Linear combinations of D.D. Stancu polynomials

Abstract

By using Markov-Polya probabilistic shceme, in 1968 D.D. Stancu introduced and studied a new class of linear positive operators of polynomial type. In this paper we investigate cerain linear combinations of Stancu operators which, under additional requirements, approximate a function with a smaller error than the original polynomials.

Authors

Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Markov-Polya scheme; Stancu polynomial; rate of convergence.

Paper coordinates

O. Agratini, Linear combinations of D.D. Stancu polynomials, Revue d’Analyse Numerique et de Theorie de l’Approximation, 27 (1999) no. 1, pp. 15-22.

PDF

About this paper

Journal

Revue d’Analyse Numerique et de Theorie de l’Approximation

Publisher Name

Publishing House of the Romanian Academy

Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

B. Della Vecchia, On the approximation of functions by means of the operators or D. D. Stancu, Studia Univ. Babeş-Bolyai, Mathematica, 37, 1 (1992), pp. 3-36.

A. Di Lorenzo and M. R.Occorsio, Polinomi di Stancu, Rapp. Tecnico, no. 121/95, I.A.M., Napoli, 1995.

H. H. Gonska and J. Meier, Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo 21 (1984), fasc. IV, pp. 317-335, https://doi.org/10.1007/bf02576170

G. G. Lorentz, Bernstein Polynomials,University of Toronto Press, Toronto, 1953.

G. Mastroianni and M. R. Occorsio, Sulle derivate dei polinomi di Stancu, Rend. Accad. Sci.Fis. Mat. Napoli, 45,4 (1978),pp.273-281.

G. Mastroianni and M. R. Occorsi, Una generalizatione dell’operatore di Stancu, Rend. Accad. Sci. Fis. Mat. Napoli, 45, 4 (1978), pp. 495-511.

C. P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators, Canad. J. Math., 28 (1976), pp.1224-1250, https://doi.org/10.4153/cjm-1976-123-8

G. Mühlbach, Verallgemeinerungen der Bernstein- und Lagrange-Polynome. Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu, Rev. Roumaine Math. Pures Appl. 15, 8 (1970), pp. 1235-1252.

R. K. S. Rathore, Linear Combinations of Linear Positive Operators and Generating Relations in Special Functions, Thesis, I.l.T., Delhi, I 973.

D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13, 8 (1968), pp. 1173-1194.

D. D. Stancu, Use of probabilisticc methods in the theory of uniform approximation of continuous functions, Rev. Roumaine Math. Pures Appl., 14 (1969), pp. 673-691.

D. D. Stancu, Recurrence relations for the central moments of some discrete probability laws, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Mech., 15, I (1970), pp. 55-62.

D. D. Stancu, Approximaton properties of a class of linear positive operators, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Mech., 15, 2 ( 1970), pp. 33-38.

D. D, Stancu, on the remainder of approximation of functions by means of a paramneter dependent linear polynomial operator, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Mech., 16, 2 (1971), pp. 59-66.

1998

Related Posts