M-ideals in metric spaces

Abstract


Considering a metric space and its Lipschitz dual one defines the notion of M-ideal and HB-subspace of a metric space (with respect to its Lipschitz dual). One obtain some results analogous to these in the theory of M-ideal and HB-subspaces in a normed space. The results in the paper are based on an extension theorem of McShane [2], [3] and on a uniquenese theorem which is similar to one of R.R.Phelps [10], [11].

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

Paper coordinates

C. Mustăţa, M-ideals in metric spaces, ”Babeş-Bolyai” University, Faculty of Math. and Physics, Research Seminars, Seminar on Mathematica Analysis, Preprint Nr.7 (1988), 67-74 (MR # 90b: 54019)

PDF

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

MR # 90b: 54019

google scholar link

[1] Alfsen, D.M., Effross, E., Structure in real Banach spaces, Ann. of Math. 96(1972), 98-173.
[2] Czisper, J.,Geher, L., Extension of Funcitons satisfying a Lipschitz conditions, Acta Math. Acad.Sci. Hungar 6(1955), 213-220.
[3] Fakhoury, E., Selections lineaires associees au Theoreme de  Hahn-Banach, J. of Funcitonal analysis 11 (1972), 436-452.
[4] Hennefeld, J., M – ideas, HB – subspaces and Compact Operators, Indiana Univ. Math. J. 28 (6) (1979), 927-934.
[5] Hennefeld, J., A note on M – ideals in B(X), Mat. Soc. 98 (1) (1980), 89-92.
[6] Holmes, R.B., Scrantor, B., Ward, J.D., Approximation from the space of compact operators and other M – ideals Duke Math. J. 42 (1975), 259-269.
[7] Holmes, R.B., Geometric Functional Analysis and its Applications, Springer – Verlag – New York – Heidelberg – Berlin, 1975.
[8] Shane, E.J., Extension of range of funcitons, Bull. Amer. Math. Soc. 40 (1934), 837-842.
[9] Johnson, J.A., Banach Spaces of Lipschitz Functions and vector – valued Lipschitz Functions, Trans. Amer. Math. Soc. 148(1970), 147-169.
[10] Mustata, C., Best Approximation and Uniwuq Extension of Lipschitz Functions, J. Approx. Theory 19 (3) (1977), 222-230.
[11] Phelps, R.R., Uniqueness of Hahn-Banach Extension and Unique Best Approximation, Trans. Amer. Math. Sec. 25 (1960), 238-255.
[12] Oja, E., On the uniquess of the norm preserving extension of linear functional in this Hahn-Banach Theorem, Proc. Acad. Science Esteonian SSR 33 (4) (1984), 422-433 (Russian).

Paper (preprint) in HTML form

1988-Mustata-Seminar-UBB-Idelas-in-metric-spaces
 "BABES-BOLYAI" UNIVERSITY  Faculty of Mathematics and Physics  Resoarch Seminars  Seminar on Mathematical Analyeis  Preprint Nr.7, 2988, pp. 65-74. 

M - IDEALS IN MRTRIC SPACES

Costică Mustăta

Abstrect. Considering a netric space and its Lipschitz dual one defines the notion of M-ideal and HB-subspace of a metric space (with respect to its Lipschitz dual). One obtain some results analogous to those in the theory of M M MMM-ideals and B B B B ¯ bar(BB)\overline{B B}BB-subspaces in a normed space. The rocults in the paper are based on an extension theorem of KCShane [ 2 ] , [ 8 ] [ 2 ] , [ 8 ] [2],[8][2],[8][2],[8] and on a uniqueness theorem which is similar to one of R.R. Paelps [10], [22].
Introduction. The notion of M-ideal, introduced by E.M. Alfsen and 2. Erross [1], has many applications in functional analysis as, for example, to the problem of best approximation of continuous linear operators by compact operators (see [6]). Following E.M. Alfsen and I. Effross [1], an U-ideal in a normed space X X XXX is a closed sibspace Y Y YYY of X X XXX whose annihilator Y Y Y^(_|_)Y^{\perp}Y admits a complement G G GGG in X X X^(**)X^{*}X such that g + h = g + h , g G , h I g + h = g + h , g G , h I ||g+h||=||g||+||h||,g in G,h inI^(_|_)\|g+h\|=\|g\|+\|h\|, g \in G, h \in I^{\perp}g+h=g+h,gG,hI. S. Henneleld [4], [5] defined a more general notion t A t A t quad At \quad AtA closed subspace Y Y YYY of a normed space X X XXX is called an H B H B HBH BHB-subspace if Y Y Y^(_|_)Y^{\perp}Y has a complement G G GGG 1n Z Z Z^(**)Z^{*}Z such that for every f X , f h , f > g f X , f h , f > g f inX^(**),||f|| >= ||h||,||f|| > ||g||f \in X^{*},\|f\| \geqslant\|h\|,\|f\|>\|g\|fX,fh,f>g, whenever f = g + h f = g + h f=g+hf= g+hf=g+h, with g G , h Y , h 0 g G , h Y , h 0 g in G,h inY^(_|_),h!=0g \in G, h \in Y^{\perp}, h \neq 0gG,hY,h0. It is immediate that overy μ i d e μ i d e mu-ide-\mu-i d e-μide al is an H B H B HB\mathbb{H B}HB-subspace and the converse is not true : The space K ( i 1 , i ) K i 1 , i K(i_(1),i)\mathbb{K}\left(i_{1}, i\right)K(i1,i) of compact Iinear operators from l 1 l 1 l_(1)l_{1}l1 to l 1 l 1 l_(1)l_{1}l1 is an HB-subspace of A ( l , n ) A ( l , n ) A(l,n)A(l, n)A(l,n), the space of all continuous linear operators from 1 1 ℓ_(1)\ell_{1}1 to 1 1 ℓ_(1)\ell_{1}1, which 1 s not an H-ideal ( see [4], [5]).
The aim of this paper is to transpose these notions to a guneral
metric space X X XXX (without any linear structure) by appealing to the Iipschitz dual of X X XXX, 1.e. a Banach space of Lipschitz functions on X X XXX. The notions of M-ideal and HB-subspace cannot be eztonded automatically to a metric linear space by using its linear dual, for two reasons f first, this dual may be trivial, as is the case for the space I p [ 0 , 1 ] , 0 < p < 1 I p [ 0 , 1 ] , 0 < p < 1 I^(p)[0,1],0 < p < 1I^{p}[0,1], 0<p<1Ip[0,1],0<p<1, and second, there is no norm on the dual of a motric linear space.
Results. Let ( X , d X , d X,dX, dX,d ) be a metric space, x 0 x 0 x_(0)x_{0}x0 a fixed point in X X XXX and let X X XXX be a subset of X X XXX such that x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y. If X X XXX is a metric linear space we take always x 0 = 0 x 0 = 0 x_(0)=0x_{0}=0x0=0. A function f : Y R f : Y R f:Y rarr Rf: Y \rightarrow Rf:YR is called a lipschitz function on Y Y YYY if there exists K 0 K 0 K >= 0K \geqslant 0K0 such that
(1) | f ( x ) f ( y ) | K d ( x , y ) | f ( x ) f ( y ) | K d ( x , y ) quad|f(x)-f(y)| <= Kd(x,y)\quad|f(x)-f(y)| \leqslant K d(x, y)|f(x)f(y)|Kd(x,y)
for all x , y X x , y X x,y in Xx, y \in Xx,yX :
Denote by Lip 0 0 _(0){ }_{0}0 the following set
(2) Lip 0 I = { f & I R , f Lip 0 I = f & I R , f Lip_(0)I={f&IrarrR,f:}\operatorname{Lip}_{0} \mathrm{I}=\left\{\mathrm{f} \& \mathrm{I} \rightarrow \mathbf{R}, \mathrm{f}\right.Lip0I={f&IR,f is a Iipschitz function on I , f ( x 0 ) = 0 } I , f x 0 = 0 {:I,f(x_(0))=0}\left.\mathrm{I}, \mathrm{f}\left(\mathrm{x}_{0}\right)=0\right\}I,f(x0)=0}.
Equiped with the usual operations of addition and multiplication by scalars, Lifo Y Y YYY is a linear space and the application I I ||||_(I^(')):}\left\|\|_{I^{\prime}}\right.I ! Lip o X X _("o ")X rarr_{\text {o }} X \rightarrowX R , defined by coscri beanon & II
(3) f Z = sup { | f ( x ) f ( y ) | / d ( x , y ) , x , y I , x y } f Z = sup { | f ( x ) f ( y ) | / d ( x , y ) , x , y I , x y } ||f||_(Z)=s u p{|f(x)-f(y)|//d(x,y)quad,quad x,y in I,x!=y}\|f\|_{Z}=\sup \{|f(x)-f(y)| / d(x, y) \quad, \quad x, y \in I, x \neq y\}fZ=sup{|f(x)f(y)|/d(x,y),x,yI,xy},
is a nord on Lip 0 I 0 I _(0)I{ }_{0} I0I. It is easily seen that f Y f Y ||f||_(Y)\|f\|_{Y}fY is the shallest of the numbers x 0 x 0 x >= 0x \geqslant 0x0 for which the inequality (1) holds. The space ( L i p 0 γ , 1 Y L i p 0 γ , 1 Y Lip_(0)^(gamma),||_(1)||_(Y)L i p_{0}{ }^{\gamma},\left\|_{1}\right\|_{\mathbf{Y}}Lip0γ,1Y ) is a Banach space (even a dual Banach space , see [9]) and we call it the Lipschitz dual of Y Y YYY.
For X X X X X-=XX \equiv XXX the space L i p 0 X L i p 0 X Lip_(0)XL i p_{0} XLip0X and the norm X X ||||_(X):}\left\|\|_{X}\right.X are delined similarly.
In the following, one supposes always that the subset Y Y YYY of X X XXX contains x 0 x 0 x_(0)x_{0}x0 o the fixed element of x x xxx.
The following Hahn-Banach type extension theorem for Lipachitz functions was proved by Uc Shane [8]. (see also [2] ) :
TREOREM 1. Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a metric space, x 0 x 0 x_(0)x_{0}x0 a fixed point in X X XXX and let Y Y YYY be a subset of X X XXX such that x 0 I x 0 I x_(0)in Ix_{0} \in Ix0I. Then every function f L p 0 I f L p 0 I f in Lp_(0)If \in L p_{0} IfLp0I has a norm-preserving extension in L d p 0 X , 1.6 L d p 0 X , 1.6 Ldp_(0)X,1.6L d p_{0} X, 1.6Ldp0X,1.6. there exists Z I tg 0 X Z I tg 0 X Z in Itg_(0)XZ \in I \operatorname{tg}_{0} XZItg0X such that F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f and X = P X X = P X ||||_(X)=||P||_(X)\left\|\left\|_{X}=\right\| P\right\|_{X}X=PX.
In fact, He Shane [8], proved this theorem in the case of the space Lip Y Y YYY and Lip X X XXX of all Lipschitz functions on Y Y YYY and X X XXX, respectively, but the above formulation is more appropriate for our needs. We shall call sometimes briefly any function F F FFF, as given in Theorem 1, an extension of f f fff.
In general, the extension of a function f K p 0 Y f K p 0 Y f in Kp_(0)Yf \in K p_{0} YfKp0Y to X X XXX is not unique. The functions
(4) I I ( x ) = inf { f ( y ) + f I d ( x , y ) : y I } I 2 ( x ) = sup { f ( y ) f I d ( x , y ) : y I } (4) I I ( x ) = inf f ( y ) + f I d ( x , y ) : y I I 2 ( x ) = sup f ( y ) f I d ( x , y ) : y I {:[(4)I_(I)(x)=i n f{f(y)+||f||_(I)d(x,y):y in I}],[I_(2)(x)=s u p{f(y)-||f||_(I)d(x,y):y in I}]:}\begin{align*} & I_{I}(x)=\inf \left\{f(y)+\|f\|_{I} d(x, y): y \in I\right\} \tag{4}\\ & I_{2}(x)=\sup \left\{f(y)-\|f\|_{I} d(x, y): y \in I\right\} \end{align*}(4)II(x)=inf{f(y)+fId(x,y):yI}I2(x)=sup{f(y)fId(x,y):yI}
are two extensions of f f fff and they are extremal elements of the conver set R ( f ; Y ) R ( f ; Y ) R(f;Y)\mathbb{R}(f ; Y)R(f;Y) of all extensions of f f fff. Frery extension I I III of f f fff verifies the inequalities :
(5) F 2 ( x ) P ( x ) F 1 ( x ) , x X (5) F 2 ( x ) P ( x ) F 1 ( x ) , x X {:(5)F_(2)(x) <= P(x) <= F_(1)(x)quad","quad x in X:}\begin{equation*} F_{2}(x) \leqslant P(x) \leqslant F_{1}(x) \quad, \quad x \in X \tag{5} \end{equation*}(5)F2(x)P(x)F1(x),xX
Therefore, the function f L i p 0 I f L i p 0 I f in Lip_(0)If \in L i p_{0} IfLip0I has a unique extension in Lip I 0 I 0 I_(0)I_{0}I0 if and only if F 1 = F 2 F 1 = F 2 F_(1)=F_(2)F_{1}=F_{2}F1=F2.
DEFIMITION 1. The subset Y Y YYY of X X XXX is said to have property ( U U UUU ) if every function f L i p 0 I f L i p 0 I f in Lip_(0)If \in L i p_{0} IfLip0I has a unique extension in Lip I 0 I 0 I_(0)I_{0}I0.
Hecessary and surficient conditions in order that a subset Y Y YYY of I have property (U) and relations of this property with the problem of best approximation in Lip 0 0 _(0){ }_{0}0 by slements in x x x^(_|_)^(_|_){x^{\perp}}^{\perp}x are given犃 [10].
For X X X X X sube XX \subseteq XXX donote by X X X^(_|_)X^{\perp}X its annihilator in Lig 0 X Lig 0 X Lig_(0)X\operatorname{Lig}_{0} XLig0X, i.e.
(6) I = { F L p 0 I , I | I = 0 } I = F L p 0 I , I I = 0 quadI^(_|_)={F in Lp_(0)I, quad I|_(I)=0}\quad I^{\perp}=\left\{F \in L p_{0} I,\left.\quad I\right|_{I}=0\right\}I={FLp0I,I|I=0}.
Obviously, X X X^(_|_)X^{\perp}X is a closed subspace of It p 0 X p 0 X p_(0)X\mathrm{p}_{0} Xp0X.
DEFINITION 2. A subset V V VVV of a normed space Z Z ZZZ is called proyminal if for every z Z z Z z in Zz \in ZzZ there exists 0 V 0 V grad_(0)in V\nabla_{0} \in V0V such that
(7) z v 0 = d ( z , V ^ ) z v 0 = d ( z , V ^ ) quad||z-v_(0)||=d(z, hat(V))\quad\left\|z-v_{0}\right\|=d(z, \hat{V})zv0=d(z,V^)
Where d ( z , V ) inf { | z | , } d ( z , V ) inf { | z | , } d(z,V)-=i n f{|z-grad|,grad in grad}d(z, V) \equiv \inf \{|z-\nabla|, \nabla \in \nabla\}d(z,V)inf{|z|,} denotes the distance from z z zzz to V V VVV. An element V 0 V 0 V_(0)V_{0}V0 satisfying (7) is called a bost approximation element of z z zzz by elements in V V VVV. If every z Z z Z z in Zz \in ZzZ has a unique best approximation element in V V VVV then the set V V VVV is called Chebysherian .
R.R. Pholps [11] obtained some results concerning the relations between the property (U) and the unicity of best approximation in the dual of a normed space. As was shown in [10] similar results hold also in the Iipschitz case :
THSOREM 2. ([10]) A s joet Y Y YYY of a netric spacs X X XXX has proporty (V) if and oniy if its annihilator I I I^(_|_)I^{\perp}I is Chebyshorian subonce of Lipo 2 2 ^(2){ }^{2}2.
The proof of this theorem is based on the following lemma, which vill be used in the sequel :
LEVII 1. ([10]). Let X X XXX be a metric space, I a subset of X X XXX and Y Y Y^(_|_)Y^{\perp}Y the annihilator of Y Y YYY in Lip 0 X Lip 0 X Lip_(0)X\operatorname{Lip}_{0} XLip0X. If T Lip 0 X T Lip 0 X T inLip_(0)XT \in \operatorname{Lip}_{0} XTLip0X then d ( F , Y ) = I I d F , Y = I I d(F,Y^(_|_))=^('')I^('')Id\left(F, Y^{\perp}\right)= { }^{\prime \prime} I^{\prime \prime} Id(F,Y)=II and an alement δ 0 I δ 0 I delta_(0)inI^(_|_)\delta_{0} \in I^{\perp}δ0I. is a best aporoximation element for y y yyy by elements in I I I^(_|_)I^{\perp}I if and only if g 0 = F F 0 g 0 = F F 0 g_(0)=F-F_(0)g_{0}=F-F_{0}g0=FF0, where I 0 I 0 I_(0)I_{0}I0 is a norm preserving extension of F | I F I F|_(I)\left.F\right|_{I}F|I to X X XXX.
The proporty ( U U UUU ) can be charactorized also in terms of some decompositions of the Lipschitz dual Lip 0 I 0 I _(0)I{ }_{0} \mathrm{I}0I of X . To give this charactorization we noed first sone definitions and notations.
Lot It Id p 0 I p 0 I p_(0)Irarrp_{0} \mathrm{I} \rightarrowp0I Hip p 0 I p 0 I p_(0)Ip_{0} \mathrm{I}p0I denote the restriction operator, defined by :
(8) x ( T ) = F | I , F Lip p 0 X x ( T ) = F I , F Lip p 0 X quad x(T)=F|_(I),F in Lipp_(0)X\quad x(T)=\left.F\right|_{I}, F \in \operatorname{Lip} p_{0} Xx(T)=F|I,FLipp0X,
and iev e: Liy 0 I ( 0 I _(0)I rarr int(:}{ }_{0} I \rightarrow \int\left(\right.0I( IIp 0 X ) 0 X {:_(0)X)\left._{0} X\right)0X) denote the extension orerator, definod by :
(9)
e ( f ) = E ( f ; I ) , f L L p ˙ 0 X ˙ . e ( f ) = E ( f ; I ) , f L L p ˙ 0 X ˙ . e(f)=E(f;I)quad,quad f in LLp^(˙)_(0)X^(˙).e(f)=E(f ; I) \quad, \quad f \in L L \dot{p}_{0} \dot{X} .e(f)=E(f;I),fLLp˙0X˙.
Whore I ( f ; Y ) I ( f ; Y ) I(f;Y)\mathbb{I}(f ; Y)I(f;Y) denotes the set of all nom preserving extensions of I to X X XXX. Lot w : I i p 0 I ( I i p 0 I ) w : I i p 0 I I i p 0 I w:I_(ip_(0))I rarr int(I_(ip_(0))I)w: I_{i p_{0}} I \rightarrow \int\left(I_{i p_{0}} I\right)w:Iip0I(Iip0I) be the composition of the operators r r rrr and e, i.e.
(10)
w e x . w e x . w-=e@x.w \equiv e \circ x .wex.
Then, for F Lip 0 I F Lip 0 I F inLip_(0)IF \in \operatorname{Lip}_{0} IFLip0I, we have w ( F ) e ( r ( F ) ) = S ( I ( F ) ; Y ) w ( F ) e ( r ( F ) ) = S ( I ( F ) ; Y ) w(F)=>e(r(F))=S(I(F);Y)w(F) \Rightarrow e(r(F))=\mathbb{S}(I(F) ; Y)w(F)e(r(F))=S(I(F);Y) and I ( G ) = I ( F ) , G I = I ( F ) I I ( G ) = I ( F ) , G I = I ( F ) I I(G)=I(F),quad||G||_(I)=||I(F)||_(I)I(G)=I(F), \quad\|G\|_{I}=\|I(F)\|_{I}I(G)=I(F),GI=I(F)I, for all G E ( I ( F ) ; Y ) G E ( I ( F ) ; Y ) G in E(I(F);Y)G \in E(I(F) ; Y)GE(I(F);Y)
In goneral, the operator w w www is nulti-valued and w ( F ) w ( F ) w(F)w(F)w(F) is a conver subset of the ball of radius I ( F ) Y I ( F ) Y ||I(F)||_(Y)\|I(F)\|_{Y}I(F)Y and center 0 in L i p 0 X L i p 0 X Lip_(0)XL i p_{0} XLip0X.
Te can now state the theorem of characterization of property ( U ) ( U ) (U)(U)(U) :
THEOPI 3. If I I III is a subset of a netric space X X XXX then the following enserions are equivalent :
2 2 2^(@)2^{\circ}2 I has sroperty (V) ;
2 2 2^(@)2^{\circ}2 Ivery function F L j p 0 can be uniquely written in the F L j p 0 can be uniquely written in the  F inL_(j)p_(0)^("can be uniquely written in the ")F \in L_{j} p_{0}{ }^{\text {can be uniquely written in the }}FLjp0can be uniquely written in the 
form
(11) F = E + g , E w ( P ) , g I F = E + g , E w ( P ) , g I quad F=E+g,E in w(P),g inI^(_|_)\quad F=E+g, E \in w(P), g \in I^{\perp}F=E+g,Ew(P),gI,
and I X > I X I X > I X ||I||_(X) > ||I||_(X)\|I\|_{X}>\|I\|_{X}IX>IX, vinenever g 0 g 0 g!=0g \neq 0g0;
3 G = { H Lip 0 X , H Z = r ( H ) Y } 3 G = H Lip 0 X , H Z = r ( H ) Y 3^(@)quadG={H inLip_(0)X,||H||_(Z)=||r(H)||_(Y)}3^{\circ} \quad \mathscr{G}=\left\{H \in \operatorname{Lip}_{0} X,\|H\|_{Z}=\|r(H)\|_{Y}\right\}3G={HLip0X,HZ=r(H)Y} is the oniy subset of
Lipo X X XXX such that every I L i p 0 X I L i p 0 X I in Lip_(0)XI \in L i p_{0} XILip0X can be uniquely written in the 응펴 f = H + g , H G , g X f = H + g , H G , g X f=H+g,H in G,g inX^(_|_)f=H+g, H \in G, g \in X^{\perp}f=H+g,HG,gX and F X > H X F X > H X ||F||_(X) > ||H||_(X)\|F\|_{X}>\|H\|_{X}FX>HX if g 0 g 0 g!=0g \neq 0g0.
Proof. 1 0 2 0 1 0 2 0 1^(0)=>2^(0)1^{0} \Rightarrow 2^{0}1020. If the set Y Y YYY has property (U) then the oxtension operator 9 , delined by (9), is single-valued and so is the operator w w www defined by (10). For F I i 0 X F I i 0 X F in Ii_(0)XF \in I i_{0} XFIi0X the function D(F) in\in Lip X X X X _(X)X{ }_{X} XXX is the ouly norm preserving extension of I ( F ) I ( F ) I(F)I(F)I(F) to X X XXX, i.e. w ( B ) | Y = I ( F ) w ( B ) Y = I ( F ) w(B)|_(Y)=I(F)\left.w(B)\right|_{Y}=I(F)w(B)|Y=I(F) and w ( F ) X = I ( F ) Y w ( F ) X = I ( F ) Y ||w(F)||_(X)=||I(F)||_(Y)\|w(F)\|_{X}=\|I(F)\|_{Y}w(F)X=I(F)Y. It follows that g == F w ( F ) Y g == F w ( F ) Y g==F-w(F)inY^(_|_)g= =F-w(F) \in Y^{\perp}g==Fw(F)Y and F = w ( F ) + g F = w ( F ) + g F=w(F)+gF=w(F)+gF=w(F)+g is the unique decomposition of Y Y YYY With σ ~ I σ ~ I tilde(sigma)inI^(_|_)\tilde{\sigma} \in I^{\perp}σ~I. By the definition (3) of Lipschitz norm we have F X r ( F ) X F X r ( F ) X || vec(F)||_(X) >= ||r(F)||_(X)\|\vec{F}\|_{X} \geqslant\|r(F)\|_{X}FXr(F)X. The equality I X = I ( F ) Y I X = I ( F ) Y ||I||_(X)=||I(F)||_(Y)\|I\|_{X}=\|I(F)\|_{Y}IX=I(F)Y implies that F F FFF is also a norm preserving extension of I ( F ) I ( F ) I(F)I(F)I(F) and, by the unicity of the axtension it follows F = w ( F ) F = w ( F ) F=w(F)F=w(F)F=w(F), so that B = F w ( F ) = 0 B = F w ( F ) = 0 B=F-w(F)=0B=F-w(F)=0B=Fw(F)=0. Hence I X > I ( F ) Y I X > I ( F ) Y ||I||_(X) > ||I(F)||_(Y)\|I\|_{X}>\|I(F)\|_{Y}IX>I(F)Y if g 0 g 0 g in0g \in 0g0.
2 3 2 3 2^(@)=>3^(@)2^{\circ} \Rightarrow 3^{\circ}23. Let F F F inF \inF Lip 0 X 0 X _(0)X{ }_{0} X0X and let F = H + g F = H + g F=H+gF=H+gF=H+g the decomposition of F F FFF given in 2 2 2^(@)2^{\circ}2. As H W ( F ) = O ( I ( R ) ) H W ( F ) = O ( I ( R ) ) H in W(F)=O(I(R))H \in W(F)=O(I(R))HW(F)=O(I(R)) it follows that I ( F ) r ( H ) I ( F ) r ( H ) I(F)-=r(H)I(F) \equiv r(H)I(F)r(H) and H X = r ( F ) Y H X = r ( F ) Y ||H||_(X)=||r(F)||_(Y)\|H\|_{X}=\|r(F)\|_{Y}HX=r(F)Y, i.e. H φ j H φ j H invarphi_(j)H \in \varphi_{j}Hφj. The condition F X > E X F X > E X ||F||_(X) > ||E||_(X)\|F\|_{X} >\|E\|_{X}FX>EX, for g 0 g 0 g!=0g \neq 0g0, follows from the similar condition from 2 0 2 0 2^(0)2^{0}20.
3 2 3 2 3^(@)Longrightarrow2^(@)3^{\circ} \Longrightarrow 2^{\circ}32. Let F I p 0 X F I p 0 X F in Ip_(0)XF \in I p_{0} XFIp0X and let Z = H + g , H G , g I Z = H + g , H G , g I Z=H+g,H inG,g inI^(_|_)Z=H+g, H \in \mathscr{G}, g \in I^{\perp}Z=H+g,HG,gI be the unique decomposition of R R RRR given in 3 3 3^(@)3^{\circ}3. Then P g = B P g = B P-g=BP-g=BPg=B, I ( H ) I ( F ) I ( H ) I ( F ) I(H)-=I(F)I(H) \equiv I(F)I(H)I(F) and, By Lomma 1, I g X = E X = I ( H ) Y = r ( F ) Y == a ˙ ( B , Y ) I g X = E X = I ( H ) Y = r ( F ) Y == a ˙ B , Y ||I-g||_(X)=||E||_(X)=||I(H)||_(Y)=||r(F)||_(Y)==a^(˙)(B,Y^(_|_))\|I-g\|_{X}=\|E\|_{X}=\|I(H)\|_{Y}=\|r(F)\|_{Y}= =\dot{a}\left(B, Y^{\perp}\right)IgX=EX=I(H)Y=r(F)Y==a˙(B,Y), which shows that g g ggg is an element of best approximation for I I III by elements in I I I^(_|_)I^{\perp}I. If g 1 g 1 g_(1)g_{1}g1 is an other element of best approximation for T T TTT by elements in Y Y Y^(_|_)Y^{\perp}Y then, appealing again to Lema 1, there exists H 1 o ( x ( F ) ) H 1 o ( x ( F ) ) H_(1)in o(x(F))H_{1} \in o(x(F))H1o(x(F)) such that B 1 = F B 1 B 1 = F B 1 B_(1)=F-B_(1)B_{1}=F-B_{1}B1=FB1 and H 1 X = F g 1 X = d ( F , Y ) = r ( F ) Y = r ( H 2 ) Y H 1 X = F g 1 X = d F , Y = r ( F ) Y = r H 2 Y ||H_(1)||_(X)=||F-g_(1)||_(X)=d(F,Y^(_|_))=||r(F)||_(Y)=||r(H_(2))||_(Y)\left\|H_{1}\right\|_{X}=\left\|F-g_{1}\right\|_{X}=d\left(F, Y^{\perp}\right)=\|r(F)\|_{Y}=\left\|r\left(H_{2}\right)\right\|_{Y}H1X=Fg1X=d(F,Y)=r(F)Y=r(H2)Y, which shows that H 1 G H 1 G H_(1)inGH_{1} \in \mathscr{G}H1G. Taking into acsount the unicity assumption in 3 3 3^(@)3^{\circ}3, it follows G G 1 G G 1 G-=G_(1)G \equiv G_{1}GG1. Therefore, Y Y Y^(_|_)Y^{\perp}Y is a Chebyshovian subspace of Iido X X XXX and, by Theorem 2, the set Y has property (U).
Theorem 3 is completely proved.
DEFINITION 3. A subset I I III of a metric space I I III is called an lifideel If its annihilator I 1 I 1 I^(1)I^{1}I1 has a complement G G GGG in Lip I I I I I^(I)I^{I}II such that F X = G X + E X F X = G X + E X ||F||_(X)=||G||_(X)+||E||_(X)\|F\|_{X}=\|G\|_{X}+\|E\|_{X}FX=GX+EX, whonever I = G + E I = G + E I=G+EI=G+EI=G+E, with G G G G G inGG \in \mathcal{G}GG and E Y + , { 0 } E Y + , { 0 } E inY^(+),{0}E \in Y^{+},\{0\}EY+,{0}. The subset Y Y YYY is said to have property (HB) if Y Y Y^(_|_)Y^{\perp}Y has a comple mentary subspace ξ ξ xi\xiξ of Lip X X _(X){ }_{\mathrm{X}}X such that F X E X F X E X ||F||_(X) >= ||E||_(X)\|F\|_{\mathrm{X}} \geqslant\|E\|_{\mathrm{X}}FXEX, z X > G X z X > G X ||z||_(X) > ||G||_(X)\|z\|_{\mathrm{X}}>\|G\|_{\mathrm{X}}zX>GX, Whenever F = G + E F = G + E F=G+EF=G+EF=G+E, with G Y G Y G inYG \in \mathscr{Y}GY and H Σ i , { 0 } H Σ i , { 0 } H inSigma^(i),{0}H \in \Sigma^{i},\{0\}HΣi,{0}, for every function F I p ˙ 0 I F I p ˙ 0 I F in Ip^(˙)_(0)IF \in I \dot{p}_{0} IFIp˙0I.
THEOREM 4. If a subset Y Y YYY of a metric space X X XXX has the property (BB) then Y Y YYY has the property (U) .
Proof. Suppose that Y Y YYY has the property (HB) and has not the properfy (J). Then there exists a function f f f inf \inf Lip 0 I 0 I _(0)I{ }_{0} I0I having two distinct extensions I 1 , I 2 I 1 , I 2 I_(1),I_(2)I_{1}, I_{2}I1,I2 Lip 0 I 0 I _(0)I{ }_{0} \mathfrak{I}0I and the subspace I I I^(_|_)I^{\perp}I has a conplementary subspace G G GGG in Lip I I ^(I){ }^{I}I such that the condition in Definition 3 is fulfilled, implying F i = G i + E i F i = G i + E i F_(i)=G_(i)+E_(i)F_{i}=G_{i}+E_{i}Fi=Gi+Ei, with G i H G i H G_(i)inHG_{i} \in \mathcal{H}GiH and E i Y E i Y E_(i)inY^(_|_)E_{i} \in Y^{\perp}EiY for 1 = 1 , 2 1 = 1 , 2 1=1,21=1,21=1,2. As F 1 F 2 I F 1 F 2 I F_(1)-F_(2)inI^(_|_)F_{1}-F_{2} \in I^{\perp}F1F2I it follows that G 1 G 2 = F 1 I 2 G 1 G 2 = F 1 I 2 G_(1)-G_(2)=F_(1)-I_(2)G_{1}-G_{2}=F_{1}-I_{2}G1G2=F1I2 -- ( E 1 E 2 ) I E 1 E 2 I (E_(1)-E_(2))inI^(_|_)\left(E_{1}-E_{2}\right) \in I^{\perp}(E1E2)I, hence G 1 = G 2 = G ( ζ I = { 0 } G 1 = G 2 = G ζ I = { 0 } G_(1)=G_(2)=G(zeta nnI^(_|_)={0}:}G_{1}=G_{2}=G\left(\zeta \cap I^{\perp}=\{0\}\right.G1=G2=G(ζI={0}, as ξ ξ xi\xiξ and I I I^(_|_)I^{\perp}I are complementary subspaces of Ifipo X X XXX ). Therefore F 1 = G + H 1 F 1 = G + H 1 F_(1)=G+H_(1)F_{1}=G+H_{1}F1=G+H1 and F 2 = G + E 2 F 2 = G + E 2 F_(2)=G+E_(2)F_{2}=G+E_{2}F2=G+E2. Now, if E 2 0 E 2 0 E_(2)!=0E_{2} \neq 0E20 then F 1 Σ > G I F 1 Σ > G I ||F_(1)||_(Sigma) > ||G||_(I)\left\|F_{1}\right\|_{\Sigma}>\|G\|_{I}F1Σ>GI so that f I == F 1 Σ > G Σ r ( G ) I = I Y f I == F 1 Σ > G Σ r ( G ) I = I Y ||f||_(I)==||F_(1)||_(Sigma) > ||G||_(Sigma) >= ||r(G)||_(I)=||I||_(Y)\|f\|_{I}= =\left\|F_{1}\right\|_{\Sigma}>\|G\|_{\Sigma} \geqslant\|r(G)\|_{I}=\|I\|_{Y}fI==F1Σ>GΣr(G)I=IY. If H 1 0 H 1 0 H_(1)-=0H_{1} \equiv 0H10 then H 2 H 1 = 0 H 2 H 1 = 0 H_(2)!=H_(1)=0H_{2} \neq H_{1}=0H2H1=0, hence G = F 1 G = F 1 G=F_(1)G=F_{1}G=F1 and, by Desinition 3 , the equality F 1 = F 2 + H 2 F 1 = F 2 + H 2 F_(1)=F_(2)+H_(2)F_{1}=F_{2}+H_{2}F1=F2+H2 implies P I = F 1 X > F 2 X = S I P I = F 1 X > F 2 X = S I ||P||_(I)=||F_(1)||_(X) > ||F_(2)||_(X)=||S||_(I)\|P\|_{I}=\left\|F_{1}\right\|_{X}>\left\|F_{2}\right\|_{X}=\|S\|_{I}PI=F1X>F2X=SI. The obtained contradictions shows that the set I I III cannot have the propetty (HB). Theorem 4 is completejy proved.
THEOREIX 5. If the subset Y Y YYY of X X XXX has the property ( H B H B HBH BHB ) and F Lip p 0 , F F Lip p 0 , F F in Lipp_(0),FF \in \operatorname{Lip} p_{0}, FFLipp0,F of 0 , then F G F G F inGF \in \mathscr{G}FG if and only if r ( F ) I = F X r ( F ) I = F X ||r(F)||_(I)=||F||_(X)\|r(F)\|_{I}=\|F\|_{X}r(F)I=FX, There ζ ζ zeta\zetaζ is the complementary subspace of r r r^(_|_)r^{\perp}r given in Definition 3 .
Proof. Let F ξ , F 0 F ξ , F 0 F in xi,F!in0F \in \xi, F \notin 0Fξ,F0, and let G G GGG be a norm preserving extension of x ( F ) x ( F ) x(F)x(F)x(F) to I . I I_(". ")I_{\text {. }}I Let G = G 1 + H 1 , G 1 ξ , H 2 X G = G 1 + H 1 , G 1 ξ , H 2 X G=G_(1)+H_(1),G_(1)in xi,H_(2)inX^(_|_)G=G_{1}+H_{1}, G_{1} \in \xi, H_{2} \in X^{\perp}G=G1+H1,G1ξ,H2X be the
decomposition of G G GGG given by Definition 3. Supposing E 1 0 E 1 0 E_(1)!=0E_{1} \neq 0E10, one obtains the contradiction G I > G 1 I I ( G 1 ) I = I ( I ) I == G 1 2 G I > G 1 I I G 1 I = I ( I ) I == G 1 2 ||G||_(I) > ||G_(1)||_(I) >= ||I(G_(1))||_(I)=||I(I)||_(I)==||G_(1)||_(2)\|G\|_{I}>\left\|G_{1}\right\|_{I} \geqslant\left\|I\left(G_{1}\right)\right\|_{I}=\|I(I)\|_{I}= =\left\|G_{1}\right\|_{2}GI>G1II(G1)I=I(I)I==G12. Therefore H 1 = 0 H 1 = 0 H_(1)=0H_{1}=0H1=0 and G = G 1 ζ 1 G = G 1 ζ 1 G=G_(1)inzeta_(1)G=G_{1} \in \zeta_{1}G=G1ζ1. As ζ 1 ζ 1 zeta_(1)\zeta_{1}ζ1 is a subspace of iip 0 0 _(0){ }_{0}0 it follows F G G F G G F-G in GF-G \in GFGG. But F G F G F-GF-GFG is in I I I-I-I too, bocauso r ( F ) = r ( G ) r ( F ) = r ( G ) r(F)=r(G)r(F)=r(G)r(F)=r(G), so that R G ξ X = { 0 } R G ξ X = { 0 } R-G in xi nnX^(_|_)={0}R-G \in \xi \cap X^{\perp}=\{0\}RGξX={0}, i.s. F = G G F = G G F=G inGF=G \in \mathcal{G}F=GG.
Conversely, suppose that F K p 0 x ~ , F 0 F K p 0 x ~ , F 0 F in Kp_(0) tilde(x),F!=0F \in K p_{0} \tilde{x}, F \neq 0FKp0x~,F0, is such that x ( F ) x = P X ( > 0 ) x ( F ) x = P X ( > 0 ) ||x(F)||_(x)=||P||_(X)( > 0)\|x(F)\|_{x} =\|P\|_{X}(>0)x(F)x=PX(>0). Lot I = G + H I = G + H I=G+HI=G+HI=G+H with G ξ , H I L G ξ , H I L G in xi,H inI^(L)G \in \xi, H \in I^{L}Gξ,HIL. If E 0 E 0 E!=0E \neq 0E0 then P I > G X P I > G X ||P||_(I) > ||G||_(X)\|P\|_{I}>\|G\|_{X}PI>GX and the equality r ( I ) = r ( G ) r ( I ) = r ( G ) r(I)=r(G)r(I)=r(G)r(I)=r(G) gives the contradic tion x ( F ) Z = F Z > G Z = x ( G ) Y = r ( F ) Y x ( F ) Z = F Z > G Z = x ( G ) Y = r ( F ) Y ||x(F)||_(Z)=||F||_(Z) > ||G||_(Z)=||x(G)||_(Y)=||r(F)||_(Y)\|x(F)\|_{Z}=\|F\|_{Z}>\|G\|_{Z}=\|x(G)\|_{Y}=\|r(F)\|_{Y}x(F)Z=FZ>GZ=x(G)Y=r(F)Y, which shows that H = 0 H = 0 H=0H=0H=0 and F = G φ S F = G φ S F=G invarphi_(S)F=G \in \varphi_{S}F=GφS.
THFOPN 6. If the subset Y Y YYY of a metric snnce X X XXX has the property (HB) then the subsoace ζ ζ zeta\zetaζ (given in Definition 3) is dropetrically isomorphic to the space Lip 0 I 0 I _(0)^(I){ }_{0}{ }^{I}0I.
Proof. By Theorem 4, tae subset Y Y YYY has the property (U) , so that the restriction r 1 r 1 r_(1)r_{1}r1 of the restriction operator r r rrr to ξ j ξ j xi_(j)\xi_{j}ξj is single-valued and linear. By Theorem 5, r 1 ( G ) j = G X r 1 ( G ) j = G X ||r_(1)(G)||_(j)=||G||_(X)\left\|r_{1}(G)\right\|_{j}=\|G\|_{X}r1(G)j=GX, for all G ζ ξ G ζ ξ G inzeta_(xi)G \in \zeta_{\xi}Gζξ, showing that T 1 T 1 T_(1)T_{1}T1 is an loometry.
THEORSU 7. If the subset X X XXX of a motric space X X XXX pes the proper ty (HB) , tien the extension operator *∣\cdot \mid ip 0 Y 0 Y _(0)Yrarr_{0} \mathrm{Y} \rightarrow0Y Lip c X c X _(c)X_{c} \mathrm{X}cX de linear.
Proof. Let : ~ : ~ tilde(:)\tilde{:}:~ : Lip I ζ j I ζ j Irarrzeta_(j)\mathrm{I} \rightarrow \zeta_{j}Iζj be the inverse of the restiliction operator r 1 = r | e r 1 = r e r_(1)=r|_(e)r_{1}=\left.r\right|_{e}r1=r|e & longrightarrow\longrightarrow Lip 0 I 0 I _(0)I{ }_{0} \mathrm{I}0I which, by Theorem 6, is an isoattrical isomorpicism between ζ ζ zeta\zetaζ and Lipo Y Y YYY. Then is linear and e = j 0 ~ e = j 0 ~ e=j@ tilde(0)e=j \circ \tilde{0}e=j0~ where j : ζ j : ζ j:zeta rarrj: \zeta \rightarrowj:ζ Lip j x j x jxj xjx, denotes the imbedding operator of ζ ζ zeta\zetaζ into Ling x x xxx.

RAITPRINCES

1 ALPSEN, E.M., EPFROSS, E. , Structure in real Banach speces , calt ac 1 ann. of Math. 96 (1972), 98-173.
2 CZIPSTR, J., GHENR, L., Extension of Functions Eatisfying a Liocchite conditions, Acta Hath, Acad. Sci. Hungar 6 (1955), 213-220
3 Tatrourr, E ., Sélections 11néaires essociées au Théorige de Fohn - Expach , J. of Functional Analysis 21 (2972), 436-452.
4 EETIMSILD, J., 14-jdec.ls, HB - subroaces and Conpact Operators, Indiana Univ. Math. J. 28 (6) (1979), 927 - 934.
5 EMTHIPID, J., Anote on M-ideals in B(X), Proc, Amer. Hat. Soc. 98 (1) (1980) , 89-92.
6 HOLIES, R.B., SCRANTON, B., WARD, J.D., Approzimation from the appe of compect operators and other x x x-x-x ideals, Duke Math. J. 42 (1975), 259-26%.
7 BOLITS, R.B., Geonetric Functionol Anclssie and its Applicationg, Springer - Verlag, Now York - Heidelberg - Berlis , 1975 •
8 Mo SHANE, E.J., Thonsion of rango of functions, Bull. Amor. Math. Soc. 40 (1954) , 837-842.
9 JOEWSON, J.A., Benech Speces of Jipschitz Punctions and Vector - Velued Iipschitz Functions, Trans, knor. Meth. Soc. 248 (1970), 147-169 a pt at eccon abill
Eipschite Functions, J. Appror. Theory 29 (3) (1977) , 222-230 。
11 RESTPS, R.R., Uniqueness of Bohn - Banach Extension and Uniqus Best Approximation, Trans. Amer. Math. Boc. 45 ( 1950 ) , 238 255 ( 1950 ) , 238 255 (1950),238-255(1950), 238-255(1950),238255.
12 OJ1, S., On the uniquaness of the norr proservine extengion of linear luuctional in the Hohu - Bancon Feooren, Proc. Acad. Science Estonian SSR 33 (4) (2984), 422-433 (Russian)
Insvitutul do Calcul
Oficiul Postal 1
C. P. 68
3400 Cluj-Hiapoca
Romenia
This note is in final form and no version of 1t is or will be submitted for publication elsawhere.
1988

Related Posts