Memory effects and ergodicity for diffusion in spatially correlated velocity fields

Abstract

We show that the process of diffusion in statistically homogeneous velocity fields with finite correlation range “remembers” the shape and the orientation of the source over hundreds of dimensionless times and behaves ergodically with respect to the one‐particle dispersion only asymptotically.

Authors

Nicolae Suciu
Friedrich-Alexander University of Erlangen-Nuremberg, Mathematics Department

Karl Sabelfeld
Weierstrass Institute for Applied Analysis and Stochastics
Institute of Computational Math. and Math. Geophysics, Siberian Branch Russian Acad.

Călin Vamoş
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Constantin Andronache
Boston College, 140 Commonwealth Avenue, Chestnut Hill, USA

Keywords

Cite this paper as:

N. Suciu, K. Sabelfeld, C. Vamoş, C. Andronache, Memory effects and ergodicity for diffusion in spatially correlated velocity fields, Proc. Appl. Math. Mech., 7 (2007), 2010015-2010016
doi: 10.1002/pamm.200700057

References

see the expansion block below.

PDF

About this paper

Journal

Proc. Appl. Math. Mech.

Publisher Name

Wiley

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

google scholar link

[1] J. Eberhard, N. Suciu, and C. Vamos, On the self-averaging of dispersion for transport in quasi-periodic random media, J. Phys. A: Math. Theor. 40, 597 (2007),
CrossRef (DOI).

[2] N. Suciu, C. Vamos¸, J. Vanderborght, H. Hardelauf, and H. Vereecken, Internal Report ICG-IV 00204, Forschungszentrum Julich (2004).

[3] N. Suciu, C. Vamos¸, J. Vanderborght, H. Hardelauf, and H. Vereecken, Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res. 42, W04409 (2006),
CrossRef (DOI)

[4] N. Suciu and C. Vamos, Comment on “Nonstationary flow and nonergodic transport in random porous media” by G. Darvini and P. Salandin, Water Resour. Res., (2007),
CrossRef (DOI) (in press).

[5] C. Vamos¸, N. Suciu, and H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes,  J. Comput. Phys. 186(2), 527 (2003).
CrossRef (DOI)

[6] C.L. Zirbel, Lagrangian observations of homogeneous random environments, Adv. Appl. Prob. 33, 810 (2001).
CrossRef (DOI)

Proc Appl Math and Mech - 2008 - Suciu - Memory effects and ergodicity for diffusion in spatially co

Memory effects and ergodicity for diffusion in spatially correlated velocity fields

Nicolae Suciu 1 , 1 , ^(1,**){ }^{1, *}1,, Karl Sabelfeld 2 , 3 2 , 3 ^(2,3){ }^{2,3}2,3, Călin Vamoş 4 4 ^(4){ }^{4}4, and Constantin Andronache 5 5 ^(5){ }^{5}5¹ Friedrich-Alexander University of Erlangen-Nuremberg, Mathematics Department, Martensstr. 3, 91058 Erlangen, Germany. 2 2 ^(2){ }^{2}2 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany. 3 3 ^(3){ }^{3}3 Institute of Computational Math. and Math. Geophysics, Siberian Branch Russian Acad. Sci., Prospect Lavrentjeva 6, 630090 Novosibirsk, Russia. 4 4 ^(4){ }^{4}4 Romanian Academy, Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, 400320 Cluj-Napoca, P. O. Box 68-1, Romania. 5 5 ^(5){ }^{5}5 Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.

Abstract

We show that the process of diffusion in statistically homogeneous velocity fields with finite correlation range "remembers" the shape and the orientation of the source over hundreds of dimensionless times and behaves ergodically with respect to the one-particle dispersion only asymptotically.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The problem of nonreactive transport in continuous medium is relevant in technical applications such as risk analysis, field monitoring and pollution control. This study aims to determine how solute dispersion depends on initial conditions and what are its ergodic properties. We consider a diffusion process in a fluid with velocity V ( x ) V ( x ) V(x)\mathbf{V}(\mathbf{x})V(x) modeled as a random field statistically homogeneous with finite correlation range, continuously differentiable, and incompressible. We also assume the necessary measurability properties which ensure permutations of averages and integrals. For a given realization V ( x ) V ( x ) V(x)\mathbf{V}(x)V(x) and a constant diffusion coefficient D D DDD, the trajectories of the local advection-diffusion process starting at t = 0 t = 0 t=0t=0t=0 from the deterministic initial position X 0 X 0 X_(0)\mathbf{X}_{0}X0 are the solutions of the integral Itô equation
(1) X l ( t ) = X 0 l + 0 t V l ( X ( t ) ) d t + W l ( t ) (1) X l ( t ) = X 0 l + 0 t V l X t d t + W l ( t ) {:(1)X_(l)(t)=X_(0l)+int_(0)^(t)V_(l)(X(t^(')))dt^(')+W_(l)(t):}\begin{equation*} X_{l}(t)=X_{0 l}+\int_{0}^{t} V_{l}\left(\mathbf{X}\left(t^{\prime}\right)\right) d t^{\prime}+W_{l}(t) \tag{1} \end{equation*}(1)Xl(t)=X0l+0tVl(X(t))dt+Wl(t)
where l = 1 , 2 , 3 l = 1 , 2 , 3 l=1,2,3l=1,2,3l=1,2,3 and W l ( t ) W l ( t ) W_(l)(t)W_{l}(t)Wl(t) is a Wiener process of mean zero and variance 2 D t 2 D t 2Dt2 D t2Dt.

2 Memory effects on solute dispersion

The second central moment s l l s l l s_(ll)s_{l l}sll of the actual concentration is given by the dispersion s l l = [ X l X l D X 0 ] 2 D X 0 s l l = X l X l D X 0 2 D X 0 s_(ll)=(:[X_(l)-(:X_(l):)_(DX_(0))]^(2):)_(DX_(0))s_{l l}=\left\langle\left[X_{l}-\left\langle X_{l}\right\rangle_{D X_{0}}\right]^{2}\right\rangle_{D X_{0}}sll=[XlXlDX0]2DX0, where the subscripts D D DDD and X 0 X 0 X_(0)X_{0}X0 indicate averages over diffusion and initial distribution of the solute molecules. With X ~ l = X l X 0 l X ~ l = X l X 0 l widetilde(X)_(l)=X_(l)-X_(0l)\widetilde{X}_{l}=X_{l}-X_{0 l}X~l=XlX0l,
(2) s l l = S l l ( 0 ) + [ X ~ l X ~ l D X 0 ] 2 D X 0 + m l l , (2) s l l = S l l ( 0 ) + X ~ l X ~ l D X 0 2 D X 0 + m l l , {:(2)s_(ll)=S_(ll)(0)+(:[ widetilde(X)_(l)-(: widetilde(X)_(l):)_(DX_(0))]^(2):)_(DX_(0))+m_(ll)",":}\begin{equation*} s_{l l}=S_{l l}(0)+\left\langle\left[\widetilde{X}_{l}-\left\langle\widetilde{X}_{l}\right\rangle_{D X_{0}}\right]^{2}\right\rangle_{D X_{0}}+m_{l l}, \tag{2} \end{equation*}(2)sll=Sll(0)+[X~lX~lDX0]2DX0+mll,
where S l l ( 0 ) = [ X 0 l X 0 l X 0 ] 2 X 0 S l l ( 0 ) = X 0 l X 0 l X 0 2 X 0 S_(ll)(0)=(:[X_(0l)-(:X_(0l):)_(X_(0))]^(2):)_(X_(0))S_{l l}(0)=\left\langle\left[X_{0 l}-\left\langle X_{0 l}\right\rangle_{X_{0}}\right]^{2}\right\rangle_{X_{0}}Sll(0)=[X0lX0lX0]2X0 is the second moment of the initial concentration and m l l = 2 [ X 0 l X 0 l X 0 ] X ~ l D X 0 m l l = 2 X 0 l X 0 l X 0 X ~ l D X 0 m_(ll)=2(:[X_(0l)-(:X_(0l):)_(X_(0))] widetilde(X)_(l):)_(DX_(0))m_{l l}=2\left\langle\left[X_{0 l}-\left\langle X_{0 l}\right\rangle_{X_{0}}\right] \widetilde{X}_{l}\right\rangle_{D X_{0}}mll=2[X0lX0lX0]X~lDX0 is a "memory term" which describes possible persistent influences of initial conditions. To emphasize the role of one-particle statistics and ensemble averaged center of mass, we add and subtract X ~ l D V 2 X 0 X ~ l D V 2 X 0 (:(: widetilde(X)_(l):)_(DV)^(2):)_(X_(0))\left\langle\left\langle\widetilde{X}_{l}\right\rangle_{D V}^{2}\right\rangle_{X_{0}}X~lDV2X0 and X ~ l D X 0 V 2 X ~ l D X 0 V 2 (: widetilde(X)_(l):)_(DX_(0)V)^(2)\left\langle\widetilde{X}_{l}\right\rangle_{D X_{0} V}^{2}X~lDX0V2 in (2) and perform the average over the ensemble of velocity realizations S l l = s l l V S l l = s l l V S_(ll)=(:s_(ll):)_(V)S_{l l}=\left\langle s_{l l}\right\rangle_{V}Sll=sllV to obtain
(3) S l l = S l l ( 0 ) + X l l X 0 R l l + M l l + Q l l (3) S l l = S l l ( 0 ) + X l l X 0 R l l + M l l + Q l l {:(3)S_(ll)=S_(ll)(0)+(:X_(ll):)_(X_(0))-R_(ll)+M_(ll)+Q_(ll):}\begin{equation*} S_{l l}=S_{l l}(0)+\left\langle X_{l l}\right\rangle_{X_{0}}-R_{l l}+M_{l l}+Q_{l l} \tag{3} \end{equation*}(3)Sll=Sll(0)+XllX0Rll+Mll+Qll
The terms of (3) are as follows: the average over initial positions of the one-particle dispersion X l l = [ X ~ l X ~ l D V ] 2 D V X l l = X ~ l X ~ l D V 2 D V X_(ll)=(:[ widetilde(X)_(l)-(: widetilde(X)_(l):)_(DV)]^(2):)_(DV)X_{l l}=\left\langle\left[\widetilde{X}_{l}-\left\langle\widetilde{X}_{l}\right\rangle_{D V}\right]^{2}\right\rangle_{D V}Xll=[X~lX~lDV]2DV, the variance of the center of mass R l l = [ X ~ l D X 0 X ~ l D X 0 V ] 2 V R l l = X ~ l D X 0 X ~ l D X 0 V 2 V R_(ll)=(:[(: widetilde(X)_(l):)_(DX_(0))-(: widetilde(X)_(l):)_(DX_(0)V)]^(2):)_(V)R_{l l}=\left\langle\left[\left\langle\widetilde{X}_{l}\right\rangle_{D X_{0}}-\left\langle\widetilde{X}_{l}\right\rangle_{D X_{0} V}\right]^{2}\right\rangle_{V}Rll=[X~lDX0X~lDX0V]2V, the average over the ensemble of velocity realizations of the memory term M l l = m l l V M l l = m l l V M_(ll)=(:m_(ll):)_(V)M_{l l}=\left\langle m_{l l}\right\rangle_{V}Mll=mllV, and the variance with respect to the initial position of the one-particle center of mass Q l l = [ X ~ l D V X ~ l D V X 0 ] 2 X 0 Q l l = X ~ l D V X ~ l D V X 0 2 X 0 Q_(ll)=(:[(: widetilde(X)_(l):)_(DV)-(: widetilde(X)_(l):)_(DVX_(0))]^(2):)_(X_(0))Q_{l l}=\left\langle\left[\left\langle\widetilde{X}_{l}\right\rangle_{D V}-\left\langle\widetilde{X}_{l}\right\rangle_{D V X_{0}}\right]^{2}\right\rangle_{X_{0}}Qll=[X~lDVX~lDVX0]2X0 [4].
Using (1), the one-particle dispersion takes the explicit form
(4) X l l ( t ; X 0 ) = 2 D t + 0 t 0 t u l ( X ( t ) ) u l ( X ( t ) ) V D d t d t + 2 W l ( t ) 0 t u l ( X ( t ) ) V d t D (4) X l l t ; X 0 = 2 D t + 0 t 0 t u l X t u l X t V D d t d t + 2 W l ( t ) 0 t u l X t V d t D {:(4)X_(ll)(t;X_(0))=2Dt+int_(0)^(t)int_(0)^(t)(:u_(l)(X(t^(')))u_(l)(X(t^(''))):)_(VD)dt^(')dt^('')+2(:W_(l)(t)int_(0)^(t)(:u_(l)(X(t^('))):)_(V)dt^('):)_(D):}\begin{equation*} X_{l l}\left(t ; \mathbf{X}_{0}\right)=2 D t+\int_{0}^{t} \int_{0}^{t}\left\langle u_{l}\left(\mathbf{X}\left(t^{\prime}\right)\right) u_{l}\left(\mathbf{X}\left(t^{\prime \prime}\right)\right)\right\rangle_{V D} d t^{\prime} d t^{\prime \prime}+2\left\langle W_{l}(t) \int_{0}^{t}\left\langle u_{l}\left(\mathbf{X}\left(t^{\prime}\right)\right)\right\rangle_{V} d t^{\prime}\right\rangle_{D} \tag{4} \end{equation*}(4)Xll(t;X0)=2Dt+0t0tul(X(t))ul(X(t))VDdtdt+2Wl(t)0tul(X(t))VdtD
Fig. 1 Transverse average memory terms for slab sources oriented across the mean flow.
Fig. 2 Standard deviations of transverse memory terms for slabs oriented across the mean flow.
where u l ( X ( t ) ) = V l ( X ( t ) ) V l ( X ( t ) ) D V u l ( X ( t ) ) = V l ( X ( t ) ) V l ( X ( t ) ) D V u_(l)(X(t))=V_(l)(X(t))-(:V_(l)(X(t)):)_(DV)u_{l}(\mathbf{X}(t))=V_{l}(\mathbf{X}(t))-\left\langle V_{l}(\mathbf{X}(t))\right\rangle_{D V}ul(X(t))=Vl(X(t))Vl(X(t))DV is the one-particle velocity fluctuation. For the assumed properties of the random velocity field, the velocity sampled on trajectories V ( X ( t ) ) V ( X ( t ) ) V(X(t))\mathbf{V}(\mathbf{X}(t))V(X(t)) has the same one-point probability distribution as V ( x ) V ( x ) V(x)\mathbf{V}(\mathbf{x})V(x) [6]. This implies u l ( X ( t ) ) V = 0 u l X t V = 0 (:u_(l)(X(t^('))):)_(V)=0\left\langle u_{l}\left(\mathbf{X}\left(t^{\prime}\right)\right)\right\rangle_{V}=0ul(X(t))V=0 and the independence of X 0 X 0 X_(0)\mathbf{X}_{0}X0 and the stationarity of the auto-correlation, i.e. u l ( X ( t ) ) u l ( X ( t ) ) V = u l l ( t t ) u l X t u l X t V = u l l t t (:u_(l)(X(t^(')))u_(l)(X(t^(''))):)_(V)=u_(ll)(t^(')-t^(''))\left\langle u_{l}\left(\mathbf{X}\left(t^{\prime}\right)\right) u_{l}\left(\mathbf{X}\left(t^{\prime \prime}\right)\right)\right\rangle_{V} =u_{l l}\left(t^{\prime}-t^{\prime \prime}\right)ul(X(t))ul(X(t))V=ull(tt). It follows that the last term of (4) vanishes and the one-particle dispersion is a "memory-free" quantity, independent of initial conditions, X l l ( t ) = 2 D t + 0 t 0 t u l l ( t t ) D d t d t X l l ( t ) = 2 D t + 0 t 0 t u l l t t D d t d t X_(ll)(t)=2Dt+int_(0)^(t)int_(0)^(t)(:u_(ll)(t^(')-t^('')):)_(D)dt^(')dt^('')X_{l l}(t)=2 D t+\int_{0}^{t} \int_{0}^{t}\left\langle u_{l l}\left(t^{\prime}-t^{\prime \prime}\right)\right\rangle_{D} d t^{\prime} d t^{\prime \prime}Xll(t)=2Dt+0t0tull(tt)Ddtdt. For the same reason, M l l M l l M_(ll)M_{l l}Mll and Q l l Q l l Q_(ll)Q_{l l}Qll vanish and from (3) one obtains S l l = S l l ( 0 ) + X l l R l l S l l = S l l ( 0 ) + X l l R l l S_(ll)=S_(ll)(0)+X_(ll)-R_(ll)S_{l l}=S_{l l}(0)+X_{l l}-R_{l l}Sll=Sll(0)+XllRll.
Numerical investigations [3] and perturbation approaches [1] indicate that for Gaussian fields with small fluctuations and point-like support of the initial concentration X l l X l l X_(ll)X_{l l}Xll has a diffusive behavior t t ∼t\sim tt in the limit of large times and that the single realization dispersion s l l s l l s_(ll)s_{l l}sll tends in the mean square limit to X l l X l l X_(ll)X_{l l}Xll. Much less is known about the behavior of dispersion at finite times and for large sources. However, homogeneous fields with finite correlation range are ergodic and for large support of initial concentration distribution the space average with respect to X 0 X 0 X_(0)X_{0}X0 of the velocity V l ( X ( t ) ) V l ( X ( t ) ) V_(l)(X(t))V_{l}(\mathbf{X}(t))Vl(X(t)) tends to its ensemble average (with respect to V V VVV ). Using (1) and ergodicity of the velocity field, one can argue that for increasing source dimensions R l l R l l R_(ll)R_{l l}Rll approaches to zero. Therefore, the average dispersion can be approximated by S l l S l l ( 0 ) + X l l S l l S l l ( 0 ) + X l l S_(ll)~~S_(ll)(0)+X_(ll)S_{l l} \approx S_{l l}(0)+X_{l l}SllSll(0)+Xll. A similar ergodicity argument suggests that in the case of Gaussian velocity fields, when the auto-correlation is also ergodic, the second term in (2) approximates the one-particle variance X l l X l l X_(ll)X_{l l}Xll and the actual dispersion can be estimated by s l l S l l ( 0 ) + X l l + m l l s l l S l l ( 0 ) + X l l + m l l s_(ll)~~S_(ll)(0)+X_(ll)+m_(ll)s_{l l} \approx S_{l l}(0)+X_{l l}+m_{l l}sllSll(0)+Xll+mll. Thus, the standard deviation of the single realization memory terms, S D ( m l l ) S D ( s l l ) S D m l l S D s l l SD(m_(ll))~~SD(s_(ll))S D\left(m_{l l}\right) \approx S D\left(s_{l l}\right)SD(mll)SD(sll), quantifies the "ergodicity in a large sense" [ 3,4 ] of the actual dispersion s l l S l l ( 0 ) s l l S l l ( 0 ) s_(ll)-S_(ll)(0)s_{l l}-S_{l l}(0)sllSll(0) with respect to the memory-free stochastic model X l l X l l X_(ll)X_{l l}Xll. Of course, this is true only for large enough extensions of the source. For small sources, the "ergodicity range" ( s l l S l l ( 0 ) X l l ) 2 V 1 / 2 s l l S l l ( 0 ) X l l 2 V 1 / 2 (:(s_(ll)-S_(ll)(0)-X_(ll))^(2):)_(V)^(1//2)\left\langle\left(s_{l l}-S_{l l}(0)-X_{l l}\right)^{2}\right\rangle_{V}^{1 / 2}(sllSll(0)Xll)2V1/2 has to be computed without the above approximation for s l l [ 3 , 4 ] s l l [ 3 , 4 ] s_(ll)[3,4]s_{l l}[3,4]sll[3,4].

3 Numerical example

For illustration we present some results based on two-dimensional "global random walk" simulations [2,3,5]. An incompressible Gaussian velocity field was approximated with satisfactory precision by 640 periodic modes [ 1 , 2 ] [ 1 , 2 ] [1,2][1,2][1,2]. The Péclet number was fixed to P e = U λ / D = 100 P e = U λ / D = 100 Pe=U lambda//D=100P e=U \lambda / D=100Pe=Uλ/D=100, where U U UUU is the ensemble mean velocity and λ λ lambda\lambdaλ is a measure of the correlation range. Ensemble averages were performed over 5632 velocity realizations [2]. The initial condition consisted of uniform concentration distributions in transverse slabs ( λ , L λ λ , L λ lambda,L lambda\lambda, L \lambdaλ,Lλ ). The terms Q l l Q l l Q_(ll)Q_{l l}Qll were found to be negligible small as compared with 2 D t 2 D t 2Dt2 D t2Dt. The transverse mean memory terms M 22 M 22 M_(22)M_{22}M22 (derived from (3) for Q 22 0 Q 22 0 Q_(22)~~0Q_{22} \approx 0Q220 and for one-particle dispersion X 22 X 22 X_(22)X_{22}X22 estimated from point source simulations) remain relatively small up to L = 200 L = 200 L=200L=200L=200 (Fig. 1). But the corresponding standard deviations, S D ( m 22 ) S D ( s 22 ) S D m 22 S D s 22 SD(m_(22))~~SD(s_(22))S D\left(m_{22}\right) \approx S D\left(s_{22}\right)SD(m22)SD(s22), are two orders of magnitude larger and show an important increase with the source dimension (Fig. 2). The longitudinal memory terms m 11 m 11 m_(11)m_{11}m11 are negligible and s 11 s 11 s_(11)s_{11}s11 behave ergodically with respect to X 11 X 11 X_(11)X_{11}X11 at early times, provided that L 50 L 50 L >= 50L \geq 50L50.
Acknowledgements This work was supported in part by Deutsche Forschungsgemeinschaft grant SU 415/1-2, Romanian Ministry of Education and Research grant 2-CEx06-11-96, NATO Collaborative Linkage Grant ESP.NR.CLG 981426, and RFBR Grant 06-01-00498.

References

[1] J. Eberhard, N. Suciu, and C. Vamoş, J. Phys. A: Math. Theor. 40, 597 (2007), doi:10.1088/1751-8113/40/4/002.
[2] N. Suciu, C. Vamoş, J. Vanderborght, H. Hardelauf, and H. Vereecken, Internal Report ICG-IV 00204, Forschungszentrum Jülich (2004).
[3] N. Suciu, C. Vamoş, J. Vanderborght, H. Hardelauf, and H. Vereecken, Water Resour. Res. 42, W04409 (2006), doi:10.1029/2005WR004546.
[4] N. Suciu and C. Vamoş, Water Resour. Res., (2007), doi:10.1029/2007WR005946 (in press).
[5] C. Vamoş, N. Suciu, and H. Vereecken, J. Comput. Phys. 186(2), 527 (2003).
[6] C.L. Zirbel, Adv. Appl. Prob. 33, 810 (2001).

2007

Related Posts