## Abstract

Starting from a discrete linear approximation process that has the ability to turn polynomials into polynomials of the same degree, we introduce an integral generalization by using Beta-type bases.

Some properties of this new sequence of operators are investigated in unweighted and weighted spaces of functions defined on unbounded interval. In our construction particular cases are outlined.

## Authors

**Octavian Agratini
**Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

## Keywords

### References

See the expanding block below.

## Paper coordinates

O. Agratini, *Linear positive operators constructed by using Beta-type bases*, Hacettepe Journal of Mathematics & Statistics, 49 (2020) no. 3, pp. 1030-1038, doi: 10.15672/hujms.549015

## About this paper

##### Journal

Hacettepe Journal of Mathematics & Statistics

##### Publisher Name

Hacettepe Üniversitesi

##### Print ISSN

2651-477X

##### Online ISSN

2651-477X

##### Google Scholar Profile

soon

[1] T. Acar, A.M. Acu and N. Manav, *Approximation of functions by genuine BernsteinDurrmeyer type operators*, J. Math. Ineq. 12 (4), 975–987, 2018.

[2] F. Altomare and M. Campiti, *Korovkin-type Approximation Theory and its Applications*, de Gruyter Series Studies in Mathematics, Vol. 17, Walter de Gruyter & Co., Berlin, New York, 1994.

[3] I. Chlodovsky, *Sur le développement des fonctions définies dans un interval infini en séries de polynômes de N.S. Bernstein*, Compositio Math. 4, 380–393, 1937.

[4] A.D. Gadjiev, *Theorems of Korovkin type*, Mat. Zametki, 20 (5), 781–786 (in Russian), 1976; Mathematical Notes, 20 (5), 995-998 (English translation), 1976.

[5] A.D. Gadjiev and A. Aral, *The estimates of approximation by using a new type of weighted modulus of continuity*, Comput. Math. Appl. 54, 127–135, 2007.

[6] A.D. Gadjiev and C. Orhan, *Some approximation theorems via statistical convergence*, Rocky Mountain J. Math. 32, 129–138, 2002.

[7] V. Gupta and M.A. Noor, *Convergence of derivatives for certain mixed Szász-Beta operators,* J. Math. Anal. Appl. 321, 1–9, 2006.

[8] G.C. Jain, *Approximation of functions by a new class of linear operators*, J. Aust. Math. Soc. 13 (3), 271–276, 1972.

[9] A.S. Kumar and T. Acar, *Approximation by generalized Baskakov-Durrmeyer-Stancu type operators*, Rend. Circ. Mat. Palermo, Series 2, 65 (3), 411–424, 2016.

[10] G.G. Lorentz, *Approximation of functions*, Holt, Rinehart and Winston, Inc., New York, 1966.

[11] G.G. Lorentz, *Bernstein Polynomials*, 2nd Ed., Chelsea Publ. Comp., New York, NY, 1986.

[12] G. Mastroianni, *Su un operatore lineare e positivo,* Rend. Acc. Sc. Fis. Mat. Napoli, 46, 161,-176, 1979.

[13] C.A. Micchelli, *Saturation classes and iterates of operators*, Dissertation, Stanford, 1969.

[14] M. Mursaleen and M. Nasiruzzaman, *Approximation of modified Jakimovski-LeviatanBeta type operators*, Constr. Math. Anal. 1 (2), 88–98, 2018.

[15] P.C. Sikkema, *On some linear positive operators,* Indag. Math. 32, 327–337, 1970.

[16] S. Tarabie, *On Jain-Beta linear operators*, Appl. Math. Inform. Sci. 6 (2), 213–216, 2012.