Abstract
In this paper a basic mathematical model is introduced to describe the dynamics of three cell lines after allogeneic stem cell transplantation: normal host cells, leukemic host cells and donor cells. Their evolution is one of competitive type and depends upon kinetic and cell–cell interaction parameters. Numerical simulations prove that the evolution can ultimately lead either to the normal hematopoietic state achieved by the expansion of the donor cells and the elimination of the host cells, or to the leukemic hematopoietic state characterized by the proliferation of the cancer line and the suppression of the other cell lines. One state or the other is reached depending on cell–cell interactions (anti-host, anti-leukemia and anti-graft effects) and initial cell concentrations at transplantation. The model also provides a theoretical basis for the control of post-transplant evolution aimed at the achievement of normal hematopoiesis.
Authors
Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Smaranda Arghirescu
Department of Hematology, “Victor Babeş” University of Medicine and Pharmacy, Timişoara 300041, Romania
Andrei Cucuianu
Department of Hematology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj 400012, Romania
Margit Şerban
Department of Hematology, “Victor Babeş” University of Medicine and Pharmacy, Timişoara 300041, Romania
Keywords
Mathematical modeling; dynamical system; numerical simulation; stem cell transplantation; acute myeloid leukemia
Paper coordinates
R. Precup, S. Arghirescu, A. Cucuianu, M. Serban, Mathematical modeling of cell dynamics after allogeneic bone marrow transplantation, Int. J. Biomath. 5 (2012) no. 2, 1250026 (18 pages), https://doi.org/10.1142/S1793524511001684
??
About this paper
Journal
International Journal of Biomathematics
Publisher Name
World Scientific
Connecting great Minds
Print ISSN
17935245
Online ISSN
17937159
google scholar link
J. Biol. Syst. 16, 395 (2008). Link, ISI, Google Scholar
[2] J. Theor. Biol. 209, 113 (2001). Crossref, ISI, Google Scholar
[3] J. Clin. Oncol. 23, 3447 (2005), DOI: 10.1200/JCO.2005.09.117. Crossref, ISI, Google Scholar
[4] F. Brauer and C. Castillo-Chávez , Mathematical Models in Population Biology and Epidemiology ( Springer , Berlin , 2001 ) . Crossref, Google Scholar
[5] Haematologica 85, 304 (2000). ISI, Google Scholar
[6] Bull. Math. Biol. 68, 255 (2006), DOI: 10.1007/s11538-005-9014-3. Crossref, ISI, Google Scholar
[7] J. Theor. Biol. 237, 117 (2005), DOI: 10.1016/j.jtbi.2005.03.033. Crossref, ISI, Google Scholar
[8] Hematology 2005, 151 (2005), DOI: 10.1182/asheducation-2005.1.151. Crossref, Google Scholar
[9] Comput. Math. Methods Med. 11, 49 (2010), DOI: 10.1080/17486700902973751. Crossref, ISI, Google Scholar
[10] J. Theor. Biol. 236, 39 (2005). Crossref, ISI, Google Scholar
[11] Brit. J. Haematol. 135, 423 (2006), DOI: 10.1111/j.1365-2141.2006.06300.x. Crossref, ISI, Google Scholar
[12] Stem Cells 24, 2603 (2006), DOI: 10.1634/stemcells.2006-0136. Crossref, ISI, Google Scholar
[13] Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 235 (2010). Crossref, ISI, Google Scholar
[14] Cell Proliferat. 18, 307 (1985). Crossref, Google Scholar
[15] Lifetime Data Anal. 14, 379 (2008), DOI: 10.1007/s10985-008-9090-4. Crossref, ISI, Google Scholar
[16] Cancer Res. 51, 2084 (1991). ISI, Google Scholar
[17] J. Math. Biol. 58, 285 (2009), DOI: 10.1007/s00285-008-0165-3. Crossref, ISI, Google Scholar
[18] Haematologica 93, 834 (2008), DOI: 10.3324/haematol.11277. Crossref, ISI, Google Scholar
[19] J. Theor. Biol. 246, 33 (2007), DOI: 10.1016/j.jtbi.2006.12.012. Crossref, ISI, Google Scholar
[20] P. S. Kim, P. P. Lee and D. Levy, Biology and Control Theory: Current Challenges, Lecture Notes in Control and Information Sciences 357 (Springer, Berlin, 2007) pp. 3–20. Crossref, Google Scholar
[21] Plos Comput. Biol. 4, 1 (2008). ISI, Google Scholar
[22] Blood 51, 941 (1978). Crossref, ISI, Google Scholar
[23] Blood 108, 836 (2006), DOI: 10.1182/blood-2005-11-4503. Crossref, ISI, Google Scholar
[24] Blood 90, 3808 (1997). Google Scholar
[25] J. Theor. Biol. 227, 513 (2004), DOI: 10.1016/j.jtbi.2003.11.024. Crossref, ISI, Google Scholar
[26] J. D. Murray , Mathematical Biology II: Spatial Models and Biomedical Applications ( Springer , New York , 2003 ) . Crossref, Google ScholarM. N. Obeyesekere, P. P. Spicer and M. Korbling, A Mathematical Model for the Progression of an Abnormality in the Hematopoietic System, Lecture Notes in Control and Information Sciences 321 (Springer, New York, 2005) pp. 257–268. Crossref, Google Scholar
[27] Curr. Opin. Hematol. 11, 375 (2004), DOI: 10.1097/01.moh.0000145933.36985.eb. Crossref, ISI, Google Scholar
[28] Biophys. J. 16, 897 (1976). Crossref, ISI, Google Scholar
[29] Biophys. J. 16, 1257 (1976). Crossref, ISI, Google Scholar
[30] Blood 91, 756 (1998). ISI, Google Scholar
[31] Curr. Opin. Hematol. 21(), S3 (2009). Google Scholar
[32] J. F. Tisdale and C. E. Dunbar, Clinical Hematology (Mosby-Elsevier, 2006) pp. 2–15. Google Scholar