## Abstract

A new nonuniform nonresonant result at the first eigenvalue is presented for the boundary value problem \(\ y^{\prime \prime}+q\ f\left( t,y,y^{\prime}\right) =0\) a.e.on \(\left[ 0,1\right] ,y\left( 0\right) =y\left(1\right) =0\).

## Authors

**Ravi P. Agarwal
**Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901–6975

**Donal O’Regan
**Department of Mathematics, National University of Ireland, Galway, Ireland

**Radu Precup**

Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

## Keywords

Nonuniform nonresonant; boundary value problem; eigenvalues; eigen-functions.

## Paper coordinates

R. Precup, R.P. Agarwal, D. O’Regan, *Nonuniform nonresonance for nonlinear boundary value problems with y′dependence*, Dynamic Systems Appl. 16 (3) (2007), 587-594.

## About this paper

##### Journal

Dynamic Systems and Applications

##### Publisher Name

##### DOI

–

##### Print ISSN

##### Online ISSN

1056-2176

google scholar link

[1] R.P. Agarwal, D. O’Regan and V. Lakshmikantham, Quadratic forms and nonlinear nonresonant singular second order boundary value problems of limit circle type, Zeitschrift fur Analysis und ihre Anwendungen 20(2001), 727–737.

[2] A. Granas, R.G. Guenther and J.W. Lee, Some general existence principles in the Caratheodory theory of nonlinear differential systems, J. Math. Pures Appl. 70(1991), 153–196.

[3] J. Mawhin and J.R. Ward, Nonuniform nonresonance conditions at the first two eigenvalues for periodic solutions of forced Lienard and Duffing equations, Rocky M. J. Math. 12(1982), 643–654.

[4] D. O’Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994.

[5] D. O’Regan, Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer, Dordrecht, 1997.