Kantorovich type operators associated with Jain-Markov operators


This note focuses on a sequence of linear positive operators of integral type in the sense of Kantorovich. The construction is based on a class of discrete operators representing a new variant of Jain operators. By our statements, we prove that the integral family turns out to be useful in approximating continuous signals defined on unbounded intervals. The main tools in obtaining these results are moduli of smoothness of first and second order, K-functional and Bohman-Korovkin criterion.


Octavian Agratini
Babes-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Ogun Dogru
Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey


Linear positive operator, Jain operator, modulus of smoothness, K-functional, Lipschitz function.


Cite this paper as:

O. Agratini, O. Dogru, Kantorovich-type operators associated with a variant of Jain operators, Stud. Univ. Babes-Bolyai Math. 66 (2021) no. 2, 279–288
doi: 10.24193/subbmath.2021.2.04

About this paper


Stud. Univ. Babes-Bolyai Math.

Publisher Name


Print ISSN

Not available yet.

Online ISSN


Google Scholar Profile

[1] Abel, U., Agratini, O., Asymptotic behaviour of Jain operators, Numer. Algor., 71(2016), 553-565.
[2] Agratini, O., A stop over Jain operators and their generalizations, Analele Universitatii de Vest, Timi¸soara, Seria Matematica-Informatica, 56(2018), f. 2, 28-42.
[3] Altomare, F., Korovkin-type theorems and approximation by positive linear operators, Surveys in Approximation Theory, 5(2010), 92-164.
[4] Butzer, P.L., On the extensions of Bernstein polynomials to the infinite interval, Proc. Amer. Math. Soc., 5(1954), 547-553.
[5] DeVore, R.A., Lorentz, G.G., Constructive Approximation, Grundlehren der mathematischen Wissenschaften, Vol. 303, Springer-Verlag, 1993.
[6] Dhamija, M., Pratap, R., Deo, N., Approximation by Kantorovich form of modified Szasz-Mirakyan operators, Appl. Math. Comput., 317(2018), 109-120.
[7] Dogru, O., Mohapatra, R.N., Orkcu, M., Approximation properties of generalized Jain operators, Filomat 30:9(2016), 2359-2366.
[8] Jain, G.C., Approximation of functions by a new class of linear operators, J. Australian Math. Soc., 13(1972), no. 3, 271-276.
[9] Jain, G.C., Pethe, S., On the generalizations of Bernstein and Szasz-Mirakjan operators, Nanta Math., 10(1977), 185-193.
[10] Johnen, H., Inequalities connected with the moduli of smoothness, Mat. Vesnik, 9(24)(1972), 289-305.
[11] Mirakjan, G.M., Approximation of functions with the aid of polynomials, (in Russian), Dokl. Akad. Nauk SSSR, 31(1941), 201-205.
[12] Peetre, J., A theory of interpolation of normed spaces, Notas de Matematica, Rio de Janeiro, 39(1968), 1-86. 288 Octavian Agratini and Ogun Dogru
[13] Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. USA, 60(1968), 1196-1200.
[14] Szasz, O., Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45(1950), 239-245.
[15] Umar, S., Razi, Q., Approximation of functions by generalized Szasz operators, Commun. Fac. Sci. de l’Universite d’Ankara, Series A1: Mathematique, 34(1985), 45-52.


Related Posts