[1] C. Avramescu, Asupra unei teoreme de punct fix (in Romanian) [On a fixed point theorem], St. Cerc. Mat. 22(1970), No. 2, 215–221. MR0310716
[2] I. Basoc, T. Cardinali, A hybrid nonlinear alternative theorem and some hybrid fixed point theorems for multimaps, J. Fixed Point Theory Appl. 17(2015), 413–424. https://doi. org/10.1007/s11784-015-0211-x; MR3397125
[3] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-70914-7; MR2759829
[4] A. Buica, Existence of strong solutions of fully nonlinear elliptic equations, in: Analysis and Optimization of Differential Systems, Springer, Boston, 2003, pp. 69–76. MR1993700
[5] T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett. 11(1998), 85–88. https://doi.org/10.1007/978-0-387-70914-7; MR1490385
[6] T. A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii–Schaefer type, Math. Nachr. 189(1998), 23–31. https://doi.org/10.1002/mana.19981890103; MR1492921
[7] L. A. Caffarelli, X. Cabré, Fully nonlinear elliptic equations, Colloquium Publications, Vol. 43, American Math. Soc., Providence, 1995. https://doi.org/10.1090/coll/043; MR1351007
[8] T. Cardinali, R. Precup, P. Rubbioni, Heterogeneous vectorial fixed point theorems, Mediterr. J. Math. 14(2017), No. 2, Paper No. 83, 12 pp. https://doi.org/10.1007/ s00009-017-0888-8; MR3620754
[9] S. Carl, S. Heikkila, Discontinuous implicit elliptic boundary value problems, Differential Integral Equations 11(1998), 823–834. MR1659268
[10] D. E. Edmunds, Remarks on non-linear functional equations, Math. Ann. 174(1967), 233–239. https://doi.org/10.1007/BF01360721; MR0220113
[11] H. Gao, Y. Li, B. Zhang, A fixed point theorem of Krasnoselskii–Schaefer type and its applications in control and periodicity of integral equations, Fixed Point Theory 12(2011), 91–112. MR2797072
[12] M. A. Krasnoselskii, Some problems of nonlinear analysis, in: Amer. Math. Soc. Transl. Ser. 2, Vol. 10, American Mathematical Society, Providence, R.I. 1958, pp. 345–409. MR0094731
[13] S. A. Marano, Implicit elliptic differential equations, Set-Valued Anal. 2(1994), 545–558.https://doi.org/10.1007/BF01033071; MR1308484
[14] D. O’Regan, Fixed-point theory for the sum of two operators, Appl. Math. Lett. 9(1996), 1–8. https://doi.org/10.1016/0893-9659(95)00093-3; MR1389589
[15] R. Precup, Existence results for nonlinear boundary value problems under nonresonance conditions, in: Qualitative problems for differential equations and control theory, World Sci. Publ., River Edge, 1995, pp. 263–273. MR1372758
[16] R. Precup, Linear and semilinear partial differential equations, De Gruyter, Berlin, 2013. MR2986215
[17] H. Schaefer, Über die Methode der a priori-Schranken (in German) [On the method of a priori bounds], Math. Ann. 129(1955), 415–416. https://doi.org/10.1007/BF01362380; MR0071723
[18] J. R. L. Webb, Fixed point theorems for non-linear semicontractive operators in Banach spaces, J. London Math. Soc. (2) 1(1969), 683–688. https://doi.org/10.1112/jlms/s2-1. 1.683; MR0250152