Generalization of a Property of Farey Sequences

Abstract

?

Authors

Tiberiu Popoviciu
(Institutul de Calcul)

Original title (in French)

Généralisation d’une propriété des suites de Farey

Keywords

?

Cite this paper as

T. Popoviciu, Généralisation d’une propriété des suites de Farey, Rev. Roumaine Math. Pures Appl., 17 (1972), pp. 87-92 (in French)

PDF

About this paper

Journal

Rev. Roumaine Math. Pures Appl.

Publisher Name

?

DOI

?

Print ISSN

not available

Online ISSN

not available

Google Scholar citations

to be inserted

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

GENERALIZATION OF A PROPERTY OF THE FAREY SUITES

BY
TIBERIU POPOVICIU
(Cluj)
Summary

We establish a property of the sums ofvnths v^{\text{ths}}terms, forv=1.2,,kv=1,2,\ldots,kincreasing sequences ofkknatural numbers, relatively prime and whose last term is equal ton(nk)n(n\geqq k).

  1. 1.

    J.A. Blake noted [1] that if we consider all irreducible ordinary fractions, smaller than 1 and whose denominator isn\leq n, the sum of the denominators is equal to twice the sum of the numerators. This is an immediate consequence of the property that if we consider all ordered pairs of natural numbers (has,ba,b) Orhas<b=na<b=n, the numbershashasAndbbbeing relatively prime, the sumS2(n)S_{2}(n)secondary componentsbbis equal to 2 times the sumS1(n)S_{1}(n)the first componentshashasMoreover, we haveS2(n)=nφ(n)S_{2}(n)=n\varphi(n)AndS1(n)=12nφ(n)S_{1}(n)=\frac{1}{2}n\varphi(n)is equal to the sum of the natural numbersn\leqq nand first withnnIt is assumed, of course, thatn>1n>1Andφ(n)\varphi(n)is the well-known Euler function! (1' "indicator" ofnn).
    I. Katz [2] and A. Zane [3] revisited the previous result of JA Blake.

In what follows, we will give a generalization of this property.
2. We will demonstrate the:

Theorem. Letk,nk,ntwo given natural numbers, where2kn2\leqq k\leqq nand consider all increasing sequences (has1,has2,,haska_{1}, a_{2}, ..., a_{k}) ofkknatural numbers where:has).hask=n,ba).a_{k}=n,b).has1,has2,,haska_{1}, a_{2}, ..., a_{k}are relatively prime. Let us designate bySν(n)S_{\nu}(n)the sum ofvsixth v^{\text{viths}}termshasva_{v}of all these sequels forv=1.2,,kv=1,2,\ldots,k.

We then have
(1)Sν(n)=νS1(n),ν=1.2,,k\quad S_{\nu}(n)=\nu S_{1}(n),\nu=1,2,\ldots,k.

We will deduce the proof of this theorem from a similar property of sequences.(has1,has2,,hask)\left(a_{1},a_{2},\ldots,a_{k}\right)whose terms are not subject to restriction b) of the text. We will therefore demonstrate the:

Lemma. Letk,nk,ntwo given natural numbers, where2kn2\leqq k\leqq nand consider all increasing sequences (has1,has2,,haska_{1}, a_{2}, ..., a_{k}) ofkknatural numbershas1,has2,,haska_{1}, a_{2}, ..., a_{k}, the last term of which is equal tonnLet us designate byHASv(n)A_{v}(n)the sum ofvnths v^{\text{ths}}terms of all these sequences forv=1.2,,kv=1,2,\ldots,k.

We then have

HASv(n)=vHAS1(n),v=1.2,,k.A_{v}(n)=vA_{1}(n),v=1,2,\ldots,k. (2)
  1. 3.

    Let's move on to the proof of the lemma. We can calculate the sumsHASv(n)A_{v}(n)by induction, but they can also be obtained quickly by using a certain "generating function". Let's consider the generating function ofkkvariablesx1,x2,,xk,F=F(x1,x2,,xk)==x1has1x2has2xkhaskx_{1},x_{2},\ldots,x_{k},F=F\left(x_{1},x_{2},\ldots,x_{k}\right)==\sum x_{1}^{a_{1}}x_{2}^{a_{2}}\ldots x_{k}^{a_{k}}the summation being extended to all increasing sequences(has1,has2,,hask)\left(a_{1},a_{2},\ldots,a_{k}\right)of natural numbers. We then have

F=i=1kxixi+1xk1xixi+1xkF=\prod_{i=1}^{k}\frac{x_{i}x_{i+1}\ldots x_{k}}{1-x_{i}x_{i+1}\ldots x_{k}} (3)

To simplify the notation, let [f] denote the function of a variablezzwhich is obtained from the functionf(x1,x2,,xk)f\left(x_{1},x_{2},\ldots,x_{k}\right)by askingx1=x2===xk1=1,xk=zx_{1}=x_{2}=\ldots==x_{k-1}=1,x_{k}=zWe then have

[Fxν]=n=1+HASν(n)zn\left[\frac{\partial F}{\partial x_{\nu}}\right]=\sum_{n=1}^{+\infty}A_{\nu}(n)z^{n} (4)

Forv=1.2,,k1v=1,2,\ldots,k-1And

[Fxk]=n1+HASk(n)zn1\left[\frac{\partial F}{\partial x_{k}}\right]=\sum_{n-1}^{+\infty}A_{k}(n)z^{n-1} (5)

Forn<ν,ν=1.2,,kn<\nu,\nu=1,2,\ldots,kthe coefficientsHASψ(n)A_{\psi}(n)do not appear in the lemma. They are defined by formulas (4) and (5). We will see, moreover, that they are all zero. To calculate the left-hand sides of equalities (4) and (5), note that

[xνxixi+1xk1xixi+1xi]={0, For ν<iz(1z)2, For k>νi1(1z)2, For ν=k\left[\frac{\partial}{\partial x_{\nu}}\frac{x_{i}x_{i+1}\ldots x_{k}}{1-x_{i}x_{i+1}\ldots x_{i}}\right]=\begin{cases}0,&\text{ for }\nu<i\\ \frac{z}{(1-z)^{2}},&\text{ for }k>\nu\geqq i\\ \frac{1}{(1-z)^{2}},&\text{ for }\nu=k\end{cases}

Therefore, if we apply the rule for differentiating a product, we obtain

[Fxv]=vzk(1z)k+1,v=1.2,,k1\displaystyle{\left[\frac{\partial F}{\partial x_{v}}\right]=v\frac{z^{k}}{(1-z)^{k+1}},\quad v=1,2,\ldots,k-1}
[Fxk]=kzk1(1z)k+1\displaystyle{\left[\frac{\partial F}{\partial x_{k}}\right]=k\frac{z^{k-1}}{(1-z)^{k+1}}}

Formulas (2) follow immediately, and the lemma is thus proven. Moreover, the expression forHASv(n)A_{v}(n)in the form

HASv(n)=v(nk),v=1.2,,kA_{v}(n)=v\binom{n}{k},\quad v=1,2,\ldots,k (6)
  1. 4.

    We will now demonstrate the stated theorem. Let us denote by𝔐(n)\mathfrak{M}(n)the set of all sequences ofkknatural numbers that appear in the lemma and by𝔐has(n)\mathfrak{M}_{a}(n)the subset formed by the elements of𝔐(n)\mathfrak{M}(n)whose terms are all divisible by the numberddIt is clear thatddis a divisor ofnnWe deduce the set𝔐d(n)\mathfrak{M}_{d}(n)by multiplying byddeach term of the elements of𝔐(nd)\mathfrak{M}\left(\frac{n}{d}\right)The result is that the whole𝔐d(n)\mathfrak{M}_{d}(n)enjoys the same ownership as the whole𝔐(n)\mathfrak{M}(n)The sumsHASv(n),ν=1.2,,kA_{v}(n),\nu=1,2,\ldots,kcorresponding to the set𝔐d(dn)\mathfrak{M}_{d}(dn)are equal todHASv(nd),v=1.2,,kdA_{v}\left(\frac{n}{d}\right),v=1,2,\ldots,krespectively.

To obtain the sequences that appear in the theorem, we must remove from𝔐(n)\mathfrak{M}(n)the elements (sequences) whose terms are not coprime. Let us denote byp1,p2,,prp_{1},p_{2},\ldots,p_{r}(all) the (distinct) prime factors of the numbernnThe deleted sequels of𝔐(n)\mathfrak{M}(n)are those for which the greatest common divisor (GCD) of the terms is divisible by at least one of the prime numbersp1,p2,,prp_{1},p_{2},\ldots,p_{r}By applying the well-known principle of inclusion and exclusion, we obtain

Sv(n)=HASv(n)+s=1r(1)s(s)pi1pi2pisHASv(npi1pi2pis)v=1.2,,k\begin{array}[]{r}S_{v}(n)=A_{v}(n)+\sum_{s=1}^{r}(-1)^{s}\sum_{(s)}p_{i_{1}}p_{i_{2}}\ldots p_{i_{s}}A_{v}\left(\frac{n}{p_{i_{1}}p_{i_{2}}\ldots p_{i_{s}}}\right)\\ v=1,2,\ldots,k\end{array}

where the summons\sumis extended to all combinationsi1,i2,,isi_{1},i_{2},\ldots,i_{s}, & hasssclues1(8),2,,r1^{(8)},2,\ldots,r.

Given (2), the equalities (1) follow. The theorem is therefore proven.
5. From formulas (6) we also deduce:

HASv(n)=vnk(n1k1)v=1.2,,kA_{v}(n)=v\frac{n}{k}\binom{n-1}{k-1}\quad v=1,2,\ldots,k

Or(n1k1)\binom{n-1}{k-1}is precisely the number of elements of𝔐(n)\mathfrak{M}(n)Similarly, if we designate byN(n)N(n)the number of sequences that appear in the theorem, we have

Sv(n)=vnkN(n),v=1.2,,kS_{v}(n)=v\frac{n}{k}N(n),\quad v=1,2,\ldots,k

Finally, from formula (7), forv=kv=k, we deduce

N(n)=(n1k1)+s=1r(1)s(s)(npi1pi2pis1k1).)N(n)=\binom{n-1}{k-1}+\sum_{s=1}^{r}(-1)^{s}\sum_{(s)}\binom{\frac{n}{p_{i_{1}}p_{i_{2}}\ldots p_{i_{s}}}-1}{k-1).} (8)

Fork=2k=2We haveN(n)=φ(n)N(n) = φ(n)Orφ(n)\varphi(n)is the Euler function (the indicator). Fork>2k>2the arithmetic structure of the numberN(n)N(n)Therefore, also numbersSν(n),ν=1.2,,kS_{\nu}(n),\nu=1,2,\ldots,kis more complicated. Let's designate byCkv,v=0.1,,71C_{k}^{v},v=0,1,\ldots,7-1the factorial coefficients of rankh1h_{1}defined by polynomial equality

(x+1)(x+2)(x+k1)=Ck0xk1+Ck1xk2++Ckk1(x+1)(x+2)\ldots(x+k-1)=C_{k}^{0}x^{k-1}+C_{k}^{1}x^{k-2}+\cdots+C_{k}^{k-1}

Let us also consider arithmetic functions

φv(n)=nvi=1r(11piv),v=1.2,\varphi_{v}(n)=n^{v}\prod_{i=1}^{r}\left(1-\frac{1}{p_{i}^{v}}\right),\quad v=1,2,\ldots

THEpi,i=1.2,,rp_{i},i=1,2,\ldots,rbeing always the distinct primary factors ofnnForν=1\nu=1we find the Euler functionφ1(n)=φ(n)\varphi_{1}(n)=\varphi(n). In general,φv(n)\varphi_{v}(n)is equal to the number of sequences of v natural numbers whose terms aren\leqq nand have their greatest common divisor (GCD) prime withnn.

If we notice that(n1k1)=(n1)(n2)(nk+1)(k1)!\binom{n-1}{k-1}=\frac{(n-1)(n-2)\ldots(n-k+1)}{(k-1)!}From formula (8) we deduce

N(n)=1(k1)!s=0k2(1)sCksφk1s(n)N(n)=\frac{1}{(k-1)!}\sum_{s=0}^{k-2}(-1)^{s}C_{k}^{s}\varphi_{k-1-s}(n) (9)
  1. 6.

    We can draw some conclusions from this and we can generalize in several ways what we have demonstrated.

The property we are examining in this work remains true for the set of increasing sequences of relatively prime natural numbers whose last term isn\leqq nThis results from the fact that the set under consideration is the union of the sets𝔐(v),v=k,k+1,,n\mathfrak{M}(v),v=k,k+1,\ldots,nwhich are disjoint in pairs. Therefore, in this caseSy(n)S_{y}^{\prime}(n)is the sum of the sixth terms andN(n)N^{\prime}(n)the number of sequences in the set considered, these arithmetic functions are the summation functions of the functionsSy(n)S_{\mathrm{y}}(n)AndN(n)N(n)respectively. We have done

Sv(n)=i=1nSv(i),v=1.2,,k,N(n)=i=1nN(i)S_{v}^{\prime}(n)=\sum_{i=1}^{n}S_{v}(i),\quad v=1,2,\ldots,k,N^{\prime}(n)=\sum_{i=1}^{n}N(i)

where, moreover, theSv(i),N(i)S_{v}(i),N(i)are useless fori<ki<k7.
The property stated in the theorem is also true for the set of all non-decreasing sequences ofkkcoprime, non-negative integers whose last term is equal tonnIf we designate in this case bySv*(n),v=1.2,,kS_{v}^{*}(n),v=1,2,\ldots,kAndN*(n)N^{*}(n)the numbers corresponding toSv(n),v=1.2,,kS_{v}(n),v=1,2,\ldots,kAndN(n)N(n)respectively, we have

Sv*(n)=vS1*(n)=vnkN*(n),v=1.2,,kS_{v}^{*}(n)=vS_{1}^{*}(n)=v\frac{n}{k}N^{*}(n),\quad v=1,2,\ldots,k

And

N*(n)=1(k1)!s=0k2Cksφk1s(n)N^{*}(n)=\frac{1}{(k-1)!}\sum_{s=0}^{k-2}C_{k}^{s}\varphi_{k-1-s}(n) (10)

This is a formula analogous to formula (9).
This result is obtained by establishing a property entirely analogous to that stated in the lemma and relating to the set of all non-decreasing sequences ofkkintegers whose last term is equal tonn(the terms are not necessarily relatively prime). The number of these sequences is equal to(n+k1k1)=(n+1)(n+2)(n+k1)(k1)!\binom{n+k-1}{k-1}=\frac{(n+1)(n+2)\ldots(n+k-1)}{(k-1)!}There is no need to detail the proof. I will simply say that this time, instead of (3), we need to rely on the generating function.

i=1k11xixi+1xk\prod_{i=1}^{k}-\frac{1}{1-x_{i}x_{i+1}\ldots x_{k}}

We can obviously also give a property analogous to the consequence examined in n 0 6. I propose to the reader to state this property.

Received on August 3, 1971

Cluj Institute of Computing

BIBLIOGRAPHY

  1. 1.

    Blake, JA, Some charceteristic properties of the Farey Series. The Bitter. Math. Monthly 1966, 73, 50-52.

  2. 2.

    Katz, I., Note on a theorem of Blake and Aron. ibid., 1967, 74, 1233.

  3. 3.

    Zane, A., A comment on a previous note on the Farey Series. ibid., 1967, 74, 977.

1972

Related Posts