[1] G. Allaire and H. Hutridurga, Upscating nonlinear adsorption in periodic porous media-homogenization approach Appl. Anal. 96 (10) (2016), 2126–2161.10.1080/00036811.2015.1038254Search in Google Scholar
[2] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures North Holland, Amsterdam, 1978.Search in Google Scholar
[3] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals Oxford University Press, Oxford, 1998.Search in Google Scholar
[4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer, New York, 2011.10.1007/978-0-387-70914-7Search in Google Scholar
[5] D. Cioranescu and P. Donato, An Introduction in Homogenization Oxford University Press, 1999.Search in Google Scholar
[6] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47(1974), 324–353.10.1016/0022-247X(74)90025-0Search in Google Scholar
[7] M. Gahn, P. Knabner and M. Neuss-Radu, Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells SIAM J. Appl. Math. 76 (2016), 1819–1843.10.1137/15M1018484Search in Google Scholar
[8] A. Gaudiello and T. A. Mel’nyk, Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary,]. Differential Equations 265 (2018), 5419–5454.10.1016/j.jde.2018.07.002Search in Google Scholar
[9] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order Springer, Berlin, 1998.Search in Google Scholar
[10] I. Graf, M. A. Peter and J. Sneyd, Homogenization of a nonlinear multiscale model of calcium dynamics in biological cells J. Math. Anal. Appl. 419 (2014), 28–47.10.1016/j.jmaa.2014.04.037Search in Google Scholar
[11] J. Jost, Partial Differential Equations Springer, New York, 2007.10.1007/978-0-387-49319-0Search in Google Scholar
[12] V.A. Khoa and A. Muntean, Asymptotic analysis of a semi-linear elliptic system in perforated domains: Well–posedness and correctors for the homogenization limit, J. Math. Anal. Appl. 439 (2016) 271–295.10.1016/j.jmaa.2016.02.068Search in Google Scholar
[13] A. Piatnitski and M. Ptashnyk, Homogenization of biomechanical models for plan tissues Multiscale Model. Simul. 15(2017), 339–387.10.1137/15M1046198Search in Google Scholar
[14] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems Math. Comp. Modelling 49(2009), 703–708.10.1016/j.mcm.2008.04.006Search in Google Scholar
[15] R. Precup, Moser–Harnack inequality, Krasnosel’skii type fixed point theorems in cones and elliptic problems To pol. Methods Nonlinear Anal. 40 (2012), 301–313.Search in Google Scholar
[16] R. Precup, Nash-type equilibria and periodic solutions to nonvariational systems Adv. Nonlinear Anal. 3 (2014), 197–207.10.1515/anona-2014-0006Search in Google Scholar
[17] V.D. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods Hindawi, New York, 2008.10.1155/9789774540394Search in Google Scholar
[18] C. Timofte, Homogenization results for the calcium dynamics in living cells Math. Comput. Simulat. 133 (2017), 165–174.10.1016/j.matcom.2015.06.011Search in Google Scholar