Abstract
The aim of this paper is to discuss some basic problems (existence and uniqueness, data dependence) of the Cauchy problem for a hybrid differential equation with maxima using weakly Picard operators technique.
Authors
D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,
Keywords
Cite this paper as:
D. Otrocol, Hybrid differential equations with maxima via Picard operators theory, Stud. Univ. Babes-Bolyai Math., 61 (2016) no. 4, pp. 421-428.
About this paper
Journal
Studia Universitatis Babes-Bolyai Mathematica
Publisher Name
Univ. Babes-Bolyai, Cluj-Napoca, Romania
DOI
Print ISSN
0252-1938
Online ISSN
2065-961X
MR
MR3583207
ZBL
1397.34108
Google Scholar
[1] Bainov, D.D., Hristova, S., Differential equations with maxima, Chapman & Hall/CRC Pure and Applied Mathematics, 2011.
[2] Bainov, D.D., Petrov, V.A., Proyteheva, V.S., Existence and asymptotic behavior of nonoscillatory solutions of second order neutral differential equations with “maxima”, J. Comput. Appl. Math., 83(1997), no. 2, 237-249.
[3] Dhage, B.C., Lakshmikantham, V., Basic results on hybrid differential equations, Nonlinear Anal. Hybrid Syst., 4(2010), 414-424.
[4] Dobritoiu, M., Rus, I.A., Serban, M.A., An integral equation arising from infections diseases, via Picard operators, Stud. Univ. Babe¸s-Bolyai Math., 52(2007), no. 3, 81-94.
[5] Georgiev, L., Angelov, V.G., On the existence and uniqueness of solutions for maximum equations, Glas. Mat., 37(2002), no. 2, 275-281.
[6] Hale, J., Theory of functional differential equations, Springer, 1977.
[7] Otrocol, D., Systems of functional differential equations with maxima, of mixed type, Electron. J. Qual. Theory Differ. Eq., 2014(2014), no. 5, 1-9.
[8] Otrocol, D., Ilea, V.A., Qualitative properties of a functional differential equation, Electron. J. Qual. Theory Differ. Eq., 47(2014), 1-8.
[9] Otrocol, D., Rus, I.A., Functional-differential equations with “maxima” via weakly Picard operators theory, Bull. Math. Soc. Sci. Math. Roumanie, 51(99)(2008), no. 3, 253-261.
[10] Otrocol, D., Rus, I.A., Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9(2008), no. 1, 207-220.
[11] Precup, R., Monotone techniques to the initial values problem for a delay integral equation from Biomathematics, Stud. Univ. Babes-Bolyai Math., 40(1995), no. 2, 63-73.
[12] Rus, I.A., Picard operators and applications, Sci. Math. Jpn., 58(2003), no. 1, 191-219.
[13] Rus, I.A., Functional differential equations of mixed type, via weakly Picard operators, Seminar on Fixed Point Theory Cluj-Napoca, 3(2002), 335-346.
[14] Rus, I.A., Generalized contractions and applications, Cluj University Press, 2001.
[15] Rus, I.A., Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, 2(2001), 41-58.
[16] Stepanov, E., On solvability of same boundary value problems for differential equations with “maxima“, Topol. Methods Nonlinear Anal., 8(1996), 315-326.
[17] Zhang, B.G., Zhang, G., Qualitative properties of functional equations with “maxima”, Rocky Mountain J. Math., 29(1999), no. 1, 357-367.