T. Popoviciu, Notes sur les généralisations des fonctions convexes d’ordre supérieur (III), Bull. de la Sect. sci. de l’Acad. Roum., 24 (1942) no. 6, pp. 409-416 (in French)
1942 g -Popoviciu- Bull. Sect. Sci. Acad. Roum. - Notes on the generalizations of convex functions
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
NOTES ON THE GENERALISATIONS OF HIGHER-ORDER CONVEX FUNCTIONS (III)^(1){ }^{1})
BY
TIBERIU POPOVICIU
Note presented by Mr. S. Stoilow, Mc. AR at the meeting of January 9, 1912
ORDER FUNCTIONS (n|kn \mid k) AND ORDER FUNCTIONSnnBY SEGMENTS
In the previous note^(2){ }^{2}) we have defined the order functionsnnby segments. We will now show that there is a close connection between these functions and the order functions (n|kn \mid k) which we studied in note I of this series^(3){ }^{3}). We will see, in fact, that any function of ordernnby segments is of a certain order(n|k)(n \mid k)determined and, conversely, any order function (n|kn \mid k) is of ordernnby segments.
2. Let's first demonstrate the
Theorem 1. Any function of order n by segments and of characteristichhis at most of order (n|(h-1)(n+2)n \mid(h-1)(n+2)).
Eithere={x_(1),x_(2),dots,x_(m)}e=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}a finite (and ordered) sequence of the set E of definition of the function. We can assume that among these points at most2(n+1)2(n+1)belong to each of the subsetsE_(i)^(**)E_{i}^{*}of canonical decomposition. Otherwise, indeed,eeis certainly reducible.
If we haves > 1,x_(j-1)*EE_(i)^(**),x_(j),x_(j+1),dots,x_(j+n+s)inE^(**)s>1, x_{j-1} \cdot \mathcal{E} E_{i}^{*}, x_{j}, x_{j+1}, \ldots, x_{j+n+s} \in E^{*},x_(j+n+s+1)inL_(i+1)^(**)x_{j+n+s+1} \in L_{i+1}^{*}the sequel
does not present any variations. This shows us that the least advantageous case is ifm=h(n+2),x_((i-1)(n+2)+j)-=E_(i)^(**),j=1,2,dotsm=h(n+2), x_{(i-1)(n+2)+j} \equiv E_{\mathbf{i}}^{*}, j=1,2, \ldots,n+2,i=1,2,dots,hn+2, i=1,2, \ldots, hand if the sequeld_(n+1)d_{n+1}ofeepresents the number
maximum possible variations. Indeed, if we add more points to such a value, we do not increase the number of variations in the sequence.d_(n+1)d_{n+1}The sequeld_(n+1)d_{n+1}ofeethenh(n-2)-n-1h(n-2)-n-1terms and therefore presents at most (h--1h--1) (n+2n+2) variations.
Let us now prove
Theorem 9. Any function of ordernnby segments and characteristicshhis at least in order (n|h-1n \mid h-1).
We demonstrate by induction on the numberhh. Forh=1h=1The property is obvious because the function is then of ordernnonEE. Forh=2h=2The function is not of ordernnon pent done trouver denx differences sépare[x_(1),x_(2),dots,x_(n+2);i]\left[x_{1}, x_{2}, \ldots, x_{n+2}; i\right].[.x^(')_(1),x^(')_(2),dots,x^(')_(n+2);f]\left[. x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \ldots, x^{\prime}{ }_{n+2}; f\right]not mules and of opposite signs. From the formula for the average of divided differences, it immediately follows that the sequenced_(n+1)d_{n+1}from the meeting of pointsx_(i),x_(i)^(')x_{i}, x_{i}^{\prime}presents at least one variation.
Let's examine the eash > 2h>2Suppose the property is true up toh-1h-1and let's demonstrate - the forhhThe lonetion being of characteristich-1h-1onE-E_(h)^(**)E-E_{h}^{*}We can find, by hypothesis, the following{x_(1),x_(2),dots,x_(r),x_(r+1),dots,x_(r+r^('))},x_(i)in E-E_(h)^(**)-E_(h-1)^(**),i=1\left\{x_{1}, x_{2}, \ldots, x_{r}, x_{r+1}, \ldots, x_{r+r^{\prime}}\right\}, x_{i} \in E-E_{h}^{*}-E_{h-1}^{*}, i=1,2,dots,r,x_(r+i)epsiE_(h-1),i=1,2,dots,r^(')2, \ldots, r, x_{r+i} \varepsilon E_{h-1}, i=1,2, \ldots, r^{\prime}such as the followingd_(n+1)d_{n+1}corresponding presents at leasth-2h-2variations. It is possible, of course, thatr^(')=0r^{\prime}=0, so all thex_(i)epsi E-E_(h)^(**)-E_(h-1)^(**)x_{i} \varepsilon E-E_{h}^{*}-E_{h-1}^{*}The function being of characteristic 2 onE_(h-1)^(**)+E_(h)^(**)E_{h-1}^{*}+E_{h}^{*}we can find the rest{x_(1),x_(2),dots,x_(s)^('),x_(s+1)^('),dots,x_(s+s^('))^(')}\left\{x_{1}, x_{2}, \ldots, x_{s}^{\prime}, x_{s+1}^{\prime}, \ldots, x_{s+s^{\prime}}^{\prime}\right\}such asx_(i)^(')epsiE_(h-1)^(**),i=1,2,dots,sx_{i}^{\prime} \varepsilon E_{h-1}^{*}, i=1,2, \ldots, s,x_(s+i)^(')epsiE_(h)^(**),i=1,2,dots,s^(')x_{s+i}^{\prime} \varepsilon E_{h}^{*}, i=1,2, \ldots, s^{\prime}and the restd_(n+1)d_{n+1}The corresponding element presents at least one variation. Heres >= 1,s^(') >= 1,s+s^(') >= n+3s \geq 1, s^{\prime} \geq 1, s+s^{\prime} \geq n+3according to the property which characterizes>= 0\geq 0, according to the property that characterizes a proper decomposition. Among the pointsx_(i),x_(i)x_{i}, x_{i}belonging toE_(h-1)^(**)E_{h-1}^{*}There iss^('')s^{\prime \prime}distinct,r^(')+s >= s^('') >= max(r^('),s)r^{\prime}+s \geqq s^{\prime \prime} \geqq \max \left(r^{\prime}, s\right). Let us designate byeeall of thex_(i),x_(i)x_{i}, x_{i}distinct belonging toE-E_(h)^(**)E-E_{h}^{*}and bye^(')e^{\prime}all of thex_(i),x_(i)x_{i}, x_{i}distinct belonging toE_(h-1)^(**)+E_(h)^(**)E_{h-1}^{*}+E_{h}^{*}The sequeld_(n+1)d_{n+1}of the remunerationeeAnde^(')e^{\prime}is
(1)quadDelta_(n+1)^(1)(f),Delta_(n+1)^(2)(f)dots,Delta_(n+1)^(r+epsi^('')+s^(')-n-1)(f)\quad \Delta_{n+1}^{1}(f), \Delta_{n+1}^{2}(f) \ldots, \Delta_{n+1}^{r+\varepsilon^{\prime \prime}+s^{\prime}-n-1}(f)
And then the sequelsd_(n+1)d_{n+1}ofeeand ofe^(')e^{\prime}are
(2)quadDelta_(n+1)^(1)(f),Delta_(n+1)^(2)(f),dots,Delta_(n+1)^(r+s^('')-n-1)(f)\quad \Delta_{n+1}^{1}(f), \Delta_{n+1}^{2}(f), \ldots, \Delta_{n+1}^{r+s^{\prime \prime}-n-1}(f),
(3)quadDelta_(n+1)^(r+1)(f),Delta_(n+1)^(r+2)(f),dots,Delta_(n+1)^(r+3s^('')+3'-n-1)quad(f)\quad \Delta_{n+1}^{r+1}(f), \Delta_{n+1}^{r+2}(f), \ldots, \Delta_{n+1}^{r+3 s^{\prime \prime}+3 \prime-n-1} \quad(f)
respectively, The sequence (2) presents at leasth-2h-2variations and sequence (3) at least one variation. If sequences (2) and (3) have no common terms, sequence (1) has at leasth-1h-1variations. Ifr^('')=s^('')-n-1 >= 1r^{\prime \prime}=s^{\prime \prime}-n-1 \geq 1, sequences (2), (3) have the common termsDelta_(n+1)^(r+1)(f),Delta_(n+1)^(r+2)(f),dots,Delta_(n+1)^(r+r^(n))(j)\Delta_{n+1}^{r+1}(f), \Delta_{n+1}^{r+2}(f), \ldots, \Delta_{n+1}^{r+r^{n}}(j)and this sequel does not present any
411 (GENERALLIZATIONS OF HIGHER-ORDER CONVEX FUNCTIONS (III) 3
variations since it is the sequeld_(n+1)d_{n+1}of a sequence of points belonging toE_(h-1)^(**)E_{h-1}^{*}It also appears that (1) presents at leasth-1h-1variations. Theorem 2 is therefore proven.
3. It remains to show that any function of order (n∣kn \mid k) is of ordernnby segments. It will suffice to demonstrate that if the function r' is not of ordernnby segments, it is not of an order (n∣n \midk) determined.
Let us first prove
Lemma 1. If the function f is not of order n by segments onEEThis set can be decomposed into two consecutive subsets.E^((1)),E^((2))E^{(1)}, E^{(2)}in such a way that: 1^(@)1^{\circ}Over a year, less than the setsE^((1)),E^((2))E^{(1)}, E^{(2)}the functionn^(')n^{\prime}is not in ordernnby segments. 2^(@)2^{\circ}The function is not of ordernnon the setsE^((1)),E^((2))E^{(1)}, E^{(2)}
He is flesh thatEEcan't be a finite set and each of the setsE^((1)),E^((2))E^{(1)}, E^{(2)}must be at least one year oldn+3n+3points. The first part is obviously true for any decomposition into two consecutive subsets. Let's therefore prove the second part. LetE_(1),E_(2)E_{1}, E_{2}a decomposition ofEEin two consecutive subsets, each of the subsets having at leastn+3n+3points. If the function is not of ordernnonE_(1)E_{1}and onE_(2)E_{2}The property is demonstrated and we can takeE^((1))=E_(1),E^((2))=E_(2)E^{(1)}=E_{1}, E^{(2)}=E_{2}Let's assume the opposite, therefore that on one of the setsE_(1),E_(2)E_{1}, E_{2}the function is of ordernnSo, to clarify,E_(1)E_{1}This set. SoE_(2)E_{2}contains an infinite number of points and the function is not of ordernnby segments on this set. That isx_(0)x_{0}the right end of the set ofx in Ex \in Esuch as on the intersection ofEEwith the interval (a,ca, c) the function is of ordernn, a being the left end ofE(alpha=min E)E(\alpha=\min E)The entire set ofxxsuch asx_(0) > x in Ex_{0}>x \in Eis then inlini. It is clear that there is ax_(1) > x_(0),x_(1)epsi Ex_{1}>x_{0}, x_{1} \varepsilon Esuch that the function is not of ordernnby segments on the intersection ofEEwith the interval (x_(1),bx_{1}, b),bbbeing the right end ofE(b=max E)E(b=\max E)By taking asE^((2))E^{(2)}this last set andE^((1))=E-E^((2))E^{(1)}=E-E^{(2)}Lemma 1 is completely proven.
We can now prove
Theorem 3. If a function is not of order n by segments onEEand ifkkis a natural number, we can find a finite sequence ofEEincluding the sootd_(n+1)d_{n+1}presents at leastkkparities.
This property demonstrates, obviously, that a function that is not of ordernnby segments cannot be of an order (n∣kn \mid k) determined.
Let us now proceed to the proof of the theorem. LetE^((1)),E^((2))E^{(1)}, E^{(2)}a decomposition ofEEsatisfying Lemma 1. Let us denote byU^((1))U^{(1)}one of these subsets on which the function is not of ordernnby segments and so forth.U_(1)U_{1}the other subset. OnU_(1)U_{1}the function is not of ordernnWe proceed in the same way withU(1)U(1). et nous en déduisons un U_(2)subU^((1))U_{2} \subset U^{(1)} sur lequel la fonction n'est pas.
d'ordre nn, tel que sur U^((1))-U_(2)=U^((2))U^{(1)}-U_{2}=U^{(2)} elle ne soit pas d'ordre nn par segments. De U^((2))U^{(2)} nous déduisons, de la même manière U_(3),U^((3))U_{3}, U^{(3)} et ainsi de suite. Si nous faisons kk fois cette opération, nous déduisons les sous-ensembles (sections de EE )
(4)
U_(1),U_(2),dots,U_(k)U_{1}, U_{2}, \ldots, U_{k}
de EE, qui sont disjoints et la fonction n'est d'ordre nn sur aucun de ces ensembles. Les ensembles (4), rangés dans un certain ordre
donnent une décomposition en sous-ensembles consécutifs de leur somme U_(1)+U_(2)+dots+U_(k)U_{1}+U_{2}+\ldots+U_{k}.
La fonction n'étant pas d'ordre nn sur les U_(i)^(**)U_{i}^{*}, on peut trouver une suite finie e_(i) <= U_(i)^(**)e_{i} \leqq U_{i}^{*} dont la suite d_(n+1)d_{n+1} présente au moins une variation i=1,2,dots,ki=1,2, \ldots, k. Il en résulte que la suite d_(n+1)d_{n+1} de e=e_(1)+e_(2)+dots+e_(k)e=e_{1}+e_{2}+\ldots+e_{k} présente au moins kk variations.
Le théorème 3 est donc démontré.
Il est clair qu'on peut obtenir une suite partielle de ee dont la suite d_(n+1)d_{n+1} présente exactement kk variations.
Remarque. Dans le cas particulier n=-1n=-1, il est clair que toute fonction de caractéristique hh est d'ordre ( -1∣h-1-1 \mid h-1 ) et réciproquement.
4. En nous rapportant aux résultats des notes précédentes, remarquons que si n=-1n=-1, toute suite maximisante et irréductible a hh termes, dont un appartient à chacun des E_(i)^(**)E_{i}^{*} de la décomposition canonique. Ce cas ne présente donc pas beaucoup de particularités. Au contraire pour n >= 0n \geq 0 nous pouvons faire d'intéressantes remarques sur les fonctions d'ordre nn par segments. Nous allons d'abord examiner le cas n=0n=0, donc le cas des fonctions monotones par segments.
pour une fonction ff, monotone par segments et soient a_(i),b_(i)a_{i}, b_{i} les extrémités (gauche et droite) de E_(i),i=1,2,dots,mE_{i}, i=1,2, \ldots, m.
Nous allons considérer maintenant certaines suites finies e_(epsi)e_{\varepsilon} de EE définies de la manière suivante: 1^(@)1^{\circ} Si E_(i)E_{i} a un seul point ce point appartient à e_(epsi)e_{\varepsilon}. 2^(@)2^{\circ} Si E_(i)E_{i} a au moins deux points, il a en commun avec e_(epsi)e_{\varepsilon} exactement deux points x_(i),y_(i)x_{i}, y_{i}. Si a_(i)epsiE_(i)a_{i} \varepsilon E_{i} on a x_(i)=a_(i)x_{i}=a_{i} et si a_(i)a_{i} n'appartient pas à E_(i)E_{i} on a x_(i)^(')-a_(i) < epsix_{i}^{\prime}-a_{i}<\varepsilon. Si b_(i)epsi,E_(i)b_{i} \varepsilon, E_{i} on a y_(i)^(')=b_(i)y_{i}^{\prime}=b_{i} et si b_(i)b_{i} n'appartient pas à E_(i)E_{i} on prend b_(i)-y_(i) < epsib_{i}-y_{i}<\varepsilon. 3^(@)3^{\circ}. Le nombre positif epsi\varepsilon est assez petit pour que l'on ait x_(i)^(') < y_(i)^(')x_{i}^{\prime}<y_{i}^{\prime} et de phus f(x_(i)^('))!=f(y_(i)^('))f\left(x_{i}^{\prime}\right) \neq f\left(y_{i}^{\prime}\right) si la fonction ne se réduit pas à une constante sur E_(i)(i=1,2,dots,m)E_{i}(i=1,2, \ldots, m).
Si EE n'est pas borné à gauche ( a_(1)=-ooa_{1}=-\infty ), la condition x_(1)-a_(1) < epsix_{1}-a_{1}<\varepsilon doit ètre remplaçée par x^(˙)_(1) < -(1)/(epsi)\dot{x}_{1}<-\frac{1}{\varepsilon} et si EE n'est pas borné à droite ( b_(m)=+oob_{m}=+\infty ), la condition b_(m)-y_(m)^(') < epsib_{m}-y_{m}^{\prime}<\varepsilon doit être remplaçée par y_(m)^(') > (1)/(epsi)y_{m}^{\prime}>\frac{1}{\varepsilon}. Il peut, bien entendu, arriver qu'il n'y ait qu'un seul e_(epsi)e_{\varepsilon}. Ceciarrive si d_(i),b_(i)inE_(i),i=1,2,dots,md_{i}, b_{i} \in E_{i}, i=1,2, \ldots, m et, en particulier, si EE est fini.
On voit done que e_(epsi)e_{\varepsilon} contient deux sortes de points. Les points fixes, qui coincident avec une extrémité a_(i),b_(i)a_{i}, b_{i} et les points variables qui sont à une distance moindre que epsi\varepsilon de l'une des extrémités a_(i),b_(i)a_{\boldsymbol{i}}, b_{\boldsymbol{i}}.
Démontrons maintenant le
Lemme 2. Si les points pariables de es s'approchent des extrémités a_(i),b_(i)a_{i}, b_{i} correspondantes, le nombre des variations de la suite d_(1)d_{1} de e_(epsi)e_{\varepsilon} ne peut pas diminuer.
Il suffit de démontrer la propriété lorsque un de ces points varie. Si ce point est x_(1)^(')x_{1}^{\prime} ou y_(m)^(')y_{m}^{\prime}, la propriété est immédiate et le nombre des variations de la suite d_(1)d_{1} ne change pas. Supposons maintenant, pour fixer les idées, qu'un y_(i)^(')y_{i}^{\prime} varie. Si la fonction est constante sur E_(i)E_{\mathbf{i}}The number of variations does not change. Otherwise, there is only a possible decrease in the number of variations iff(x_(i)^('))f\left(x_{\mathbf{i}}^{\prime}\right)--f(y_(i)^(')),f(y_(i)^('))-f(x_(i+1)^('))-f\left(y_{i}^{\prime}\right), f\left(y_{i}^{\prime}\right)-f\left(x_{i+1}^{\prime}\right)are of opposite signs. Herex_(i+1)^(')x_{i+1}^{\prime}designates the unique point ofE_(i+1)E_{i+1}if this set is formed by a single point. But ify_(i)^(')y_{i}^{\prime}believes towardsb_(i),f(x_(i))-f(y_(i)^('))b_{i}, f\left(x_{i}\right)-f\left(y_{i}^{\prime}\right)cannot decrease in absolute value, thereforef(y_(i)^('))-f(x_(i+1)^('))f\left(y_{i}^{\prime}\right)-f\left(x_{i+1}^{\prime}\right)cannot decrease in absolute value. On the other hand,f(y_(i))f\left(y_{i}\right)varying in the same direction, we see that we do not lose any variations in the sequenced_(1)d_{1}We demonstrate Ta in the same way if ax_(i)^(')x_{i}^{\prime}decreases towardsa_(i)a_{i}.
We can deduce that ifepsi\varepsilonAs the number of variations of the sequence tends towards zero, the number of variations of the sequenced_(1)d_{1}ofe_(epsi)e_{\varepsilon}tends towards a limitkkwhich is obviously over.
We can also say that there is a positive numberepsi_(1)\varepsilon_{1}such as forepsi < epsi_(1)\varepsilon<\varepsilon_{1}the sequeld_(1)d_{1}ofe_(epsi)e_{\varepsilon}presentskkvariations. Ife_(epsi)={x_(1),x_(2),dots,x_(r)}e_{\varepsilon}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}Moreover, we can replace the sequenced_(1)d_{1}ofe_(epsi)e_{\varepsilon}subsequently
(6)quad f(x_(2))-f(x_(1)),f(x_(3))-f(x_(2)),dots,f(x_(r))-f(x_(r-1))\quad f\left(x_{2}\right)-f\left(x_{1}\right), f\left(x_{3}\right)-f\left(x_{2}\right), \ldots, f\left(x_{r}\right)-f\left(x_{r-1}\right)
In this way each decomposition (5) is characterized by a certain numberkkWe have the
Theorem 4. The function f is of order (0∣k0 \mid k
Indeed, there are finite sequences .eeofEEincluding the sequeld_(1)d_{1}presents k variations. These are, in particular, the sequences e for sufficiently small e.
Be it noweeany finite sequence ofEEand consider ae_("e ")e_{\text {e }}so that: 1^(@)epsi < epsi_(1),epsi_(1)1^{\circ} \varepsilon<\varepsilon_{1}, \varepsilon_{1}being the positive number defined above. 2^(@)2^{\circ}IfE_(i)E_{i}contains more than one point and if the common parte_(i)e_{i}ofeeand ofE_(i)E_{i}is not empty, we havee_(i)sube_{i} \subsetclosed interval(x_(i)^('),y_(i)^(')),x_(i)^('),y_(i)^(')\left(x_{i}^{\prime}, y_{i}^{\prime}\right), x_{i}^{\prime}, y_{i}^{\prime}being the points ofe_(epsi)e_{\varepsilon}belonging toE_(i)E_{i}.
Lete^(**)e^{*}the meeting of the sequelse,e_(epsi)e, e_{\varepsilon}If ofe^(**)e^{*}We remove the points that do not belong toe_(epsi)e_{\varepsilon}, we do not decrease the number of variations of the sequenced_(1)d_{1}, which results from the fact that the function is monotonic on each of the setsE_(i)E_{i}It follows that the followingd_(1)d_{1}ofe^(**)e^{*}presents exactlykkvariations, therefore the sequeld_(1)d_{1}of e presents at mostkkvariations, from which theorem 4.5 follows
. Let's return to the decomposition (5). The functionffis monotonous onE_(i)E_{i}. Ifa_(i),b_(i)a_{i}, b_{i}are always the extremities ofEEwe have ora_(i)epsiE_(i)a_{i} \varepsilon E_{i}and then we takec_(2i-1)=f(a_(i))c_{2 i-1}=f\left(a_{i}\right), or the limit
{:[lim f(x)=c_(2i-1)],[E_(i) >= x rarra_(i)]:}\begin{array}{r}
\lim f(x)=c_{2 i-1} \\
E_{i} \geqslant x \rightarrow a_{i}
\end{array}
exists in the literal sense or is+oo+\inftyOr-oo-\inftyLikewise, orh_(i)epsiE_(i)h_{i} \varepsilon E_{i}and then we takec_(2i)=f(b_(i))c_{2 i}=f\left(b_{i}\right), or the limit
lim f(x)=c_(2i),\lim f(x)=c_{2 i},
E_(i)ℑx rarrb_(i)E_{i} \Im x \rightarrow b_{i}
exists in the literal sense or is+oo+\inftyOr-oo-\infty.
In particular, ifE_(i)E_{i}is formed by a single point we havea_(i)=b_(i)a_{i}=b_{i}Andc_(2i-1)=c_(2i)=f(a_(i))c_{2 i-1}=c_{2 i}=f\left(a_{i}\right).
In this continuation we agree, as usual, that(+oo)--u=u-(-oo)=(+oo)-(-oo)=+oo > 0,(-oo)-u=u- vec(D)(+oo)=(-oo)-(+oo)=-oo < 0(+\infty)- -u=u-(-\infty)=(+\infty)-(-\infty)=+\infty>0,(-\infty)-u=u- \vec{D}(+\infty)=(-\infty)-(+\infty)=-\infty<0ifuuis a finite number. Furthermore, we will follow the conventions(+oo)-(+oo)=(-oo)-(+\infty)-(+\infty)=(-\infty)---(-oo)=0-(-\infty)=0Then each term of the sequence (7) is either zero or has a determined sign. The sequence (7) can be viewed as the limit, forepsi rarr0\varepsilon \rightarrow 0, of the sequence (6) corresponding to ae_(epsi)e_{\varepsilon}, possibly by removing certain null terms arising from the fact that someE_(i)E_{i}can have only one point. The sequence (7) therefore presentskkvariations.
From the foregoing, it follows that
Theorem 5. The number of variations of the sequence (7), corresponding to the decomposition (5), is independent of this decomposition. Ifkkis this number, the function is of order (0∣k0 \mid k) onEE.
We can establish the invariance of the number of variations of the sequence (7), independently of the definition, already given, of the order of a function. We thus obtain a new definition of the order of a segment-monotone function.
6. We will now extend the previous results to the casen > 0n>0First, we will construct the sequences es in this case. To do this, let's specify the points of es that belong to aE_(i)E_{i}First of alli!=1,mi \neq 1, m, SOE_(i)E_{i}is neither the first nor the last term of the decomposition (5) ofEEfor the functionff, of ordernnby segments. IfE_(i)E_{i}within2(n+1)2(n+1)all these points belong toe_(epsi)e_{\varepsilon}. IfE_(i)E_{i}has at least2(n+1)2(n+1)points it has in common withe_(epsi)e_{\varepsilon}Exactly2(n+1)2(n+1)pointsx_(i)^('),x_(i)^(''),dots,x_(i)^((n+1));y_(i)^('),y_(i)^(''),dots,y_(i)^((n+1))x_{i}^{\prime}, x_{i}^{\prime \prime}, \ldots, x_{i}^{(n+1)} ; y_{i}^{\prime}, y_{i}^{\prime \prime}, \ldots, y_{i}^{(n+1)}Let's agree thatx_(i)^(') < x_(i)^('') < dots < x_(i)^((n+1))*y_(i)^(') > y_(i)^('') > dots > y_(i)^((n+1))x_{i}^{\prime}<x_{i}^{\prime \prime}<\ldots<x_{i}^{(n+1)} \cdot y_{i}^{\prime}>y_{i}^{\prime \prime}>\ldots>y_{i}^{(n+1)}. Ifaadoes not belong toE_(i)E_{i}we takex_(i)-u_(i) < epsi,x_(i)-x_(i) < epsi,dots,^(i)x_(i)^((n+1))-x_(i)^((n)) < epsix_{i}-u_{i}<\varepsilon, x_{i}-x_{i}<\varepsilon, \ldots,{ }^{i} x_{i}^{(n+1)}-x_{i}^{(n)}<\varepsilon. Ifa_(i)epsi Ea_{i} \varepsilon E, let us designate bya_(i)a_{i}the left end ofE-a_(i)E-a_{i}, bya_(i)^('')a_{i}^{\prime \prime}the left end ofE-(a+a_(i))E-\left(a+a_{i}\right)and so on. The general case is thata_(i),a_(i),dots,a_(i)^((r-1))a_{i}, a_{i}, \ldots, a_{i}^{(r-1)}are isolated points ofE_(i)E_{i}Anda_(i) < a_(i) < dots < a_(i)^((r-1)) < a_(i)^((r))=a_(i)^((r+1))=dotsa_{i}<a_{i}<\ldots<a_{i}^{(r-1)}<a_{i}^{(r)}=a_{i}^{(r+1)}=\ldotsTwo scenarios are possible:1^(@)a_(i)^((r))epsiE_(i)1^{\circ} a_{i}^{(r)} \varepsilon E_{i}and we takex_(i)^(')=a_(i),x_(i)^('')=a_(i)^(')x_{i}^{\prime}=a_{i}, x_{i}^{\prime \prime}=a_{i}^{\prime}...x_(i)^((r+1))=u_(i)^((r)),x_(i)^((r+2))-x_(i)^((r+1)) < epsi,x_(i)^((r+3))-x_(i)^((r+2)) < epsi,dotsx_{i}^{(r+1)}=u_{i}^{(r)}, x_{i}^{(r+2)}-x_{i}^{(r+1)}<\varepsilon, x_{i}^{(r+3)}-x_{i}^{(r+2)}<\varepsilon, \ldots.a_(i)^((n+1))-x_(i)^((n)) < epsi,2^(@)a_(i)^((r))a_{i}^{(n+1)}-x_{i}^{(n)}<\varepsilon, 2^{\circ} a_{i}^{(r)}does not belong to iE_(i)E_{i}and then we takex_(i)^(')=a_(i),x_(i)^('')=a_(i)^('),dots,x_(i)^((r))=a_(i)^((r-1)),x_(i)^((r+1))-x_(i)^((r)) < epsi,x_(i)^((r+2))-a_(i)^((r+1)) < epsi,dots,x_(i)^((n+1))-x_(i)^((n)) < epsi.11x_{i}^{\prime}=a_{i}, x_{i}^{\prime \prime}=a_{i}^{\prime}, \ldots, x_{i}^{(r)}=a_{i}^{(r-1)}, x_{i}^{(r+1)}-x_{i}^{(r)}<\varepsilon, x_{i}^{(r+2)}-a_{i}^{(r+1)}<\varepsilon , \ldots, x_{i}^{(n+1)}-x_{i}^{(n)}<\varepsilon .11It is possible, of course, thatr >= n+1r \geq n+1, then all the pointsx_(i)x_{i}have a fixed position. The pointsy_(i)^('),y_(i)^(''),dots,y_(i)^((n+1))y_{i}^{\prime}, y_{i}^{\prime \prime}, \ldots, y_{i}^{(n+1)}are distributed in the same way in the vicinity of the endb_(i)b_{i}The points ofe_(epsi)e_{\varepsilon}belonging toE_(1)E_{1}and toE_(m)E_{m}. IfE_(1)E_{1}withinn+2n+2all these points belong toe_(epsi)e_{\varepsilon}. IfE_(1)E_{1}has at leastn+2n+2points it has in common withe_(epsi)e_{\varepsilon}Exactlyn+2n+2pointsx_(1)^('),y_(1)^('),y_(1)^(''),dots,y_(1)^((n+1))x_{1}^{\prime}, y_{1}^{\prime}, y_{1}^{\prime \prime}, \ldots, y_{1}^{(n+1)}, where then+1n+1the last points are distributed in the neighborhood ofb_(1)b_{1}as above. The pointx_(1)^(')x_{1}^{\prime}coincides witha_(1)a_{1}ifa_(1)epsi Ea_{1} \varepsilon Eand we havex_(1)^(')-a_(1) < epsix_{1}^{\prime}-a_{1}<\varepsilonifa_(1)a_{1}does not belong toE_(1)E_{1}. Whena_(1)=-ooa_{1}=-\inftywe takex_(1)^(')x_{1}^{\prime}such asx_(1)^(') < -^(1)x_{1}^{\prime}<-{ }^{1}
The same is true forE_(m)E_{m}except that here we will haven+1n+1points in the vicinity ofa_(m)a_{m}and a point in the vicinity ofb_(m)b_{m}.
In this way, the set es is perfectly characterized. If the positive numberepsi\varepsilonis quite small, we havex_(i)^((n+1)) < y_(i)^((n+1)),i=2,3,dotsx_{i}^{(n+1)}<y_{i}^{(n+1)}, i=2,3, \ldots,m-1,x_(1) < y_(1)^((n+1)),x_(m)^((n+1)) < y_(m)m-1, x_{1}<y_{1}^{(n+1)}, x_{m}^{(n+1)}<y_{m}It can still happen that^(')epsi{ }^{\prime} \varepsilonbe
completely determined. This is what happens, for example, ifEEis finished andepsi\varepsilonis small enough. In general, the points ofe_(epsi)e_{\varepsilon}are some fixed and others variable, decreasing towards ai or increasing towardsb_(i)b_{i}.
We still have
Theorem 6. There exists a positive numberepsi_(1)\varepsilon_{1}such as, forepsi < epsi_(1)\varepsilon<\varepsilon_{1}the sequeld_(n+1)d_{n+1}of eepsi\varepsilonpresents the same numberkkof bets.
For the demonstration, we will follow a slightly different path than in the casen=0n=0The function being of ordernnby segments, the number of variations of the sequenced_(n+1)d_{n+1}of a sequeleehas a maximum, in other words the function is of a certain order(n∣k)(n \mid k). Eithereea maximizing sequence ande_(i)e_{i}the part ofeebelonging toE_(i)E_{i}Let us then consider a sequencee_(epsi)e_{\varepsilon}. Ifepsi > 0\varepsilon>0is quite small all points ofe_(i)e_{i}that do not belong toe_(epsi)e_{\varepsilon}are in the interval(x_(i)^((n+1)),y_(i)^((n+1)))[:}\left(x_{i}^{(n+1)}, y_{i}^{(n+1)}\right)\left[\right.Or(x_(i)^('),y_(i)^((n+1)))\left(x_{i}^{\prime}, y_{i}^{(n+1)}\right)ifi=1,(x_(m)^((n+1)),y_(m)^('))i=1,\left(x_{m}^{(n+1)}, y_{m}^{\prime}\right)if{:i=m]\left.i=m\right]The result is that the consequencesd_(n+1)d_{n+1}ofe_(epsi)e_{\varepsilon}and the meetinge^(**)e^{*}ofeeAnde_(epsi)e_{\varepsilon}present the same number of variations. But since e is maximizing,e^(**)e^{*}is also maximizing, therefore the sequenced_(n+1)d_{n+1}ofe_(epsi)e_{\varepsilon}presentskkvariations and the theorem is proven.
The previous property can also be stated in the following form:
Theorem 7. Ifepsi > 0\varepsilon>0As the number of variations of the sequence tends towards zero, the number of variations of the sequenced_(n+1)d_{n+1}ofe_(epsi)e_{\varepsilon}tends towards a limit. Ifkkis this limit, the function is of order (n∣kn \mid k) onEE.
Eithere_(epsi)={x_(1),x_(2),dots,x_(r)}e_{\varepsilon}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}The sequeld_(n+1)d_{n+1}ofe_(epsi)e_{\varepsilon}can be replaced later
So ifepsi rarr0\varepsilon \rightarrow 0, the number of variations of this sequence tends towardskkWe can also
introduce a sequence analogous to (7), using derivatives up to the ordernnorder functionsnnand the limits of these derivatives as we approach an extremitya_(i)a_{i}Orb_(i)b_{i}and which still exist in the literal or literal sense. We will leave aside this generalization.
^(1)){ }^{1)}This note was in press in the Bulletin of the Faculty of Sciences of Cernăuți in June 1940. Having managed to find the manuscript, I am now publishing it without modifications. ^(2){ }^{2}) Bulletin of the Scientific Section of the Romanian Academy, vol. 22. ^(2){ }^{2}Disquisitiones Mathematicae et Physicae, 1, 35-42, 1940.