillations, Time Lags, Acad. Press, New York, 1966
[9] Ilea, V. and Otrocol, D., On the Burton method of progressive contractions for Volterra integral equations, Fixed Point Theory, 21 (2020), No. 2, 585–594
[10] Marian, D. and Lungu, N., Ulam-Hyers-Rassias stability of some quasilinear partial differential equations of first order, Carpatian J. Math., 35 (2019), No. 2, 165–170
[11] Marian, D., Ciplea, S. A. and Lungu, N., On the Ulam-Hyers stability of biharmonic equation, U. P. B. Sci. Bull., Series A, 82 (2020), No. 2, 141–148
[12] Marian, D., Ciplea, S. A. and Lungu, N., Optimal and nonoptimal Gronwall lemmas, Symmetry, 12 (2020), No. 10, 1728, 1–10
[13] Otrocol, D., Ulam stabilities of differential equation with abstract Volterra operator in a Banach space, Nonlinear Funct. Anal. Appl., 15 (2010), No. 4, 613–619
[14] Otrocol, D. and Rus, I. A., Functional-differential equations with “maxima” via weakly Picard operators theory, Bull. Math. Soc. Sci. Math. Roumanie (N. S) , 51 (99) (2008), No. 3, 253–261
[15] Otrocol, D. and Rus, I. A., Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9 (2008), No. 1, 207–220
[16] Rus, I. A., Generalized contractions and applications, Cluj University Press, 2001
[17] Rus, I. A., Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), No. 1, 191–219
[18] Rus, I. A., Cyclic representations and fixed points, Ann. T. Popoviciu Seminar of Functional Eq. Approx. Convexity, 3 (2005), 171–178
[19] Rus, I. A., Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9 (2008), No. 1, 293–307
[20] Rus, I. A., Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26 (2010), No. 2, 230–258
[21] Rus, I. A., Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, 3 (2019), No. 3, 111–120
[22] Samet, B. and Turinici, M., Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal., 13 (2012), No. 2, 82–97

Functional differential equations with maxima, via step by step contraction principle

Veronica Ilea, Diana Otrocol∗∗ Babeş-Bolyai University, Faculty of Mathematics and Computer Science
Department of Mathematics
Str M. Kogălniceanu No 1, RO-400084 Cluj-Napoca, Romania ∗∗ Technical University of Cluj-Napoca
Str Memorandumului No 28, 400114, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
P.O.Box. 68-1, 400110, Cluj-Napoca, Romania
vdarzu@math.ubbcluj.ro, Diana.Otrocol@math.utcluj.ro
(Received: date)
Key words and phrases:
GG-contraction, step by step contraction, Picard operator, weaakly Picard operator, generalized fiber contraction theorem, functional differential equation, functional integral equation, equation with maxima.
2010 Mathematics Subject Classification:
47H10, 47H09, 34K05, 34K12, 45D05, 45G10.

1. Introduction

In 1990, Corduneanu investigated functional differential equations involving abstract Volterra operators. In this sense, around the year 2000 Corduneanu [7] presented a general study on functional differential equations with abstract or causal Volterra operators.

On the other hand, T.A. Burton ([3]-[6]) presented in some examples of integral equations a notion of progressive contractions on C([a,[).C([a,\infty[). In 2019, following the idea of T.A. Burton and the forward step method ([19]), I.A. Rus formalized this notion ([21]), with ”step by step” instead of ”progressive”, and give some variant of step by step contraction principle in the case of operators with Volterra property on C([a,b],𝔹)C([a,b],\mathbb{B)} and C([a,[,𝔹)C([a,\infty[,\mathbb{B}) where 𝔹\mathbb{B} is a Banach space.

In this paper we consider the following functional differential equation with maxima

(1.1) x(t)=f(t,x(t),maxaξtx(ξ)),t[a,b]x^{\prime}(t)=f(t,x(t),\underset{a\leq\xi\leq t}{\max}x(\xi)),\ t\in[a,b]

with the condition

(1.2) x(a)=α,x(a)=\alpha,

where α\alpha\in\mathbb{R} and fC([a,b]×2)f\in C([a,b]\times\mathbb{R}^{2}) are given. To prove our results, we shall use the abstract result given by I.A. Rus [21].

2. Preliminaries

2.1. Weakly Picard operators

In the sequel, the following results are useful for some of the proofs in the paper (see [16, 17]).

Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is called weakly Picard operator (WPO) if the sequence of successive approximations, {An(x)}n\{A^{n}(x)\}_{n\in\mathbb{N}}, converges for all xXx\in X and its limit (which generally depend on xx) is a fixed point of AA. If an operator AA is WPO with a unique fixed point, that is, FA={x}F_{A}=\{x^{\ast}\}, then, by definition, AA is called a Picard operator (PO).

If A:XXA:X\rightarrow X is a WPO, we can define the operator A:XFAA^{\infty}:X\rightarrow F_{A}, by A(x):=limnA^{\infty}(x):=\underset{n\rightarrow\infty}{\lim} An(x).A^{n}(x).

2.2. GG-contractions

Let (X,d)(X,d) be a metric space and GX×XG\subset X\times X be a nonempty binary relation. An operator A:XXA:X\rightarrow X is a GG-contraction if there existsl(0,1)\ l\in(0,1) such that,

d(A(x),A(y))ld(x,y),(x,y)G.d(A(x),A(y))\leq ld(x,y),\ \forall(x,y)\in G.

Let us give an example of GG-contraction. For other examples see [2], [21], [18] and [22].

Let a<c<ba<c<b and X:=C[a,b],X:=C[a,b], with d(x,y):=maxatb|x(t)y(t)|.d(x,y):=\underset{a\leq t\leq b}{\max}\left|x(t)-y(t)\right|. For HC([a,b]×[a,b]×)H\in C([a,b]\times[a,b]\times\mathbb{R}) we consider the operator, A:C[a,b]C[a,b]A:C[a,b]\rightarrow C[a,b] defined by

A(x)(t):=atH(t,s,maxaξsx(ξ))𝑑s.A(x)(t):=\int\nolimits_{a}^{t}H(t,s,\underset{a\leq\xi\leq s}{\max}x(\xi))ds.

We suppose that there exists L>0L>0 such that

|H(t,s,u)H(t,s,v)|L|uv|,t,s[a,b],u,v.\left|H(t,s,u)-H(t,s,v)\right|\leq L\left|u-v\right|,\ t,s\in[a,b],\ u,v\in\mathbb{R}.

Let G:={(x,y)|x,yC([a,b],),x|[a,c]=y|[a,c]}.G:=\{(x,y)|\ x,y\in C([a,b],\mathbb{R}),\ \left.x\right|_{[a,c]}=\left.y\right|_{[a,c]}\}. If L(bc)<1,L(b-c)<1, then AA is a GG-contraction.

Indeed for t[a,c]t\in[a,c] if x|[a,c]=y|[a,c],\left.x\right|_{[a,c]}=\left.y\right|_{[a,c]},\ then A(x)(t)=A(y)(t).A(x)(t)=A(y)(t).

If t[c,b],t\in[c,b],\ then

A(x)(t)=acH(t,s,maxaξsx(ξ))𝑑s+ctH(t,s,maxaξsx(ξ))𝑑s,A(x)(t)=\int\nolimits_{a}^{c}H(t,s,\underset{a\leq\xi\leq s}{\max}x(\xi))ds+\int\nolimits_{c}^{t}H(t,s,\underset{a\leq\xi\leq s}{\max}x(\xi))ds,
x,yGA(x)A(y)L(bc)xy.x,y\in G\Rightarrow\left\|A(x)-A(y)\right\|\leq L(b-c)\left\|x-y\right\|.

2.3. Step by step contraction

Let (𝔹,||)(\mathbb{B},\left|\cdot\right|) be a (real or complex) Banach space and C([a,c],𝔹)C([a,c],\mathbb{B}) the Banach space with max-norm, \left\|\cdot\right\|. In what follows, in all spaces of functions we consider max-norm. For m,m2m\in\mathbb{N},\ m\geq 2, lett0:=a,tk:=t0+kbam,k=1,m¯.\ t_{0}:=a,\ t_{k}:=t_{0}+k\dfrac{b-a}{m},\ k=\overline{1,m}.\ Let V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) be an operator with Volterra property. Let Vk:C([t0,tk],𝔹)C([t0,tk],𝔹),k=1,m1¯V_{k}:C([t_{0},t_{k}],\mathbb{B})\rightarrow C([t_{0},t_{k}],\mathbb{B}),k=\overline{1,m-1} the operator induced by VV on C([t0,tk],𝔹).C([t_{0},t_{k}],\mathbb{B}). We also consider the following sets,

Gk:={(x,y)|x,yC([t0,tk+1],𝔹),x|[t0,tk]=y|[t0,tk]},k=1,m1¯.G_{k}:=\{(x,y)|\ x,y\in C([t_{0},t_{k+1}],\mathbb{B}),\ \left.x\right|_{[t_{0},t_{k}]}=\left.y\right|_{[t_{0},t_{k}]}\},\ k=\overline{1,m-1}.

For xkC([t0,tk],𝔹),k=1,m1¯,x_{k}\in C([t_{0},t_{k}],\mathbb{B}),\ k=\overline{1,m-1}, we denote

Xxk:={yC([t0,tk+1],𝔹),y|[t0,tk]=xk}.X_{x_{k}}:=\{y\in C([t_{0},t_{k+1}],\mathbb{B}),\ \left.y\right|_{[t_{0},t_{k}]}=x_{k}\}.

The following result is given in [21].

Theorem 2.1.

(Theorem of step by step contraction). We suppose that:

  1. (1)

    V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) has the Volterra property;

  2. (2)

    V1V_{1} is a contraction;

  3. (3)

    VkV_{k} is a Gk1G_{k-1}-contraction, for k=2,m¯k=\overline{2,m}.

Then

  1. (i)

    FV={x};F_{V}=\{x^{\ast}\};

  2. (ii)
    x|[t0,t1]\displaystyle\left.x^{\ast}\right|_{[t_{0},t_{1}]} =V1(x),xC([t0,t1],),\displaystyle=V_{1}^{\infty}(x),\ \forall x\in C([t_{0},t_{1}],\mathbb{R}),
    x|[t0,t2]\displaystyle\left.x^{\ast}\right|_{[t_{0},t_{2}]} =V2(x),xXx|[t0,t1],\displaystyle=V_{2}^{\infty}(x),\ \forall x\in X_{\left.x^{\ast}\right|_{[t_{0},t_{1}]}},
    \displaystyle\vdots
    x|[t0,tm1]\displaystyle\left.x^{\ast}\right|_{[t_{0},t_{m-1}]} =Vm1(x),xXx|[t0,tm2];\displaystyle=V_{m-1}^{\infty}(x),\ \forall x\in X_{\left.x^{\ast}\right|_{[t_{0},t_{m-2}]}};
  3. (iii)

    x=V(x),xXx|[t0,tm1].x^{\ast}=V^{\infty}(x),\ \ \forall x\in X_{\left.x^{\ast}\right|_{[t_{0},t_{m-1}]}}.

For other details and results concerning the theory of GG-contraction, step by step contraction, Picard operator, weakly Picard Operator and equations with maxima, see: [1], ([8]-[21]).

3. Main result

In this section, we shall establish a new result of existence and uniqueness of the solution of the functional differential equation with maxima (1.1).

The problem (1.1)–(1.2), xC1([a,b],)x\in C^{1}([a,b],\mathbb{R}) is equivalent with the fixed point equation

(3.3) x(t)=α+atf(s,x(s),maxaξsx(ξ))𝑑s,t[a,b].x(t)=\alpha+\int_{a}^{t}f(s,x(s),\underset{a\leq\xi\leq s}{\max}x(\xi))ds,\ t\in[a,b].

It is clear that equation (3.3) is equivalent with x=V(x)x=V(x), where the operator V:C([a,b],)C([a,b],),V:C([a,b],\mathbb{R})\rightarrow C([a,b],\mathbb{R}),defined by

(3.4) V(x)(t):=α+atf(s,x(s),maxaξsx(ξ))𝑑s,t[a,b].V(x)(t):=\alpha+\int_{a}^{t}f(s,x(s),\underset{a\leq\xi\leq s}{\max}x(\xi))ds,\ t\in[a,b].

The operator VV has the Volterra property, i.e.,

t(a,b),x,yC[a,b],x|[a,t]=y|[a,t]V(x)|[a,t]=V(y)|[a,t].t\in(a,b),\ x,y\in C[a,b],\ \left.x\right|_{[a,t]}=\left.y\right|_{[a,t]}\Rightarrow\left.V(x)\right|_{[a,t]}=\left.V(y)\right|_{[a,t]}.

This implies that the operator VV induced, for each cc with a<c<ba<c<b and, the operator Vc:C[a,c]C[a,c],V_{c}:C[a,c]\rightarrow C[a,c], defined by, Vc(x)(t):=V(x~),V_{c}(x)(t):=V(\widetilde{x}),\ where x~C[a,b]\widetilde{x}\in C[a,b] is such that, x~|[a,c]=x\left.\widetilde{x}\right|_{[a,c]}=x.

In what follows we consider the notations from Section 2.3, where 𝔹=\mathbb{B}=\mathbb{R}.

We have

Theorem 3.2.

We suppose that:

  1. (1)

    There exists L>0L>0, such that

    |f(t,u1,u2)f(t,v1,v2)|Lmax(|u1v1|,|u2v2|),\left|f(t,u_{1},u_{2})-f(t,v_{1},v_{2})\right|\leq L\max(\left|u_{1}-v_{1}\right|,\left|u_{2}-v_{2}\right|),

    for all t[a,b],ui,vi,i=1,2.t\in[a,b],u_{i},v_{i}\in\mathbb{R},i=1,2.

  2. (2)

    mm\in\mathbb{N}^{\ast} is such that

    L(ba)m<1.\frac{L(b-a)}{m}<1.

Then, we have

  1. (i)

    FV={x},F_{V}=\{x^{\ast}\},\ i.e., the problem (1.1)-(1.2) has a unique solution.

  2. (ii)
    x|[t0,t1]\displaystyle\left.x^{\ast}\right|_{[t_{0},t_{1}]} =V1(x),xC[t0,t1],\displaystyle=V_{1}^{\infty}(x),\ \forall x\in C[t_{0},t_{1}],
    x|[t0,t2]\displaystyle\left.x^{\ast}\right|_{[t_{0},t_{2}]} =V2(x),xXx\displaystyle=V_{2}^{\infty}(x),\ \forall x\in X_{x^{\ast}}
    \displaystyle\vdots
    x|[t0,tm1]\displaystyle\left.x^{\ast}\right|_{[t_{0},t_{m-1}]} =Vm1(x),xXx|[t0,tm1].\displaystyle=V_{m-1}^{\infty}(x),\ \forall x\in\left.X_{x^{\ast}}\right|_{[t_{0},t_{m-1}]}.
  3. (iii)

    x=V(x),xXx|[t0,tm1].x^{\ast}=V^{\infty}(x),\ \forall x\in\left.X_{x^{\ast}}\right|_{[t_{0},t_{m-1}]}.

Proof.

We shall prove that in the conditions (1) and choosing mm as in (2), we are in the conditions of Theorem of step by step contractions.

Let us prove that V1V_{1} is an contraction. We have:

|V1(x)(t)V1(y)(t)|\displaystyle\left|V_{1}(x)(t)-V_{1}(y)(t)\right| |atf(s,x(s),maxaξsx(ξ))𝑑satf(s,y(s),maxaξsy(ξ))𝑑s|\displaystyle\leq\left|\int_{a}^{t}f(s,x(s),\underset{a\leq\xi\leq s}{\max}x(\xi))ds-\int_{a}^{t}f(s,y(s),\underset{a\leq\xi\leq s}{\max}y(\xi))ds\right|
Latmax(|x(s)y(s)|,|maxaξsx(ξ)maxaξsy(ξ)|)𝑑s\displaystyle\leq L\int_{a}^{t}\max\left(\left|x(s)-y(s)\right|,\left|\underset{a\leq\xi\leq s}{\max}x(\xi)-\underset{a\leq\xi\leq s}{\max}y(\xi)\right|\right)ds
L(ba)mmaxt0tt1|x(t)y(t)|.\displaystyle\leq\frac{L(b-a)}{m}\underset{t_{0}\leq t\leq t_{1}}{\max}\left|x(t)-y(t)\right|.

It follows that

maxt0tt1|V1(x)(t)V1(y)(t)|L(ba)mmaxt0tt1|x(t)y(t)|.\underset{t_{0}\leq t\leq t_{1}}{\max}\left|V_{1}(x)(t)-V_{1}(y)(t)\right|\leq\frac{L(b-a)}{m}\underset{t_{0}\leq t\leq t_{1}}{\max}\left|x(t)-y(t)\right|.

So, V1V_{1} is a contraction.

Let us prove that V2V_{2} is a G1G_{1}-contraction. First we remark that, for t[t0,t1]t\in[t_{0},t_{1}]

V2(x)(t)=V2(y)(t),for x,yG1.V_{2}(x)(t)=V_{2}(y)(t),\ \text{for }x,y\in G_{1}.
|V2(x)(t)V2(y)(t)|\displaystyle\left|V_{2}(x)(t)-V_{2}(y)(t)\right| =|at1[f(s,x(s),maxaξsx(ξ))f(s,y(s),maxaξsy(ξ))]ds\displaystyle=\left|\int_{a}^{t_{1}}\left[f(s,x(s),\underset{a\leq\xi\leq s}{\max}x(\xi))-f(s,y(s),\underset{a\leq\xi\leq s}{\max}y(\xi))\right]ds\right.
+t1t[f(s,x(s),maxaξsx(ξ))f(s,y(s),maxaξsy(ξ))]ds|\displaystyle\quad\left.+\int_{t_{1}}^{t}\left[f(s,x(s),\underset{a\leq\xi\leq s}{\max}x(\xi))-f(s,y(s),\underset{a\leq\xi\leq s}{\max}y(\xi))\right]ds\right|
=|t1t[f(s,x(s),maxaξsx(ξ))f(s,y(s),maxaξsy(ξ))]𝑑s|\displaystyle=\left|\int_{t_{1}}^{t}\left[f(s,x(s),\underset{a\leq\xi\leq s}{\max}x(\xi))-f(s,y(s),\underset{a\leq\xi\leq s}{\max}y(\xi))\right]ds\right|
L(ba)mmaxt0tt2|x(t)y(t)|.\displaystyle\leq\frac{L(b-a)}{m}\underset{t_{0}\leq t\leq t_{2}}{\max}\left|x(t)-y(t)\right|.

In a similar way we prove that V3,,VmV_{3},\ldots,V_{m} are G2,,Gm1G_{2},\ldots,G_{m-1} contractions.

Now the prove follows from the Theorem of step by step contractions. ∎

Remark 3.1.

In the conditions of the Theorem 3.2 let us denote x|[t0,tk]=xk, 1km1.\left.x^{\ast}\right|_{[t_{0},t_{k}]}=x_{k}^{\ast},\ 1\leq k\leq m-1. Then we have that:

The sequence of successive approximations

x1,n+1(t)=atf(s,x1,n(s),maxaξsx1,n(ξ))𝑑s,t[t0,t1]x_{1,n+1}(t)=\int_{a}^{t}f(s,x_{1,n}(s),\underset{a\leq\xi\leq s}{\max}x_{1,n}(\xi))ds,\ t\in[t_{0},t_{1}]

converges uniformly on [t0,t1][t_{0},t_{1}] to x1=x|[t0,t1].x_{1}^{\ast}=\left.x^{\ast}\right|_{[t_{0},t_{1}]}.

The sequence of successive approximations

x2,n+1(t)={x1(t),t[t0,t1]x1(t1)+t1tf(s,x2,n(s),maxaξsx2,n(ξ))𝑑s,t[t1,t2]x_{2,n+1}(t)=\left\{\begin{array}[c]{l}x_{1}^{\ast}(t),\ t\in[t_{0},t_{1}]\\ x_{1}^{\ast}(t_{1})+\int_{t_{1}}^{t}f(s,x_{2,n}(s),\underset{a\leq\xi\leq s}{\max}x_{2,n}(\xi))ds,\ t\in[t_{1},t_{2}]\end{array}\right.

converges uniformly on [t0,t2][t_{0},t_{2}] to x2=x|[t0,t2].x_{2}^{\ast}=\left.x^{\ast}\right|_{[t_{0},t_{2}]}.

\cdots

The sequence of successive approximations

xm1,n+1(t)={xm2(t),t[t0,tm2]xm2(tm2)+tm2tf(s,xm1,n(s),maxaξsxm1,n(ξ))𝑑s,t[tm2,tm1]x_{m-1,n+1}(t)=\left\{\begin{array}[c]{l}x_{m-2}^{\ast}(t),\ t\in[t_{0},t_{m-2}]\\ x_{m-2}^{\ast}(t_{m-2})+\int_{t_{m-2}}^{t}f(s,x_{m-1,n}(s),\underset{a\leq\xi\leq s}{\max}x_{m-1,n}(\xi))ds,\ t\in[t_{m-2},t_{m-1}]\end{array}\right.

converges uniformly on [t0,tm1][t_{0},t_{m-1}] to xm1=x|[t0,tm1].x_{m-1}^{\ast}=\left.x^{\ast}\right|_{[t_{0},t_{m-1}]}.

The above considerations give rise to the following problem: In which conditions the operator VV is Picard operator?

From the Fibre contraction principle (see [21]) the answer is the following: In the conditions of the Theorem 3.2, the operator VV is a Picard operator with respect to the uniform convergence on [t0,tm][t_{0},t_{m}]\cdot

In order to prove this we consider the following operators induced by the operator V.V. First of all from (3.4) we have that:

(4.1) V(x)(t):=α+t0tf(s,x(s),maxt0ξsx(ξ))𝑑s,t[t0,t1]V(x)(t):=\alpha+\int_{t_{0}}^{t}f(s,x(s),\underset{t_{0}\leq\xi\leq s}{\max}x(\xi))ds,\ t\in[t_{0},t_{1}],

(4.2) V(x)(t):=α+t0t1f(s,x(s),maxt0ξsx(ξ))𝑑s+t1tf(s,x(s),maxt0ξsx(ξ))𝑑s,t[t1,t2]V(x)(t):=\alpha+\int_{t_{0}}^{t_{1}}f(s,x(s),\underset{t_{0}\leq\xi\leq s}{\max}x(\xi))ds+\int_{t_{1}}^{t}f(s,x(s),\underset{t_{0}\leq\xi\leq s}{\max}x(\xi))ds,\ t\in[t_{1},t_{2}],

\vdots

(4.k) V(x)(t):=α+t0t1f(s,x(s),maxt0ξsx(ξ))𝑑s++tk1tf(s,x(s),maxt0ξsx(ξ))𝑑s,t[tk1,tk],k=1,m¯.V(x)(t):=\alpha+\int_{t_{0}}^{t_{1}}f(s,x(s),\underset{t_{0}\leq\xi\leq s}{\max}x(\xi))ds+...+\int_{t_{k-1}}^{t}f(s,x(s),\underset{t_{0}\leq\xi\leq s}{\max}x(\xi))ds,\ t\in[t_{k-1},t_{k}],k=\overline{1,m}.

Let R:C[t0,tm]C[t0,t1]×C[t1,t2]××C[tm1,tm]R:C[t_{0},t_{m}]\rightarrow C[t_{0},t_{1}]\times C[t_{1},t_{2}]\times...\times C[t_{m-1},t_{m}] be defined by,

x(x|[t0,t1],x|[t1,t2],,x|[tm1,tm]).x\rightarrow\left(\left.x\right|_{[t_{0},t_{1}]},\left.x\right|_{[t_{1},t_{2}]},...,\left.x\right|_{[t_{m-1},t_{m}]}\right).

We also consider the following subset:

Uk=1mC[tk1,tk],U:={(x1,,xm)xk(tk)=xk+1(tk),k=1,m1¯}U\subset\prod_{k=1}^{m}C[t_{k-1},t_{k}],U:=\left\{\left(x_{1,}...,x_{m}\right)\mid x_{k}\left(t_{k}\right)=x_{k+1}\left(t_{k}\right),k=\overline{1,m-1}\right\}\cdot

It is clear that R:C[t0,tm]UR:C[t_{0},t_{m}]\rightarrow U is a bijection.

Let us consider the following operators induced by the operator V:V:

T1:C[t0,t1]C[t0,t1],T_{1}:C[t_{0},t_{1}]\rightarrow C[t_{0},t_{1}],

T1(x1)(t):=α+t0tf(s,x1(s),maxt0ξsx1(ξ))𝑑s,t[t0,t1],T_{1}\left(x_{1}\right)\left(t\right):=\alpha+\int_{t_{0}}^{t}f(s,x_{1}(s),\underset{t_{0}\leq\xi\leq s}{\max}x_{1}(\xi))ds,\ t\in[t_{0},t_{1}],

T2:C[t0,t1]×C[t1,t2]C[t1,t2],T_{2}:C[t_{0},t_{1}]\times C[t_{1},t_{2}]\rightarrow C[t_{1},t_{2}],

T2(x1,x2)(t):=α+t0t1f(s,x1(s),maxt0ξsx1(ξ))𝑑s+t1tf(s,x2(s),maxt0ξsx2(ξ))𝑑s,t[t1,t2],T_{2}\left(x_{1},x_{2}\right)\left(t\right):=\alpha+\int_{t_{0}}^{t_{1}}f(s,x_{1}(s),\underset{t_{0}\leq\xi\leq s}{\max}x_{1}(\xi))ds+\int_{t_{1}}^{t}f(s,x_{2}(s),\underset{t_{0}\leq\xi\leq s}{\max}x_{2}(\xi))ds,\ t\in[t_{1},t_{2}],

\vdots

Tk:C[t0,t1]×C[t1,t2]××C[tk1,tk]C[tk1,tk],T_{k}:C[t_{0},t_{1}]\times C[t_{1},t_{2}]\times...\times C[t_{k-1},t_{k}]\rightarrow C[t_{k-1},t_{k}],

Tk(x1,x2,,xk)(t)\displaystyle T_{k}\left(x_{1},x_{2},...,x_{k}\right)\left(t\right) :=α+t0t1f(s,x1(s),maxt0ξsx1(ξ))𝑑s+\displaystyle:=\alpha+\int_{t_{0}}^{t_{1}}f(s,x_{1}(s),\underset{t_{0}\leq\xi\leq s}{\max}x_{1}(\xi))ds+...
+tk1tf(s,xk(s),maxt0ξsxk(ξ))𝑑s,t[tk1,tk],k=1,m¯\displaystyle\quad+\int_{t_{k-1}}^{t}f(s,x_{k}(s),\underset{t_{0}\leq\xi\leq s}{\max}x_{k}(\xi))ds,\ t\in[t_{k-1},t_{k}],k=\overline{1,m}

and

T:k=1mC[tk1,tk]k=1mC[tk1,tk],T:=(T1,T2,,Tm).T:\prod_{k=1}^{m}C[t_{k-1},t_{k}]\rightarrow\prod_{k=1}^{m}C[t_{k-1},t_{k}],T:=\left(T_{1},T_{2},...,T_{m}\right).

In the conditions of Theorem 3.2, the operators, T1,T2(x1,),,Tm(x1,,xm1,)T_{1},T_{2}\left(x_{1},\cdot\right),...,T_{m}\left(x_{1},...,x_{m-1},\cdot\right) are contractions. From the Fibre contraction Principle, TT is a Picard operator.

Now, we observe that: V=R1TRV=R^{-1}TR and Vn=R1TnR.\ V^{n}=R^{-1}T^{n}R. These imply that the operator VV is a Picard operator.

4. Differential inequalities

In this section we will emphasize the importance of the above result by applying for the operator VV the Gronwall type inequalities and the comparison theorem.

In this section we suppose that

  1. (H)(H)

    there exists L>0L>0 such that

    |f(t,u1,u2)f(t,v1,v2)|Lmax(|u1v1|,|u2v2|)\left|f(t,u_{1},u_{2})-f(t,v_{1},v_{2})\right|\leq L\max(\left|u_{1}-v_{1}\right|,\left|u_{2}-v_{2}\right|)

    for all t[a,b]t\in[a,b] and ui,vi,i=1,2.u_{i},v_{i}\in\mathbb{R},i=1,2.

We consider on C([a,b],)C([a,b],\mathbb{R}) the max norm and in condition (H),(H), the operator VV defined by (3.4) is a Picard operator. So, in the condition (H)(H), the problem (1.1)-(1.2) has in C([a,b],)C([a,b],\mathbb{R}) a unique solution x.x^{\ast}. Moreover, for t[a,b],x(t)=limnxn(t),t\in[a,b],\ x^{\ast}(t)=\underset{n\rightarrow\infty}{\lim}x_{n}(t), for each x0C([a,b],),x_{0}\in C([a,b],\mathbb{R}), where (xn)n(x_{n})_{n\in\mathbb{N}} is defined by

xn+1=α+atf(s,xn(s),maxaξsxn(ξ))𝑑s,t[a,b].x_{n+1}=\alpha+\int_{a}^{t}f(s,x_{n}(s),\underset{a\leq\xi\leq s}{\max}x_{n}(\xi))ds,\ t\in[a,b].

Now we can apply Abstract Gronwall Lemma (see [21]).

Theorem 4.3.

Let us consider the problem (1.1)-(1.2) in the condition (H)(H) andf(t,,):2\ f(t,\cdot,\cdot):\mathbb{R}^{2}\rightarrow\mathbb{R} is increasing, i.e., u1v1,u2v2f(t,u1,u2)f(t,v1,v2),u_{1}\leq v_{1},u_{2}\leq v_{2}\Rightarrow f(t,u_{1},u_{2})\leq f(t,v_{1},v_{2}), for all t[a,b]t\in[a,b]. Let us denote by xx^{\ast} the unique solution of (1.1)-(1.2). Then the following implications holds:

  1. (i)

    xC([a,b],),x(a)=α,x\in C([a,b],\mathbb{R}),\ x(a)=\alpha, x(t)f(t,x(t),maxaξtx(ξ)),t[a,b]xx;x^{\prime}(t)\leq f(t,x(t),\underset{a\leq\xi\leq t}{\max}x(\xi)),\ t\in[a,b]\Rightarrow x\leq x^{\ast};

  2. (ii)

    xC([a,b],),x(a)=α,x\in C([a,b],\mathbb{R}),\ x(a)=\alpha, x(t)f(t,x(t),maxaξtx(ξ)),t[a,b]xx.x^{\prime}(t)\geq f(t,x(t),\underset{a\leq\xi\leq t}{\max}x(\xi)),\ t\in[a,b]\Rightarrow x\geq x^{\ast}.

In a similar way, a comparison theorem for equation (1.1) can be obtained, using the Abstract Comparison Lemma.

We consider now the following functional differential equations with maxima

(4.5) x(t)=fi(t,x(t),maxaξtx(ξ)),t[a,b]x^{\prime}(t)=f_{i}(t,x(t),\underset{a\leq\xi\leq t}{\max}x(\xi)),\ t\in[a,b]

with the condition

(4.6) x(a)=αi,x(a)=\alpha_{i},

where αi\alpha_{i}\in\mathbb{R} and fiC([a,b]×2),i=1,2,3f_{i}\in C([a,b]\times\mathbb{R}^{2}),\ i=1,2,3 are given. We suppose that

  1. (H)(H^{\prime})

    there exists Li>0L_{i}>0 such that

    |fi(t,u1,u2)fi(t,v1,v2)|Limax(|u1v1|,|u2v2|),\left|f_{i}(t,u_{1},u_{2})-f_{i}(t,v_{1},v_{2})\right|\leq L_{i}\max(\left|u_{1}-v_{1}\right|,\left|u_{2}-v_{2}\right|),

    for all t[a,b]t\in[a,b] and u1,v1,u2,v2,i=1,2,3.u_{1},v_{1},u_{2},v_{2}\in\mathbb{R},i=1,2,3.

Theorem 4.4.

Let us consider the problems (4.5)-(4.6) in the condition: (H)(H^{\prime}),f2(t,,):2\ f_{2}(t,\cdot,\cdot):\mathbb{R}^{2}\rightarrow\mathbb{R}\ is increasing, for all t[a,b]t\in[a,b] and α1α2α3,f1f2f3\alpha_{1}\leq\alpha_{2}\leq\alpha_{3},\ f_{1}\leq f_{2}\leq f_{3}. Let us denote by xi,i=1,2,3x_{i}^{\ast},i=1,2,3 the unique solutions of (4.5)-(4.6). Then the following implication holds:

x1(a)x2(a)x3(a)x1x2x3.x_{1}(a)\leq x_{2}(a)\leq x_{3}(a)\Rightarrow x_{1}^{\ast}\leq x_{2}^{\ast}\leq x_{3}^{\ast}.

Acknowledgement The authors would like to express their special thanks and gratitude to Professor Ioan A. Rus for the ideas and continuous support along the years.

References

  • [1] D. D. Bainov, S. Hristova, Differential equations with maxima, Chapman & Hall/CRC Pure and Applied Mathematics, 2011.
  • [2] M. Berzig, Coincidence and common fixed point results on metric spaces endowed with an arbitrary binary relation and applications, J. Fixed Point Theory Appl., 12, No. 1-2 (2012) 221–238.
  • [3] T. A. Burton, Integral equations, transformations, and a Krasnoselskii–Schaefer type fixed point theorem, Electron. J. Qual. Theory Differ. Equ., No. 66 (2016) 1–13; doi: 10.14232/ejqtde.2016.1.66
  • [4] T. A. Burton, Existence and uniqueness results by progressive contractions for integro- differential equations, Nonlinear Dynamics and Systems Theory, 16 (4) (2016) 366–371.
  • [5] T. A. Burton, An existence theorem for a fractional differential equation using progressive contractions, Journal of Fractional Calculus and Applications, 8(1) (2017), 168-172.
  • [6] T. A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20 (2019), No. 1, 107-112.
  • [7] C. Corduneanu, Abstract Volterra equations: a survey, Math. and Computer Model., 32(11–13) (2000), 1503–1528.
  • [8] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Acad. Press, New York, 1966.
  • [9] V. Ilea, D. Otrocol, On the Burton method of progressive contractions for Volterra integral equations, Fixed Point Theory, 21 (2020), No. 2, 585–594.
  • [10] D. Marian, N. Lungu, Ulam-Hyers-Rassias stability of some quasilinear partial differential equations of first order, Carpatian J. Math., 35(2) (2019) 165–170.
  • [11] D. Marian, S. A. Ciplea, N. Lungu, On the Ulam-Hyers stability of biharmonic equation, U.P.B. Sci. Bull., Series A, 82, No. 2, (2020), 141–148.
  • [12] D. Marian, S. A. Ciplea, N. Lungu, Optimal and nonoptimal Gronwall lemmas, Symmetry, 12(10) (2020) 1728.
  • [13] D. Otrocol, Ulam stabilities of differential equation with abstract Volterra operator in a Banach space, Nonlinear Funct. Anal. Appl. 15(4) (2010) 613–619.
  • [14] D. Otrocol, I. A. Rus, Functional-differential equations with “maxima” via weakly Picard operators theory, Bull. Math. Soc. Sci. Math. Roumanie, (3) 51(99) (2008), 253–261.
  • [15] D. Otrocol, I. A. Rus, Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9 (2008), No. 1, 207–220.
  • [16] I.A. Rus, Generalized contractions and applications, Cluj University Press, 2001.
  • [17] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), No. 1, 191–219.
  • [18] I.A. Rus, Cyclic representations and fixed points, Ann. T. Popoviciu Seminar of Functional Eq. Approx. Convexity, 3(2005), 171–178.
  • [19] I.A. Rus, Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9 (2008), No. 1, 293–307.
  • [20] I.A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), No. 2, 230–258.
  • [21] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, 3 (2019) No. 3, 111–120.
  • [22] B. Samet, M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal. 13 (2012), No. 2, 82–97.
2021

Related Posts