Le théorème des contractions dans des espaces syntopogènes

Abstract

The Banach contraction theorem for metric spaces has been generalized for local convex spaces by G. Marinescu [7] and then by I. Colojoara [6] and N. Gheorghiu [6] for uniform spaces.
In this paper we give a fixed point theorem of the same type as that of Banach, for even more general spaces: the syntopogene spaces; an extension of this theorem for the case of multivalued mappings is also given.

English title

The contraction theorem in syntopogens spaces

Authors

Keywords

syntopogene spaces.

PDF

Cite this paper as:

R. Precup, Le théorème des contractions dans des espaces syntopogènes, Anal. Numér. Théor. Approx., 9 (1980) no. 1, pp. 113-123 (in French).

About this paper

Journal
Mathematica – Revue d’Analyse Numerique et de la Theorie de l’Approximation
L’Analyse Numérique et la Théorie de l’Approximation
Publisher Name

Academia Republicii S.R.

Print ISSN

Not available yet.

Online ISSN

Not available yet.

MR: 82i:54008.

Google Scholar citations

References

[1] Avramescu, C.  Teoreme de punct fix pentru aplicaţii multivoce contractante definite în spaţii uniforme. analele Univ. Craiova, 1, 63-67, 1970.

[2] Bărbulescu, I., On a fixed point theorem for multivalued mappings in uniform spaces. (Romanian. English summary) An. Univ. Craiova Ser. a V-a No. 2, 73-77. (1974), MR0415589.

[3] Berge, Claude, Espaces topologiques: Fonctions multivoques. (French) Collection Universitaire de Mathématiques, Vol. III Dunod, Paris 1959 xi+272 pp., MR0105663.

[4] Colojoară, Ion, Sur un théorème de point fixe dans les espaces uniformes complets. (Romanian. Russian, French summary) Com. Acad. R. P. Romîne 11 1961 281-283, MR0143192.

[5] Császár, Á., Fondaments de la topologie générale, Gauthier-Villars, Paris, 1960.

[6] Gheorghiu, N., Contraction theorem in uniform spaces. (Romanian) Stud. Cerc. Mat. 19 1967 119-122, MR0247498.

[7] Marinescu, G., Spaţii vectoriale topologice şi pseudotopologice. (Romanian) [Topological and pseudo-topological vector spaces] Biblioteca Matematică, IV Editura Academiei Republicii Populare Romîne, Bucharest 1959 217 pp., MR0107803.

Related Posts

No results found.