Functional-differential equations with “maxima” via weakly Picard operators theory

Abstract

The purpose of this paper is to present a differential equation with ”maxima”. Existence, uniqueness, inequalities of Caplygin type and data dependence (monotony, continuity) results for the solution of the Cauchy problem of this equation are obtained using weakly Picard operators theory.

Authors

Diana Otrocol
Tiberiu Popoviciu” Institute of Numerical Analysis,Cluj-Napoca, Romania Academy

I.A. Rus
Department of Applied Mathematics, “Babes-Bolyai” University, Cluj-Napoca, Romania

Keywords

Picard operators; weakly Picard operators; functionaldifferential equations with ”maxima”; fixed points; data dependence.

Paper coordinates

D. Otrocol, I.A. Rus, Functional-differential equations with “maxima” via weakly Picard operators theoryBull. Math. Soc. Sci. Math. Roumanie, 51(99) 2008, no. 3, 253-261

PDF

About this paper

Journal

Bull. Math. Soc. Sci. Math. Roumanie

Publisher Name

Bucuresti, Societatea de Ştiinţe Matematice din România,

DOI
Print ISSN
Online ISSN

 1220-3874

google scholar link

[1] N.V. Azbelev (ed), Functional-differential equations (Russian), Perm. Politekh. Inst., Perm, 1985.
[2] D. Bainov and D. Mishev, Oscillation theory of operator-differential equations, World Scientific, Singapore, 1995.
[3] L. Georgiev, V.G. Angelov, On the existence and uniqueness of solutions for maximum equations, Glasnik Matematicki, 37 (2002), no. 2, 275–281.
[4] P. Gonzales and M. Pinto, Convergent solutions of certain nonlinear differential equations with maxima, Math. Comput. Modelling, 45 (2007), nos. 1–2, 1–10.
[5] J. Hale, Theory of functional differential equations, Springer, 1977.
[6] A. Ivanov, E. Liz, S. Trofimchuk, Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima, Tohoku Mathematical Journal, Vol. 54 (2002), 277–295.
[7] A. Ivanov, E. Liz, S. Trofimchuk, Global stability of a class of scalar nonlinear delay differential equations, Differential Equations and Dynamical Systems, Vol. 11 (2003), 33–54.
[8] V. Kolmanovskii and A. Myshkis, Applied theory of functional-differential equations, Mathematics and its Applications (Soviet Series), 85, Kluwer Academic Publishers Group, Dordrecht, 1992.
[9] M. Ma lgorzata and G. Zhang, On unstable neutral difference equations with ”maxima”, Math. Slovaca, 56 (2006), no. 4, 451–463.
[10] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), No.1, 191–219.
[11] I.A. Rus, Generalized contractions, Cluj University Press, 2001.
[12] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, 2 (2001), 41–58.
[13] E. Stepanov, On solvability of same boundary value problems for differential equations with ”maxima”, Topological Methods in Nonlinear Analysis, 8 (1996), 315–326.
[14] M. Zima, The abstract Gronwall lemma for some nonlinear operators, Demonstratio Matematica, 31 (1998), no. 2, 325–332.

FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH ”MAXIMA”, VIA WEAKLY PICARD OPERATORS THEORY

Diana Otrocol and Ioan A. Rus
Abstract.

The purpose of this paper is to present a differential equation with ”maxima”. Existence, uniqueness, inequalities of Čaplygin type and data dependence (monotony, continuity) results for the solution of the Cauchy problem of this equation are obtained using weakly Picard operators theory.
MSC 2000: 45N05, 47H10.
Keywords: Picard operators, weakly Picard operators, functional-differential equations with ”maxima”, fixed points, data dependence.

“Tiberiu Popoviciu” Institute of Numerical Analysis, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania, e-mail: dotrocol@ictp.acad.ro.
Department of Applied Mathematics, “Babeş-Bolyai” University, Cluj-Napoca, Romania, e-mail: iarus@math.ubbcluj.ro.

1. Introduction

Differential equations with maximum arise naturally when solving practical problems, in particular, in those which appear in the study of systems with automatic regulation. The existence and uniqueness of solutions of equation with maxima is considered in [1], [3]-[5], [8], [13]. The asymptotic stability of the solution of this equations and other problems concerning equations with maxima are investigated in [2], [6], [7], [9], [14].

The purpose of this paper is to study the following Cauchy problem

(1.1) x(t)=f(t,x(t),maxaξtx(ξ)),t[a,b]x^{\prime}(t)=f(t,x(t),\underset{a\leq\xi\leq t}{\max}x(\xi)),\ t\in[a,b]
(1.2) x(a)=αx(a)=\alpha

where

  • (C1)

    α\alpha\in\mathbb{R} and fC([a,b]×2)f\in C([a,b]\times\mathbb{R}^{2}) are given;

  • (C2)

    there exists Lf>0L_{f}>0 such that

    |f(t,u1,u2)f(t,v1,v2)|Lfmax(|u1v1|,|u2v2|)\left|f(t,u_{1},u_{2})-f(t,v_{1},v_{2})\right|\leq L_{f}\max(\left|u_{1}-v_{1}\right|,\left|u_{2}-v_{2}\right|)

    for all t[a,b]t\in[a,b] and ui,vi,i=1,2.u_{i},v_{i}\in\mathbb{R},i=1,2.

In the condition (C1)(C_{1}) the problem (1.1)–(1.2), xC1[a,b]x\in C^{1}[a,b] is equivalent with the fixed point equation

(1.3) x(t)=α+atf(s,x(s),maxaξsx(ξ))𝑑s,t[a,b],x(t)=\alpha+\int_{a}^{t}f(s,x(s),\underset{a\leq\xi\leq s}{\max}x(\xi))ds,\ t\in[a,b],

xC[a,b]x\in C[a,b], and the equation (1.1) is equivalent with

(1.4) x(t)=x(a)+atf(s,x(s),maxaξsx(ξ))𝑑s,t[a,b],x(t)=x(a)+\int_{a}^{t}f(s,x(s),\underset{a\leq\xi\leq s}{\max}x(\xi))ds,\ t\in[a,b],

xC[a,b].x\in C[a,b].

Let us consider the following operators:

Bf,Ef:C[a,b]C[a,b]B_{f},E_{f}:C[a,b]\rightarrow C[a,b]

defined by

Bf(x)(t):=second part of (1.3)B_{f}(x)(t):=\text{second part of (\ref{ec3.aR1})}

and

Ef(x)(t):=second part of (1.4).E_{f}(x)(t):=\text{second part of (\ref{ec4.aR1}).}

For α,\alpha\in\mathbb{R}, we consider Xα:={xC[a,b]|x(a)=α}.X_{\alpha}:=\{x\in C[a,b]|\ x(a)=\alpha\}.

We remark that

C[a,b]=αXαC[a,b]=\underset{\alpha\in\mathbb{R}}{\cup}X_{\alpha}

is a partition of C[a,b].C[a,b].

We have

Lemma 1.1.

If (C1)(C_{1}) is satisfied, then

  • (a)

    Bf(C[a,b])XαB_{f}(C[a,b])\subset X_{\alpha} and Ef(Xα)Xα,α;E_{f}(X_{\alpha})\subset X_{\alpha},\ \forall\alpha\in\mathbb{R};

  • (b)

    Bf|Xα=Ef|Xα,α.B_{f}|_{X_{\alpha}}=E_{f}|_{X_{\alpha}},\ \forall\alpha\in\mathbb{R}.

In this paper we shall prove that if (C1)(C_{1}) and (C2)(C_{2}) are satisfied and if LfL_{f} is small enough, then the operator EfE_{f} is weakly Picard operator ([11]), in (C[a,b],)(C[a,b],\left\|\cdot\right\|) where x:=maxatbx(t)\left\|x\right\|:=\underset{a\leq t\leq b}{\max}x(t), and we study the equation (1.1) in the terms of the weakly Picard operator theory.

2. Weakly Picard operators

Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. We shall use the following notations:

FA:={xXA(x)=x}F_{A}:=\{x\in X\mid A(x)=x\} - the fixed point set of AA;

I(A):={YXA(Y)Y,Y}I(A):=\{Y\subset X\mid A(Y)\subset Y,Y\neq\emptyset\} - the family of the nonempty invariant subsets of AA;

By HH we denote the Pompeiu-Housdorff functional, H:P(X)×P(X)+{+}H:P(X)\times P(X)\rightarrow\mathbb{R}_{+}\cup\{+\infty\} defined by:

H(Y,Z):=max{supyYinfzZd(y,z),supzZinfyYd(y,z)}H(Y,Z):=\max\{\underset{y\in Y}{\sup}\underset{z\in Z}{\inf}d(y,z),\underset{z\in Z}{\sup}\underset{y\in Y}{\inf}d(y,z)\}
Definition 2.1.

([11], [12]) Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a Picard operator (PO) if there exists xXx^{\ast}\in X such that:

  1. (i)

    FA={x};F_{A}=\{x^{\ast}\};

  2. (ii)

    the sequence (An(x0))n(A^{n}(x_{0}))_{n\in\mathbb{N}} converges to xx^{\ast} for all x0Xx_{0}\in X.

Definition 2.2.

([11], [12]) Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a weakly Picard operator (WPO) if the sequence (An(x))n(A^{n}(x))_{n\in\mathbb{N}} converges for all xXx\in X, and its limit (which may depend on xx) is a fixed point of AA.

Definition 2.3.

([11], [12]) If AA is weakly Picard operator then we consider the operator AA^{\infty} defined by

A:XX,A(x):=limnAn(x).A^{\infty}:X\rightarrow X,\ A^{\infty}(x):=\underset{n\rightarrow\infty}{\lim}A^{n}(x).
Remark 2.4.

([11], [12]) It is clear that A(X)=FA.A^{\infty}(X)=F_{A}.

Definition 2.5.

([11], [12]) Let AA be a weakly Picard operator and c>0.c>0. The operator AA\ is cc -weakly Picard operator if

d(x,A(x))cd(x,A(x)),xX.d(x,A^{\infty}(x))\leq cd(x,A(x)),\ \forall x\in X.

For some examples of WPOs see [10], [11], [12].

3. Cauchy problem

Relative to problem (1.1)–(1.2) we have

Theorem 3.1.

We suppose that:

  • (a)

    the condition (C1)(C_{1}) and (C2)(C_{2}) are satisfied;

  • (C3)

    Lf(ba)<1L_{f}(b-a)<1.

Then the problem (1.1)–(1.2) has, in C[a,b]C[a,b], a unique solution and this solution is the uniform limit of the successive approximations.

Proof.

The problem (1.1)–(1.2) is equivalent with the fixed point equation

Bf(x)=x,xC[a,b].B_{f}(x)=x,\ x\in C[a,b].

On the other hand we have that

|Bf(x)(t)Bf(y)(t)|Lfatmax(|x(s)y(s)|,|maxaξsx(ξ)maxy(ξ)aξs|)𝑑s.\left|B_{f}(x)(t)\!-\!B_{f}(y)(t)\right|\!\leq\!L_{f}\!\int_{a}^{t}\!\!\max\bigg(\!\left|x(s)\!-\!y(s)\right|,\left|\underset{a\leq\xi\leq s}{\max}x(\xi)\!-\!\underset{a\leq\xi\leq s}{\max y(\xi)}\right|\!\bigg)\!ds.

But

maxasb|maxaξsx(ξ)maxy(ξ)aξs|maxasb|x(s)y(s)|.\underset{a\leq s\leq b}{\max}\left|\underset{a\leq\xi\leq s}{\max}x(\xi)-\underset{a\leq\xi\leq s}{\max y(\xi)}\right|\leq\underset{a\leq s\leq b}{\max}\left|x(s)-y(s)\right|.

So,

Bf(x)Bf(y)Lf(ba)xy,x,yC[a,b],\left\|B_{f}(x)-B_{f}(y)\right\|\leq L_{f}(b-a)\left\|x-y\right\|,\ \forall x,y\in C[a,b],

i.e., BfB_{f} is a contraction w.r.t. Chebyshev norm on C[a,b]C[a,b]. The proof follows from the contraction principle. ∎

Remark 3.2.

In the conditions of Theorem 3.1, the operator BfB_{f} is PO. But

Bf|Xα=Ef|Xα,α.B_{f}|_{X_{\alpha}}=E_{f}|_{X_{\alpha}},\ \forall\alpha\in\mathbb{R}.

Hence, the operator EfE_{f} is WPO and FEfXα={xα},α,F_{E_{f}}\cap X_{\alpha}=\{x_{\alpha}^{\ast}\},\forall\alpha\in\mathbb{R}, where xαx_{\alpha}^{\ast} is the unique solution of the problem (1.1)–(1.2).

4. Inequalities of Čaplygin type

We have

Theorem 4.1.

We suppose that:

  • (a)

    the conditions (C1),(C2)(C_{1}),\ (C_{2}) and (C3)(C_{3}) are satisfied;

  • (b)

    f(x,,):22f(x,\cdot,\cdot):\mathbb{R}^{2}\rightarrow\mathbb{R}^{2} is increasing, i.e., u1v1,u2v2f(x,u1,u2)f(x,v1,v2)u_{1}\leq v_{1},u_{2}\leq v_{2}\Rightarrow f(x,u_{1},u_{2})\leq f(x,v_{1},v_{2}).

Let xx be a solution of equation (1.1) and yy a solution of the inequality

y(t)f(t,y(t),maxaξty(ξ)),t[a,b].y^{\prime}(t)\leq f(t,y(t),\underset{a\leq\xi\leq t}{\max}y(\xi)),\ t\in[a,b].

Then

y(a)x(a) implies that yx.y(a)\leq x(a)\text{ implies that }y\leq x.
Proof.

In the terms of the operator Ef,E_{f}, we have

x=Ef(x) and yEf(y),x=E_{f}(x)\text{ and }y\leq E_{f}(y),

and x(a)y(a).x(a)\leq y(a).

From the conditions (C1),(C2)(C_{1}),\ (C_{2}) and (C3)(C_{3}) we have that the operator EfE_{f} is WPO. From the condition (b), EfE_{f}^{\infty} is increasing ([11]). If α,\alpha\in\mathbb{R}, then we denote by α~\widetilde{\alpha} the following function

α~:[a,b],α~(t)=α,t[a,b].\widetilde{\alpha}:[a,b]\rightarrow\mathbb{R},\ \widetilde{\alpha}(t)=\alpha,\ \forall t\in[a,b].

We have

yEf(y)Ef(y)=Ef(y~(a))Ef(x~(a))=x.y\leq E_{f}(y)\leq\ldots\leq E_{f}^{\infty}(y)=E_{f}^{\infty}(\widetilde{y}(a))\leq E_{f}^{\infty}(\widetilde{x}(a))=x.

5. Data dependence: monotony

In this section we need the following abstract result.

Lemma 5.1.

(Comparison principle, [12]) Let (X,d,)(X,d,\leq) an ordered metric space and A,B,C:XXA,B,C:X\rightarrow X be such that:

  • (a)

    ABC;A\leq B\leq C;

  • (b)

    the operator A,B,CA,B,C, are WPOs;

  • (c)

    the operator BB is increasing.

Then xyzx\leq y\leq z imply that A(x)B(y)C(z).A^{\infty}(x)\leq B^{\infty}(y)\leq C^{\infty}(z).

From this abstract result we have

Theorem 5.2.

Let fiC([a,b]×2),i=1,2,f_{i}\in C([a,b]\times\mathbb{R}^{2}),i=1,2, be as in Theorem 3.1. We suppose that:

  • (i)

    f1f2f3;f_{1}\leq f_{2}\leq f_{3};

  • (ii)

    f2(t,,):22f_{2}(t,\cdot,\cdot):\mathbb{R}^{2}\rightarrow\mathbb{R}^{2} is increasing;

Let xiC1[a,b]x_{i}\in C^{1}[a,b] be a solution of the equation

xi(t)=fi(t,x(t),maxaξtx(ξ)),t[a,b] and i=1,2,3.x_{i}^{\prime}(t)=f_{i}(t,x(t),\underset{a\leq\xi\leq t}{\max}x(\xi)),\ t\in[a,b]\text{ and }i=1,2,3.

If x1(a)x2(a)x3(a)x_{1}(a)\leq x_{2}(a)\leq x_{3}(a), then x1x2x3.x_{1}\leq x_{2}\leq x_{3}.

Proof.

From Theorem 3.1 we have that the operator Efi,i=1,2,3,E_{f_{i}},i=1,2,3,\ are WPOs. From the condition (ii) the operator Ef2E_{f_{2}} is monotone increasing. From the condition (i) it follows that

Ef1Ef2Ef3.E_{f_{1}}\leq E_{f_{2}}\leq E_{f_{3}}.

Let x~i(a)C[a,b]\widetilde{x}_{i}(a)\in C[a,b] be defined by x~i(a)(t)=xi(a),t[a,b]\widetilde{x}_{i}(a)(t)=x_{i}(a),\ \forall t\in[a,b]. It is clear that

x~1(a)(t)x~2(a)(t)x~3(a)(t),t[a,b].\widetilde{x}_{1}(a)(t)\leq\widetilde{x}_{2}(a)(t)\leq\widetilde{x}_{3}(a)(t),\ \forall t\in[a,b].

From Lemma 5.1 we have that

Ef1(x~1(a))Ef2(x~2(a))Ef3(x~3(a)).E_{f_{1}}^{\infty}(\widetilde{x}_{1}(a))\leq E_{f_{2}}^{\infty}(\widetilde{x}_{2}(a))\leq E_{f_{3}}^{\infty}(\widetilde{x}_{3}(a)).

But xi=Efi(x~i(a)),x_{i}=E_{fi}^{\infty}(\widetilde{x}_{i}(a)), and x1x2x3.x_{1}\leq x_{2}\leq x_{3}.

6. Data dependence: continuity

Consider the Cauchy problem (1.1)–(1.2) and suppose the conditions of the Theorem 3.1 are satisfied. Denote by x(;α,f)x^{\ast}(\cdot;\alpha,f)\ the solution of this problem.

We need the following well known result (see [11]).

Theorem 6.1.

Let (X,d)(X,d) be a complete metric space and A,B:XXA,B:X\rightarrow X two operators. We suppose that

  • (i)

    the operator AA is a α\alpha -contraction;

  • (ii)

    FB;F_{B}\neq\emptyset;

  • (iii)

    there exists η>0\eta>0 such that

    d(A(x),B(x))η,xX.d(A(x),B(x))\leq\eta,\ \forall x\in X.

Then, if FA={xA}F_{A}=\{x_{A}^{\ast}\} and xBFB,x_{B}^{\ast}\in F_{B}, we have

d(xA,xB)η1α.d(x_{A}^{\ast},x_{B}^{\ast})\leq\frac{\eta}{1-\alpha}.

We can state the following result:

Theorem 6.2.

Let αi,fi,i=1,2\alpha_{i},f_{i},i=1,2 be as in the Theorem 3.1. Furthermore, we suppose that there exists ηi>0,i=1,2\eta_{i}>0,i=1,2 such that

  1. (i)

    |α1(t)α2(t)|η1,t[a,b];\left|\alpha_{1}(t)-\alpha_{2}(t)\right|\leq\eta_{1},\forall t\in[a,b];

  2. (ii)

    |f1(t,u1,u2)f2(t,u1,u2)|η2,t[a,b],ui,i=1,2.\left|f_{1}(t,u_{1},u_{2})-f_{2}(t,u_{1},u_{2})\right|\leq\eta_{2},\forall t\in[a,b],u_{i}\in\mathbb{R},i=1,2.

Then

x1(t;α1,f1)x2(t;α2,f2)η1+(ba)η21Lf(ba),\left\|x_{1}^{\ast}(t;\alpha_{1},f_{1})-x_{2}^{\ast}(t;\alpha_{2},f_{2})\right\|\leq\frac{\eta_{1}+(b-a)\eta_{2}}{1-L_{f}(b-a)},

where xi(t;αi,fi),i=1,2x_{i}^{\ast}(t;\alpha_{i},f_{i}),i=1,2 are the solution of the problem (1.1)–(1.2) with respect to αi,fi\alpha_{i},f_{i} and Lf=max(Lf1,Lf2).L_{f}=\max(L_{f_{1}},L_{f_{2}}).

Proof.

Consider the operators Bαi,fi,i=1,2.B_{\alpha_{i},f_{i}},i=1,2. From Theorem 3.1 these operators are contractions.

Additionally

Bα1,f1(x)Bα2,f2(x)η1+(ba)η2,\left\|B_{\alpha_{1},f_{1}}(x)-B_{\alpha_{2},f_{2}}(x)\!\right\|\leq\eta_{1}+(b-a)\eta_{2},

xC[a,b].\forall x\in C[a,b].

Now the proof follows from the Theorem 6.1, with A:=Bα1,f1,B=Bα2,f2,η=η1+(ba)η2A\!:=\!B_{\alpha_{1},f_{1}},\ B\!=\!\!B_{\alpha_{2},f_{2}},\ \eta\!=\!\eta_{1}+(b-a)\eta_{2} and α:=Lf(bt0)\alpha:=L_{f}(b-t_{0}), where Lf=max(Lf1,Lf2).L_{f}=\max(L_{f_{1}},L_{f_{2}}).

In what follow we shall use the cc-WPOs techniques to give some data dependence results.

Theorem 6.3.

([10], [12]) Let (X,d)(X,d) be a metric space and Ai:XX,i=1,2.A_{i}:X\rightarrow X,\ i=1,2. Suppose that

  • (i)

    the operator AiA_{i} is cic_{i}-weakly Picard operator, i=1,2;i\!=\!1,2;

  • (ii)

    there exists η>0\eta>0 such that

    d(A1(x),A2(x))η,xX.d(A_{1}(x),A_{2}(x))\leq\eta,\ \forall x\in X.

Then H(FA1,FA2)ηmax(c1,c2).H(F_{A_{1}},F_{A_{2}})\leq\eta\max(c_{1},c_{2}).

We have

Theorem 6.4.

Let f1f_{1} and f2f_{2} be as in the Theorem 3.1. Let SEf1,SEf2S_{E_{f_{1}}},S_{E_{f_{2}}} be the solution set of system (1.1) corresponding to f1f_{1} and f2f_{2}. Suppose that there exists η>0,\eta>0, such that

(6.1) |f1(t,u1,u2)f2(t,u1,u2)|η\left|f_{1}(t,u_{1},u_{2})-f_{2}(t,u_{1},u_{2})\right|\leq\eta

for all t[a,b],ui,i=1,2.t\in[a,b],u_{i}\in\mathbb{R},i=1,2.

Then

HC(SEf1,SEf2)(ba)η1Lf(ba),H_{\left\|\cdot\right\|_{C}}(S_{E_{f_{1}}},S_{E_{f_{2}}})\leq\frac{(b-a)\eta}{1-L_{f}(b-a)},

where Lf=max(Lf1,Lf2)L_{f}=\max(L_{f_{1}},L_{f_{2}}) and HCH_{\left\|\cdot\right\|_{C}} denotes the Pompeiu-Housdorff functional with respect to C\left\|\cdot\right\|_{C} on C[a,b].C[a,b].

Proof.

In the condition of Theorem 3.1, the operators Ef1E_{f_{1}} and Ef2E_{f_{2}} are cic_{i}-weakly Picard operators, i=1,2i=1,2.

Let

Xα:={xC[a,b]|x(a)=α}.X_{\alpha}:=\{x\in C[a,b]|\ x(a)=\alpha\}.

It is clear that Ef1|Xα=Bf1,Ef2|Xα=Bf2.E_{f_{1}}|_{X_{\alpha}}=B_{f_{1}},\ E_{f_{2}}|_{X_{\alpha}}=B_{f_{2}}. Therefore,

|Ef12(x)Ef1(x)|Lf1(ba)|Ef1(x)x|,\left|E_{f_{1}}^{2}(x)-E_{f_{1}}(x)\right|\leq L_{f_{1}}(b-a)\left|E_{f_{1}}(x)-x\right|,
|Ef22(x)Ef2(x)|Lf2(ba)|Ef2(x)x|,\left|E_{f_{2}}^{2}(x)-E_{f_{2}}(x)\right|\leq L_{f_{2}}(b-a)\left|E_{f_{2}}(x)-x\right|,

for all xC[a,b].x\in C[a,b].

Now, choosing

α1=Lf1(ba)and α2=Lf2(ba),\alpha_{1}=L_{f_{1}}(b-a)\ \text{and }\alpha_{2}=L_{f_{2}}(b-a),

we get that Ef1E_{f_{1}} and Ef2E_{f_{2}} are cic_{i}-weakly Picard operators, i=1,2i=1,2 with c1=(1α1)1c_{1}=(1-\alpha_{1})^{-1}\ and c2=(1α2)1\ c_{2}=(1-\alpha_{2})^{-1}. From (6.1) we obtain that

Ef1(x)Ef2(x)C(ba)η,\left\|E_{f_{1}}(x)-E_{f_{2}}(x)\right\|_{C}\leq(b-a)\eta,

xC[a,b].\forall x\in C[a,b]. Applying Theorem 6.3 we have that

HC(SEf1,SEf2)(ba)η1Lf(ba),H_{\left\|\cdot\right\|_{C}}(S_{E_{f_{1}}},S_{E_{f_{2}}})\leq\frac{(b-a)\eta}{1-L_{f}(b-a)},

where Lf=max(Lf1,Lf2)L_{f}=\max(L_{f_{1}},L_{f_{2}}) and HCH_{\left\|\cdot\right\|_{C}} is the Pompeiu-Housdorff functional with respect to C\left\|\cdot\right\|_{C} on
C[a,b].C[a,b].

References

  • [1] N.V. Azbelev (ed), Functional-differential equations (Russian), Perm. Politekh. Inst., Perm, 1985.
  • [2] D. Bainov and D. Mishev, Oscillation theory of operator-differential equations, World Scientific, Singapore, 1995.
  • [3] L. Georgiev, V.G. Angelov, On the existence and uniqueness of solutions for maximum equations, Glasnik Matematički, 37 (2002), no. 2, 275–281.
  • [4] P. Gonzáles and M. Pinto, Convergent solutions of certain nonlinear differential equations with maxima, Math. Comput. Modelling, 45 (2007), nos. 1–2, 1–10.
  • [5] J. Hale, Theory of functional differential equations, Springer, 1977.
  • [6] A. Ivanov, E. Liz, S. Trofimchuk, Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima, Tohoku Mathematical Journal, Vol. 54 (2002), 277–295.
  • [7] A. Ivanov, E. Liz, S. Trofimchuk, Global stability of a class of scalar nonlinear delay differential equations, Differential Equations and Dynamical Systems, Vol. 11 (2003), 33–54.
  • [8] V. Kolmanovskii and A. Myshkis, Applied theory of functional-differential equations, Mathematics and its Applications (Soviet Series), 85, Kluwer Academic Publishers Group, Dordrecht, 1992.
  • [9] M. Małgorzata and G. Zhang, On unstable neutral difference equations with ”maxima”, Math. Slovaca, 56 (2006), no. 4, 451–463.
  • [10] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), No.1, 191–219.
  • [11] I.A. Rus, Generalized contractions, Cluj University Press, 2001.
  • [12] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, 2 (2001), 41–58.
  • [13] E. Stepanov, On solvability of same boundary value problems for differential equations with ”maxima”, Topological Methods in Nonlinear Analysis, 8 (1996), 315–326.
  • [14] M. Zima, The abstract Gronwall lemma for some nonlinear operators, Demonstratio Matematica, 31 (1998), no. 2, 325–332.
2008

Related Posts