## Abstract

## Authors

N. **Suciu
**Friedrich-Alexander University of Erlangen-Nuremberg, Institute of Applied Mathematics

C. **Vamos
**T. Popoviciu Institute of Numerical Analysis, Romanian Academy

**H.**

**Vereecken**

Research Center Julich, ICG-IV: Agrosphere Institute

K. **Sabelefld
**Weierstrass Institute for Applied Analysis and Stochastics, Berlin

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of Russian Academy of Sciences

P. **Knabner
**Friedrich-Alexander University of Erlangen-Nuremberg, Institute of Applied Mathematics, Germany

** **

** **

## Keywords

Ito equation; random fields; memory effects; ergodicity.

### References

See the expanding block below.

## Paper coordinates

N. Suciu, C. Vamoş, H. Vereecken, K. Sabelfeld P. Knabner, *Itô equation model for dispersion of solutes in heterogeneous media*, Rev. Anal. Numér. Théor. Approx., 37 (2008) no. 2, 221-238

?

## About this paper

##### Journal

Rev. Anal. Numér. Théor. Approx.

##### Publisher Name

Editions de l’Academie Roumaine

##### Paper on journal website

?

##### Print ISSN

1222-9024

##### Online ISSN

2457-8126

## MR

?

## ZBL

?

## Google Scholar

?

## References

## Paper in html format

## References

*Langevin equation versus kinetic equation: Subdiffusive behavior of charged particles in*

*a stochastic magnetic field*, Phys. Plasmas 1(12), pp. 3826-3842, 1994.

[2] Bhattacharya, R. N. and Gupta, V. K., A* Theoretical Explanation of Solute Dispersion in Saturated Porous Media at the Darcy Scale*, Water Resour. Res., 19, pp. 934-944, 1983.

[3] Bouchaud, J.-P. and Georges, A., *Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications*, Phys. Rep., 195, pp. 127-293, 1990.

[4] Brouwers, J. J. H., *On diffusion theory in turbulence*, J. Eng. Mat., 44, pp. 277–295, 2002.

[5] Compte, A. and Cáceres, M. O., *Fractional dynamics in random velocity fields*, Phys. Rev. Lett., 81(15), pp. 3140-3143, 1998.

[6] Conlon, J. G. and Naddaf, A., *Green’s functions for elliptic and parabolic equations with random coefficients*, New York Journal of Mathematics, 6, pp. 153-225, 2000.

[7] Dagan, G., *Theory of solute transport by groundwater*, Annu. Rev. Fluid Mech., 19, pp. 183-215, 1987.

[8] Doob, J. L., *Stochastic Processes*, John Wiley & Sons, London, 1953.

[9] Eberhard J., Suciu, N. and C. Vamoş, *On the self-averaging of dispersion for transport in quasi-periodic random media*, J. Phys. A: Math. Theor., 40, pp. 597-610, doi: 10.1088/1751-8113/40/4/002, 2007.

[10] Fiori, A. and Dagan, G., *Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications*, J. Contam. Hydrol., 45, pp. 139-163, 2000.

[11] Gardiner, C. W., *Handbook of Stochastic Methods (for Physics, Chemistry and Natural Science)*, Springer, New York, 1985.

[12] Kloeden, P. E. and Platten, E., *Numerical solutions of stochastic differential equations*, Springer, Berlin, 1999.

[13] Jaekel, U. and Vereecken, H., *Renormalization group analysis of macrodispersion in a directed random flow*, Water Resour. Res., 33, pp. 2287-2299, 1997.

[14] LaBolle, E. M., Quastel, J., Fogg, G. E. and Gravner, J., *Diffusion processes in composite media and their numerical integration by **random walks: Generalized stochastic differential equations with discontinuous coefficients*, Water Resour. Res., 36(3), pp. 651-662, 2000.

[15] Le Doussal, P. and Machta, J., *Annealed versus quenched diffusion coefficient in random media*, Phys. Rev. B, 40(12), pp. 9427-9430, 1989.

[16] Lumley, J. L., *An approach to the Eulerian-Lagrangian problem*, J. Math. Phys., 3(2), pp. 309-312, 1962.

[17] Lundgren, T. S., *Turbulent pair dispersion and scalar diffusion*, J. Fluid Mech. 111, pp. 27-57, 1981.

[18] Monin, A. S. and Yaglom, A. M., *Statistical Fluid Mechanics: Mechanics of Turbulence*, MIT Press, Cambridge, M A, 1971.

[19] Sposito, G. and Dagan, G., *Predicting solute plume evolution in heterogeneous porous formations*, Water Resour. Res., 30(2), pp. 585-589, 1994.

[20] Suciu, N., *Some Relations Between Microscopic and Macroscopic Modelling of Thermodynamic Processes (in Romanian)*, Ed. Univ. Piteşti, Appl. and Ind. Math. Series, No. 5, 2001.

[21] Suciu, N. and Vamoş, C., *Effective diffusion in heterogeneous media, Internal Report ICG-IV.00303*, Research Center Jülich, 2003.

[22] Suciu, N., Vamoş, C., Vanderborght, J., H. Hardelauf and Vereecken, H., *Numerical investigations on ergodicity of solute transport in heterogeneous aquifers*, Water Resour. Res., 42, W04409, doi: 10.1029/2005WRR004546, 2006.

[23] Suciu, N., Vamoş, C. and J. Eberhard, *Evaluation of the first-order approximations for transport in heterogeneous media*, Water Resour. Res., 42, W11504, doi: 10.1029/2005WR004714, 2006.

[24] Suciu, N. and Vamoş, C., *Comment on “Nonstationary flow and nonergodic transport in random porous media”* *by G. Darvini and P. Salandin*, Water Resour. Res., 43, W12601, doi: 10.1029/2007WR005946, 2007.

[25] Suciu N., Vamoş, C., Sabelfeld, K. and Andronache, C., *Memory effects and ergodicity for diffusion in spatially correlated velocity fields*, Proc. Appl. Math. Mech., 7, 2010015-2010016, doi: 10.1002/pamm.20070057, 2007.

[26] Suciu N., Vamos, C., Vereecken, H., Sabelfeld, K. and Knabner, P., *Dependence on initial conditions, memory effects, and ergodicity of transport in heterogeneous media*, Preprint No. 324, Institute of Applied Mathematics, Friedrich-Alexander University Erlangen-Nuremberg (available online at http://www.am.uni-erlangen.de/de/preprints2000.html), 2008.

[27] Suciu, N., Vamos, C., Vereecken, H., Sabelfeld, K. and Knabner, P., *Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media*, Water Resour. Res., 44, W08501, doi: 10.1029/2007WR006740, 2008.

[28] Vamoş, C., Suciu, N., Vereecken, H., Vanderborht, J. and Nitzsche, O., *Path decomposition of discrete effective diffusion coefficient*, Internal Report ICG-IV.00501, Research Center Jülich, 2001.

[29] Vamoş, C., Suciu, N. and Vereecken, H., *Generalized random walk algorithm for the numerical modeling of complex diffusion processes*, J. Comp. Phys., 186(2), pp. 527–544, doi: 10.1016/S0021-9991(03)00073-1, 2003.

[30] van Kampen, N. G., *Stochastic Processes in Physics and Chemistry*, North-Holland, Amsterdam, 1981.

[31] Yaglom, A. M., *Correlation Theory of Stationary and Related Random Functions*, Volume I: Basic Results, Springer-Verlag, New York, 1987.

[32] Zirbel, C. L., *Lagrangian observations of homogeneous random environments*, Adv. Appl. Prob., 33, pp. 810-835, 2001.

[33] Zwanzig, R., *Memory effects and irreversible thermodynamics,* Phys. Rev., 124(4), pp. 983-992, 1961.