Notes on generalizations of the higher-order convex functions (III)

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Notes sur les généralisations des fonctions convexes d’ordre supérieur (III), Bull. de la Sect. sci. de l’Acad. Roum., 24 (1942) no. 6, pp. 409-416 (in French)

PDF

About this paper

Journal

Bull. de la Sect. sci. de l’Acad. Roum.

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1942 g -Popoviciu- Bull. Sect. Sci. Acad. Roum. - Notes on the generalizations of convex functions
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

NOTES ON THE GENERALISATIONS OF HIGHER-ORDER CONVEX FUNCTIONS (III) 1 1 ^(1){ }^{1}1)

BY

TIBERIU POPOVICIU

Note presented by Mr. S. Stoilow, Mc. AR at the meeting of January 9, 1912

ORDER FUNCTIONS ( n k n k n|kn \mid knk) AND ORDER FUNCTIONS n n nnnBY SEGMENTS

  1. In the previous note 2 2 ^(2){ }^{2}2) we have defined the order functions n n nnnby segments. We will now show that there is a close connection between these functions and the order functions ( n k n k n|kn \mid knk) which we studied in note I of this series 3 3 ^(3){ }^{3}3). We will see, in fact, that any function of order n n nnnby segments is of a certain order ( n k ) ( n k ) (n|k)(n \mid k)(nk)determined and, conversely, any order function ( n k n k n|kn \mid knk) is of order n n nnnby segments.

2. Let's first demonstrate the

Theorem 1. Any function of order n by segments and of characteristic h h hhhis at most of order ( n ( h 1 ) ( n + 2 ) n ( h 1 ) ( n + 2 ) n|(h-1)(n+2)n \mid(h-1)(n+2)n(h1)(n+2)).
Either e = { x 1 , x 2 , , x m } e = x 1 , x 2 , , x m e={x_(1),x_(2),dots,x_(m)}e=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}e={x1,x2,,xm}a finite (and ordered) sequence of the set E of definition of the function. We can assume that among these points at most 2 ( n + 1 ) 2 ( n + 1 ) 2(n+1)2(n+1)2(n+1)belong to each of the subsets E i E i E_(i)^(**)E_{i}^{*}Eiof canonical decomposition. Otherwise, indeed, e e eeeis certainly reducible.
If we have s > 1 , x I 1 E E i , x I , x I + 1 , , x I + n + s E s > 1 , x I 1 E E i , x I , x I + 1 , , x I + n + s E s > 1,x_(j-1)*EE_(i)^(**),x_(j),x_(j+1),dots,x_(j+n+s)inE^(**)s>1, x_{j-1} \cdot \mathcal{E} E_{i}^{*}, x_{j}, x_{j+1}, \ldots, x_{j+n+s} \in E^{*}s>1,xI1EEi,xI,xI+1,,xI+n+sE, x I + n + s + 1 L i + 1 x I + n + s + 1 L i + 1 x_(j+n+s+1)inL_(i+1)^(**)x_{j+n+s+1} \in L_{i+1}^{*}xI+n+s+1Li+1the sequel
Δ n + 1 I ( f ) , Δ n + 1 I + 1 ( f ) , , Δ n + 1 I + s 1 ( f ) Δ n + 1 I ( f ) , Δ n + 1 I + 1 ( f ) , , Δ n + 1 I + s 1 ( f ) Delta_(n+1)^(j)(f),Delta_(n+1)^(j+1)(f),dots,Delta_(n+1)^(j+s-1)(f)\Delta_{n+1}^{j}(f), \Delta_{n+1}^{j+1}(f), \ldots, \Delta_{n+1}^{j+s-1}(f)Δn+1I(f),Δn+1I+1(f),,Δn+1I+s1(f)
does not present any variations. This shows us that the least advantageous case is if m = h ( n + 2 ) , x ( i 1 ) ( n + 2 ) + I E i , I = 1 , 2 , m = h ( n + 2 ) , x ( i 1 ) ( n + 2 ) + I E i , I = 1 , 2 , m=h(n+2),x_((i-1)(n+2)+j)-=E_(i)^(**),j=1,2,dotsm=h(n+2), x_{(i-1)(n+2)+j} \equiv E_{\mathbf{i}}^{*}, j=1,2, \ldotsm=h(n+2),x(i1)(n+2)+IEi,I=1,2,, n + 2 , i = 1 , 2 , , h n + 2 , i = 1 , 2 , , h n+2,i=1,2,dots,hn+2, i=1,2, \ldots, hn+2,i=1,2,,hand if the sequel d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of e e eeepresents the number
maximum possible variations. Indeed, if we add more points to such a value, we do not increase the number of variations in the sequence. d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1The sequel d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of e e eeethen h ( n 2 ) n 1 h ( n 2 ) n 1 h(n-2)-n-1h(n-2)-n-1h(n2)n1terms and therefore presents at most ( h 1 h 1 h--1h--1h1) ( n + 2 n + 2 n+2n+2n+2) variations.
Let us now prove
Theorem 9. Any function of order n n nnnby segments and characteristics h h hhhis at least in order ( n h 1 n h 1 n|h-1n \mid h-1nh1).
We demonstrate by induction on the number h h hhh. For h = 1 h = 1 h=1h=1h=1The property is obvious because the function is then of order n n nnnon E E EEE. For h = 2 h = 2 h=2h=2h=2The function is not of order n n nnnon pent done trouver denx differences sépare [ x 1 , x 2 , , x n + 2 ; i ] x 1 , x 2 , , x n + 2 ; i [x_(1),x_(2),dots,x_(n+2);i]\left[x_{1}, x_{2}, \ldots, x_{n+2}; i\right][x1,x2,,xn+2;i]. [ . x 1 , x 2 , , x n + 2 ; f ] . x 1 , x 2 , , x n + 2 ; f [.x^(')_(1),x^(')_(2),dots,x^(')_(n+2);f]\left[. x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \ldots, x^{\prime}{ }_{n+2}; f\right][.x1,x2,,xn+2;f]not mules and of opposite signs. From the formula for the average of divided differences, it immediately follows that the sequence d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1from the meeting of points x i , x i x i , x i x_(i),x_(i)^(')x_{i}, x_{i}^{\prime}xi,xipresents at least one variation.
Let's examine the eas h > 2 h > 2 h > 2h>2h>2Suppose the property is true up to h 1 h 1 h-1h-1h1and let's demonstrate - the for h h hhhThe lonetion being of characteristic h 1 h 1 h-1h-1h1on E E h E E h E-E_(h)^(**)E-E_{h}^{*}EEhWe can find, by hypothesis, the following { x 1 , x 2 , , x r , x r + 1 , , x r + r } , x i E E h E h 1 , i = 1 x 1 , x 2 , , x r , x r + 1 , , x r + r , x i E E h E h 1 , i = 1 {x_(1),x_(2),dots,x_(r),x_(r+1),dots,x_(r+r^('))},x_(i)in E-E_(h)^(**)-E_(h-1)^(**),i=1\left\{x_{1}, x_{2}, \ldots, x_{r}, x_{r+1}, \ldots, x_{r+r^{\prime}}\right\}, x_{i} \in E-E_{h}^{*}-E_{h-1}^{*}, i=1{x1,x2,,xr,xr+1,,xr+r},xiEEhEh1,i=1, 2 , , r , x r + i ε E h 1 , i = 1 , 2 , , r 2 , , r , x r + i ε E h 1 , i = 1 , 2 , , r 2,dots,r,x_(r+i)epsiE_(h-1),i=1,2,dots,r^(')2, \ldots, r, x_{r+i} \varepsilon E_{h-1}, i=1,2, \ldots, r^{\prime}2,,r,xr+iεEh1,i=1,2,,rsuch as the following d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1corresponding presents at least h 2 h 2 h-2h-2h2variations. It is possible, of course, that r = 0 r = 0 r^(')=0r^{\prime}=0r=0, so all the x i ε E E h E h 1 x i ε E E h E h 1 x_(i)epsi E-E_(h)^(**)-E_(h-1)^(**)x_{i} \varepsilon E-E_{h}^{*}-E_{h-1}^{*}xiεEEhEh1The function being of characteristic 2 on E h 1 + E h E h 1 + E h E_(h-1)^(**)+E_(h)^(**)E_{h-1}^{*}+E_{h}^{*}Eh1+Ehwe can find the rest { x 1 , x 2 , , x s , x s + 1 , , x s + s } x 1 , x 2 , , x s , x s + 1 , , x s + s {x_(1),x_(2),dots,x_(s)^('),x_(s+1)^('),dots,x_(s+s^('))^(')}\left\{x_{1}, x_{2}, \ldots, x_{s}^{\prime}, x_{s+1}^{\prime}, \ldots, x_{s+s^{\prime}}^{\prime}\right\}{x1,x2,,xs,xs+1,,xs+s}such as x i ε E h 1 , i = 1 , 2 , , s x i ε E h 1 , i = 1 , 2 , , s x_(i)^(')epsiE_(h-1)^(**),i=1,2,dots,sx_{i}^{\prime} \varepsilon E_{h-1}^{*}, i=1,2, \ldots, sxiεEh1,i=1,2,,s, x s + i ε E h , i = 1 , 2 , , s x s + i ε E h , i = 1 , 2 , , s x_(s+i)^(')epsiE_(h)^(**),i=1,2,dots,s^(')x_{s+i}^{\prime} \varepsilon E_{h}^{*}, i=1,2, \ldots, s^{\prime}xs+iεEh,i=1,2,,sand the rest d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1The corresponding element presents at least one variation. Here s 1 , s 1 , s + s n + 3 s 1 , s 1 , s + s n + 3 s >= 1,s^(') >= 1,s+s^(') >= n+3s \geq 1, s^{\prime} \geq 1, s+s^{\prime} \geq n+3s1,s1,s+sn+3according to the property which characterizes 0 0 >= 0\geq 00, according to the property that characterizes a proper decomposition. Among the points x i , x i x i , x i x_(i),x_(i)x_{i}, x_{i}xi,xibelonging to E h 1 E h 1 E_(h-1)^(**)E_{h-1}^{*}Eh1There is s s s^('')s^{\prime \prime}sdistinct, r + s s max ( r , s ) r + s s max r , s r^(')+s >= s^('') >= max(r^('),s)r^{\prime}+s \geqq s^{\prime \prime} \geqq \max \left(r^{\prime}, s\right)r+ssmax(r,s). Let us designate by e e eeeall of the x i , x i x i , x i x_(i),x_(i)x_{i}, x_{i}xi,xidistinct belonging to E E h E E h E-E_(h)^(**)E-E_{h}^{*}EEhand by e e e^(')e^{\prime}eall of the x i , x i x i , x i x_(i),x_(i)x_{i}, x_{i}xi,xidistinct belonging to E h 1 + E h E h 1 + E h E_(h-1)^(**)+E_(h)^(**)E_{h-1}^{*}+E_{h}^{*}Eh1+EhThe sequel d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of the remuneration e e eeeAnd e e e^(')e^{\prime}eis
(1) Δ n + 1 1 ( f ) , Δ n + 1 2 ( f ) , Δ n + 1 r + ε + s n 1 ( f ) Δ n + 1 1 ( f ) , Δ n + 1 2 ( f ) , Δ n + 1 r + ε + s n 1 ( f ) quadDelta_(n+1)^(1)(f),Delta_(n+1)^(2)(f)dots,Delta_(n+1)^(r+epsi^('')+s^(')-n-1)(f)\quad \Delta_{n+1}^{1}(f), \Delta_{n+1}^{2}(f) \ldots, \Delta_{n+1}^{r+\varepsilon^{\prime \prime}+s^{\prime}-n-1}(f)Δn+11(f),Δn+12(f),Δn+1r+ε+sn1(f)
And then the sequels d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of e e eeeand of e e e^(')e^{\prime}eare
(2) Δ n + 1 1 ( f ) , Δ n + 1 2 ( f ) , , Δ n + 1 r + s n 1 ( f ) Δ n + 1 1 ( f ) , Δ n + 1 2 ( f ) , , Δ n + 1 r + s n 1 ( f ) quadDelta_(n+1)^(1)(f),Delta_(n+1)^(2)(f),dots,Delta_(n+1)^(r+s^('')-n-1)(f)\quad \Delta_{n+1}^{1}(f), \Delta_{n+1}^{2}(f), \ldots, \Delta_{n+1}^{r+s^{\prime \prime}-n-1}(f)Δn+11(f),Δn+12(f),,Δn+1r+sn1(f),
(3) Δ n + 1 r + 1 ( f ) , Δ n + 1 r + 2 ( f ) , , Δ n + 1 r + 3 s + 3 n 1 ( f ) Δ n + 1 r + 1 ( f ) , Δ n + 1 r + 2 ( f ) , , Δ n + 1 r + 3 s + 3 n 1 ( f ) quadDelta_(n+1)^(r+1)(f),Delta_(n+1)^(r+2)(f),dots,Delta_(n+1)^(r+3s^('')+3'-n-1)quad(f)\quad \Delta_{n+1}^{r+1}(f), \Delta_{n+1}^{r+2}(f), \ldots, \Delta_{n+1}^{r+3 s^{\prime \prime}+3 \prime-n-1} \quad(f)Δn+1r+1(f),Δn+1r+2(f),,Δn+1r+3s+3n1(f)
respectively, The sequence (2) presents at least h 2 h 2 h-2h-2h2variations and sequence (3) at least one variation. If sequences (2) and (3) have no common terms, sequence (1) has at least h 1 h 1 h-1h-1h1variations. If r = s n 1 1 r = s n 1 1 r^('')=s^('')-n-1 >= 1r^{\prime \prime}=s^{\prime \prime}-n-1 \geq 1r=sn11, sequences (2), (3) have the common terms Δ n + 1 r + 1 ( f ) , Δ n + 1 r + 2 ( f ) , , Δ n + 1 r + r n ( j ) Δ n + 1 r + 1 ( f ) , Δ n + 1 r + 2 ( f ) , , Δ n + 1 r + r n ( j ) Delta_(n+1)^(r+1)(f),Delta_(n+1)^(r+2)(f),dots,Delta_(n+1)^(r+r^(n))(j)\Delta_{n+1}^{r+1}(f), \Delta_{n+1}^{r+2}(f), \ldots, \Delta_{n+1}^{r+r^{n}}(j)Δn+1r+1(f),Δn+1r+2(f),,Δn+1r+rn(I)and this sequel does not present any

411 (GENERALLIZATIONS OF HIGHER-ORDER CONVEX FUNCTIONS (III) 3

variations since it is the sequel d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of a sequence of points belonging to E h 1 E h 1 E_(h-1)^(**)E_{h-1}^{*}Eh1It also appears that (1) presents at least h 1 h 1 h-1h-1h1variations. Theorem 2 is therefore proven.
3. It remains to show that any function of order ( n k n k n∣kn \mid knk) is of order n n nnnby segments. It will suffice to demonstrate that if the function r' is not of order n n nnnby segments, it is not of an order ( n n n∣n \midnk) determined.
Let us first prove
Lemma 1. If the function f is not of order n by segments on E E EEEThis set can be decomposed into two consecutive subsets. E ( 1 ) , E ( 2 ) E ( 1 ) , E ( 2 ) E^((1)),E^((2))E^{(1)}, E^{(2)}E(1),E(2)in such a way that:
1 1 1^(@)1^{\circ}1Over a year, less than the sets E ( 1 ) , E ( 2 ) E ( 1 ) , E ( 2 ) E^((1)),E^((2))E^{(1)}, E^{(2)}E(1),E(2)the function n n n^(')n^{\prime}nis not in order n n nnnby segments.
2 2 2^(@)2^{\circ}2The function is not of order n n nnnon the sets E ( 1 ) , E ( 2 ) E ( 1 ) , E ( 2 ) E^((1)),E^((2))E^{(1)}, E^{(2)}E(1),E(2)
He is flesh that E E EEEcan't be a finite set and each of the sets E ( 1 ) , E ( 2 ) E ( 1 ) , E ( 2 ) E^((1)),E^((2))E^{(1)}, E^{(2)}E(1),E(2)must be at least one year old n + 3 n + 3 n+3n+3n+3points. The first part is obviously true for any decomposition into two consecutive subsets. Let's therefore prove the second part. Let E 1 , E 2 E 1 , E 2 E_(1),E_(2)E_{1}, E_{2}E1,E2a decomposition of E E EEEin two consecutive subsets, each of the subsets having at least n + 3 n + 3 n+3n+3n+3points. If the function is not of order n n nnnon E 1 E 1 E_(1)E_{1}E1and on E 2 E 2 E_(2)E_{2}E2The property is demonstrated and we can take E ( 1 ) = E 1 , E ( 2 ) = E 2 E ( 1 ) = E 1 , E ( 2 ) = E 2 E^((1))=E_(1),E^((2))=E_(2)E^{(1)}=E_{1}, E^{(2)}=E_{2}E(1)=E1,E(2)=E2Let's assume the opposite, therefore that on one of the sets E 1 , E 2 E 1 , E 2 E_(1),E_(2)E_{1}, E_{2}E1,E2the function is of order n n nnnSo, to clarify, E 1 E 1 E_(1)E_{1}E1This set. So E 2 E 2 E_(2)E_{2}E2contains an infinite number of points and the function is not of order n n nnnby segments on this set. That is x 0 x 0 x_(0)x_{0}x0the right end of the set of x E x E x in Ex \in ExEsuch as on the intersection of E E EEEwith the interval ( a , c a , c a,ca, chas,c) the function is of order n n nnn, a being the left end of E ( α = min E ) E ( α = min E ) E(alpha=min E)E(\alpha=\min E)E(α=minE)The entire set of x x xxxsuch as x 0 > x E x 0 > x E x_(0) > x in Ex_{0}>x \in Ex0>xEis then inlini. It is clear that there is a x 1 > x 0 , x 1 ε E x 1 > x 0 , x 1 ε E x_(1) > x_(0),x_(1)epsi Ex_{1}>x_{0}, x_{1} \varepsilon Ex1>x0,x1εEsuch that the function is not of order n n nnnby segments on the intersection of E E EEEwith the interval ( x 1 , b x 1 , b x_(1),bx_{1}, bx1,b), b b bbbbeing the right end of E ( b = max E ) E ( b = max E ) E(b=max E)E(b=\max E)E(b=maxE)By taking as E ( 2 ) E ( 2 ) E^((2))E^{(2)}E(2)this last set and E ( 1 ) = E E ( 2 ) E ( 1 ) = E E ( 2 ) E^((1))=E-E^((2))E^{(1)}=E-E^{(2)}E(1)=EE(2)Lemma 1 is completely proven.
We can now prove
Theorem 3. If a function is not of order n by segments on E E EEEand if k k kkkis a natural number, we can find a finite sequence of E E EEEincluding the soot d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1presents at least k k kkkparities.
This property demonstrates, obviously, that a function that is not of order n n nnnby segments cannot be of an order ( n k n k n∣kn \mid knk) determined.
Let us now proceed to the proof of the theorem. Let E ( 1 ) , E ( 2 ) E ( 1 ) , E ( 2 ) E^((1)),E^((2))E^{(1)}, E^{(2)}E(1),E(2)a decomposition of E E EEEsatisfying Lemma 1. Let us denote by U ( 1 ) U ( 1 ) U^((1))U^{(1)}U(1)one of these subsets on which the function is not of order n n nnnby segments and so forth. U 1 U 1 U_(1)U_{1}U1the other subset. On U 1 U 1 U_(1)U_{1}U1the function is not of order n n nnnWe proceed in the same way with U ( 1 ) U ( 1 ) U(1)U(1)U(1). et nous en déduisons un U 2 U ( 1 ) U 2 U ( 1 ) U_(2)subU^((1))U_{2} \subset U^{(1)}U2U(1) sur lequel la fonction n'est pas.
d'ordre n n nnn, tel que sur U ( 1 ) U 2 = U ( 2 ) U ( 1 ) U 2 = U ( 2 ) U^((1))-U_(2)=U^((2))U^{(1)}-U_{2}=U^{(2)}U(1)U2=U(2) elle ne soit pas d'ordre n n nnn par segments. De U ( 2 ) U ( 2 ) U^((2))U^{(2)}U(2) nous déduisons, de la même manière U 3 , U ( 3 ) U 3 , U ( 3 ) U_(3),U^((3))U_{3}, U^{(3)}U3,U(3) et ainsi de suite. Si nous faisons k k kkk fois cette opération, nous déduisons les sous-ensembles (sections de E E EEE )
(4)
U 1 , U 2 , , U k U 1 , U 2 , , U k U_(1),U_(2),dots,U_(k)U_{1}, U_{2}, \ldots, U_{k}U1,U2,,Uk
de E E EEE, qui sont disjoints et la fonction n'est d'ordre n n nnn sur aucun de ces ensembles. Les ensembles (4), rangés dans un certain ordre
U 1 , U 2 , , U k U 1 , U 2 , , U k U_(1)^(**),U_(2)^(**),dots,U_(k)^(**)U_{1}^{*}, U_{2}^{*}, \ldots, U_{k}^{*}U1,U2,,Uk
donnent une décomposition en sous-ensembles consécutifs de leur somme U 1 + U 2 + + U k U 1 + U 2 + + U k U_(1)+U_(2)+dots+U_(k)U_{1}+U_{2}+\ldots+U_{k}U1+U2++Uk.
La fonction n'étant pas d'ordre n n nnn sur les U i U i U_(i)^(**)U_{i}^{*}Ui, on peut trouver une suite finie e i U i e i U i e_(i) <= U_(i)^(**)e_{i} \leqq U_{i}^{*}eiUi dont la suite d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1 présente au moins une variation i = 1 , 2 , , k i = 1 , 2 , , k i=1,2,dots,ki=1,2, \ldots, ki=1,2,,k. Il en résulte que la suite d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1 de e = e 1 + e 2 + + e k e = e 1 + e 2 + + e k e=e_(1)+e_(2)+dots+e_(k)e=e_{1}+e_{2}+\ldots+e_{k}e=e1+e2++ek présente au moins k k kkk variations.
Le théorème 3 est donc démontré.
Il est clair qu'on peut obtenir une suite partielle de e e eee dont la suite d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1 présente exactement k k kkk variations.
Remarque. Dans le cas particulier n = 1 n = 1 n=-1n=-1n=1, il est clair que toute fonction de caractéristique h h hhh est d'ordre ( 1 h 1 1 h 1 -1∣h-1-1 \mid h-11h1 ) et réciproquement.
4. En nous rapportant aux résultats des notes précédentes, remarquons que si n = 1 n = 1 n=-1n=-1n=1, toute suite maximisante et irréductible a h h hhh termes, dont un appartient à chacun des E i E i E_(i)^(**)E_{i}^{*}Ei de la décomposition canonique. Ce cas ne présente donc pas beaucoup de particularités. Au contraire pour n 0 n 0 n >= 0n \geq 0n0 nous pouvons faire d'intéressantes remarques sur les fonctions d'ordre n n nnn par segments. Nous allons d'abord examiner le cas n = 0 n = 0 n=0n=0n=0, donc le cas des fonctions monotones par segments.
Considérons une décomposition de E E EEE
(5) E 1 , E 2 , , E m (5) E 1 , E 2 , , E m {:(5)E_(1)","E_(2)","dots","E_(m):}\begin{equation*} E_{1}, E_{2}, \ldots, E_{m} \tag{5} \end{equation*}(5)E1,E2,,Em
pour une fonction f f fff, monotone par segments et soient a i , b i a i , b i a_(i),b_(i)a_{i}, b_{i}ai,bi les extrémités (gauche et droite) de E i , i = 1 , 2 , , m E i , i = 1 , 2 , , m E_(i),i=1,2,dots,mE_{i}, i=1,2, \ldots, mEi,i=1,2,,m.
Nous allons considérer maintenant certaines suites finies e ε e ε e_(epsi)e_{\varepsilon}eε de E E EEE définies de la manière suivante:
1 1 1^(@)1^{\circ}1 Si E i E i E_(i)E_{i}Ei a un seul point ce point appartient à e ε e ε e_(epsi)e_{\varepsilon}eε.
2 2 2^(@)2^{\circ}2 Si E i E i E_(i)E_{i}Ei a au moins deux points, il a en commun avec e ε e ε e_(epsi)e_{\varepsilon}eε exactement deux points x i , y i x i , y i x_(i),y_(i)x_{i}, y_{i}xi,yi. Si a i ε E i a i ε E i a_(i)epsiE_(i)a_{i} \varepsilon E_{i}aiεEi on a x i = a i x i = a i x_(i)=a_(i)x_{i}=a_{i}xi=ai et si a i a i a_(i)a_{i}ai n'appartient pas à E i E i E_(i)E_{i}Ei on a x i a i < ε x i a i < ε x_(i)^(')-a_(i) < epsix_{i}^{\prime}-a_{i}<\varepsilonxiai<ε. Si b i ε , E i b i ε , E i b_(i)epsi,E_(i)b_{i} \varepsilon, E_{i}biε,Ei on a y i = b i y i = b i y_(i)^(')=b_(i)y_{i}^{\prime}=b_{i}yi=bi et si b i b i b_(i)b_{i}bi n'appartient pas à E i E i E_(i)E_{i}Ei on prend b i y i < ε b i y i < ε b_(i)-y_(i) < epsib_{i}-y_{i}<\varepsilonbiyi<ε.
3 3 3^(@)3^{\circ}3. Le nombre positif ε ε epsi\varepsilonε est assez petit pour que l'on ait x i < y i x i < y i x_(i)^(') < y_(i)^(')x_{i}^{\prime}<y_{i}^{\prime}xi<yi et de phus f ( x i ) f ( y i ) f x i f y i f(x_(i)^('))!=f(y_(i)^('))f\left(x_{i}^{\prime}\right) \neq f\left(y_{i}^{\prime}\right)f(xi)f(yi) si la fonction ne se réduit pas à une constante sur E i ( i = 1 , 2 , , m ) E i ( i = 1 , 2 , , m ) E_(i)(i=1,2,dots,m)E_{i}(i=1,2, \ldots, m)Ei(i=1,2,,m).
Si E E EEE n'est pas borné à gauche ( a 1 = a 1 = a_(1)=-ooa_{1}=-\inftya1= ), la condition x 1 a 1 < ε x 1 a 1 < ε x_(1)-a_(1) < epsix_{1}-a_{1}<\varepsilonx1a1<ε doit ètre remplaçée par x ˙ 1 < 1 ε x ˙ 1 < 1 ε x^(˙)_(1) < -(1)/(epsi)\dot{x}_{1}<-\frac{1}{\varepsilon}x˙1<1ε et si E E EEE n'est pas borné à droite ( b m = + b m = + b_(m)=+oob_{m}=+\inftybm=+ ), la condition b m y m < ε b m y m < ε b_(m)-y_(m)^(') < epsib_{m}-y_{m}^{\prime}<\varepsilonbmym<ε doit être remplaçée par y m > 1 ε y m > 1 ε y_(m)^(') > (1)/(epsi)y_{m}^{\prime}>\frac{1}{\varepsilon}ym>1ε. Il peut, bien entendu, arriver qu'il n'y ait qu'un seul e ε e ε e_(epsi)e_{\varepsilon}eε. Ceciarrive si d i , b i E i , i = 1 , 2 , , m d i , b i E i , i = 1 , 2 , , m d_(i),b_(i)inE_(i),i=1,2,dots,md_{i}, b_{i} \in E_{i}, i=1,2, \ldots, mdi,biEi,i=1,2,,m et, en particulier, si E E EEE est fini.
On voit done que e ε e ε e_(epsi)e_{\varepsilon}eε contient deux sortes de points. Les points fixes, qui coincident avec une extrémité a i , b i a i , b i a_(i),b_(i)a_{i}, b_{i}ai,bi et les points variables qui sont à une distance moindre que ε ε epsi\varepsilonε de l'une des extrémités a i , b i a i , b i a_(i),b_(i)a_{\boldsymbol{i}}, b_{\boldsymbol{i}}ai,bi.
Démontrons maintenant le
Lemme 2. Si les points pariables de es s'approchent des extrémités a i , b i a i , b i a_(i),b_(i)a_{i}, b_{i}ai,bi correspondantes, le nombre des variations de la suite d 1 d 1 d_(1)d_{1}d1 de e ε e ε e_(epsi)e_{\varepsilon}eε ne peut pas diminuer.
Il suffit de démontrer la propriété lorsque un de ces points varie. Si ce point est x 1 x 1 x_(1)^(')x_{1}^{\prime}x1 ou y m y m y_(m)^(')y_{m}^{\prime}ym, la propriété est immédiate et le nombre des variations de la suite d 1 d 1 d_(1)d_{1}d1 ne change pas. Supposons maintenant, pour fixer les idées, qu'un y i y i y_(i)^(')y_{i}^{\prime}yi varie. Si la fonction est constante sur E i E i E_(i)E_{\mathbf{i}}EiThe number of variations does not change. Otherwise, there is only a possible decrease in the number of variations if f ( x i ) f x i f(x_(i)^('))f\left(x_{\mathbf{i}}^{\prime}\right)f(xi)- f ( y i ) , f ( y i ) f ( x i + 1 ) f y i , f y i f x i + 1 -f(y_(i)^(')),f(y_(i)^('))-f(x_(i+1)^('))-f\left(y_{i}^{\prime}\right), f\left(y_{i}^{\prime}\right)-f\left(x_{i+1}^{\prime}\right)f(yi),f(yi)f(xi+1)are of opposite signs. Here x i + 1 x i + 1 x_(i+1)^(')x_{i+1}^{\prime}xi+1designates the unique point of E i + 1 E i + 1 E_(i+1)E_{i+1}Ei+1if this set is formed by a single point. But if y i y i y_(i)^(')y_{i}^{\prime}yibelieves towards b i , f ( x i ) f ( y i ) b i , f x i f y i b_(i),f(x_(i))-f(y_(i)^('))b_{i}, f\left(x_{i}\right)-f\left(y_{i}^{\prime}\right)bi,f(xi)f(yi)cannot decrease in absolute value, therefore f ( y i ) f ( x i + 1 ) f y i f x i + 1 f(y_(i)^('))-f(x_(i+1)^('))f\left(y_{i}^{\prime}\right)-f\left(x_{i+1}^{\prime}\right)f(yi)f(xi+1)cannot decrease in absolute value. On the other hand, f ( y i ) f y i f(y_(i))f\left(y_{i}\right)f(yi)varying in the same direction, we see that we do not lose any variations in the sequence d 1 d 1 d_(1)d_{1}d1We demonstrate Ta in the same way if a x i x i x_(i)^(')x_{i}^{\prime}xidecreases towards a i a i a_(i)a_{i}hasi.
We can deduce that if ε ε epsi\varepsilonεAs the number of variations of the sequence tends towards zero, the number of variations of the sequence d 1 d 1 d_(1)d_{1}d1of e ε e ε e_(epsi)e_{\varepsilon}eεtends towards a limit k k kkkwhich is obviously over.
We can also say that there is a positive number ε 1 ε 1 epsi_(1)\varepsilon_{1}ε1such as for ε < ε 1 ε < ε 1 epsi < epsi_(1)\varepsilon<\varepsilon_{1}ε<ε1the sequel d 1 d 1 d_(1)d_{1}d1of e ε e ε e_(epsi)e_{\varepsilon}eεpresents k k kkkvariations. If e ε = { x 1 , x 2 , , x r } e ε = x 1 , x 2 , , x r e_(epsi)={x_(1),x_(2),dots,x_(r)}e_{\varepsilon}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}eε={x1,x2,,xr}Moreover, we can replace the sequence d 1 d 1 d_(1)d_{1}d1of e ε e ε e_(epsi)e_{\varepsilon}eεsubsequently
(6) f ( x 2 ) f ( x 1 ) , f ( x 3 ) f ( x 2 ) , , f ( x r ) f ( x r 1 ) f x 2 f x 1 , f x 3 f x 2 , , f x r f x r 1 quad f(x_(2))-f(x_(1)),f(x_(3))-f(x_(2)),dots,f(x_(r))-f(x_(r-1))\quad f\left(x_{2}\right)-f\left(x_{1}\right), f\left(x_{3}\right)-f\left(x_{2}\right), \ldots, f\left(x_{r}\right)-f\left(x_{r-1}\right)f(x2)f(x1),f(x3)f(x2),,f(xr)f(xr1)
In this way each decomposition (5) is characterized by a certain number k k kkkWe have the
Theorem 4. The function f is of order ( 0 k 0 k 0∣k0 \mid k0k
Indeed, there are finite sequences . e e eeeof E E EEEincluding the sequel d 1 d 1 d_(1)d_{1}d1presents k variations. These are, in particular, the sequences e for sufficiently small e.
Be it now e e eeeany finite sequence of E E EEEand consider a e e e e_("e ")e_{\text {e }}eso that:
1 ε < ε 1 , ε 1 1 ε < ε 1 , ε 1 1^(@)epsi < epsi_(1),epsi_(1)1^{\circ} \varepsilon<\varepsilon_{1}, \varepsilon_{1}1ε<ε1,ε1being the positive number defined above.
2 2 2^(@)2^{\circ}2If E i E i E_(i)E_{i}Eicontains more than one point and if the common part e i e i e_(i)e_{i}eiof e e eeeand of E i E i E_(i)E_{i}Eiis not empty, we have e i e i e_(i)sube_{i} \subseteiclosed interval ( x i , y i ) , x i , y i x i , y i , x i , y i (x_(i)^('),y_(i)^(')),x_(i)^('),y_(i)^(')\left(x_{i}^{\prime}, y_{i}^{\prime}\right), x_{i}^{\prime}, y_{i}^{\prime}(xi,yi),xi,yibeing the points of e ε e ε e_(epsi)e_{\varepsilon}eεbelonging to E i E i E_(i)E_{i}Ei.
Let e e e^(**)e^{*}ethe meeting of the sequels e , e ε e , e ε e,e_(epsi)e, e_{\varepsilon}e,eεIf of e e e^(**)e^{*}eWe remove the points that do not belong to e ε e ε e_(epsi)e_{\varepsilon}eε, we do not decrease the number of variations of the sequence d 1 d 1 d_(1)d_{1}d1, which results from the fact that the function is monotonic on each of the sets E i E i E_(i)E_{i}EiIt follows that the following d 1 d 1 d_(1)d_{1}d1of e e e^(**)e^{*}epresents exactly k k kkkvariations, therefore the sequel d 1 d 1 d_(1)d_{1}d1of e presents at most k k kkkvariations, from which theorem 4.5 follows
. Let's return to the decomposition (5). The function f f fffis monotonous on E i E i E_(i)E_{i}Ei. If a i , b i a i , b i a_(i),b_(i)a_{i}, b_{i}hasi,biare always the extremities of E E EEEwe have or a i ε E i a i ε E i a_(i)epsiE_(i)a_{i} \varepsilon E_{i}hasiεEiand then we take c 2 i 1 = f ( a i ) c 2 i 1 = f a i c_(2i-1)=f(a_(i))c_{2 i-1}=f\left(a_{i}\right)c2i1=f(hasi), or the limit
lim f ( x ) = c 2 i 1 E i x a i lim f ( x ) = c 2 i 1 E i x a i {:[lim f(x)=c_(2i-1)],[E_(i) >= x rarra_(i)]:}\begin{array}{r} \lim f(x)=c_{2 i-1} \\ E_{i} \geqslant x \rightarrow a_{i} \end{array}limitf(x)=c2i1Eixhasi
exists in the literal sense or is + + +oo+\infty+Or -oo-\inftyLikewise, or h i ε E i h i ε E i h_(i)epsiE_(i)h_{i} \varepsilon E_{i}hiεEiand then we take c 2 i = f ( b i ) c 2 i = f b i c_(2i)=f(b_(i))c_{2 i}=f\left(b_{i}\right)c2i=f(bi), or the limit
lim f ( x ) = c 2 i , lim f ( x ) = c 2 i , lim f(x)=c_(2i),\lim f(x)=c_{2 i},limitf(x)=c2i,
E i x b i E i x b i E_(i)ℑx rarrb_(i)E_{i} \Im x \rightarrow b_{i}EiNo.xbi
exists in the literal sense or is + + +oo+\infty+Or -oo-\infty.
In particular, if E i E i E_(i)E_{i}Eiis formed by a single point we have a i = b i a i = b i a_(i)=b_(i)a_{i}=b_{i}hasi=biAnd c 2 i 1 = c 2 i = f ( a i ) c 2 i 1 = c 2 i = f a i c_(2i-1)=c_(2i)=f(a_(i))c_{2 i-1}=c_{2 i}=f\left(a_{i}\right)c2i1=c2i=f(hasi).
Let's consider the following
(7) c 2 c 1 , c 3 c 2 , , c 2 m c 2 m 1 . (7) c 2 c 1 , c 3 c 2 , , c 2 m c 2 m 1 . {:(7)c_(2)-c_(1)","c_(3)-c_(2)","dots","c_(2m)-c_(2m-1).:}\begin{equation*} c_{2}-c_{1}, c_{3}-c_{2}, \ldots, c_{2 m}-c_{2 m-1} . \tag{7} \end{equation*}(7)c2c1,c3c2,,c2mc2m1.
In this continuation we agree, as usual, that ( + ) u = u ( ) = ( + ) ( ) = + > 0 , ( ) u = u D ( + ) = ( ) ( + ) = < 0 ( + ) u = u ( ) = ( + ) ( ) = + > 0 , ( ) u = u D ( + ) = ( ) ( + ) = < 0 (+oo)--u=u-(-oo)=(+oo)-(-oo)=+oo > 0,(-oo)-u=u- vec(D)(+oo)=(-oo)-(+oo)=-oo < 0(+\infty)- -u=u-(-\infty)=(+\infty)-(-\infty)=+\infty>0,(-\infty)-u=u- \vec{D}(+\infty)=(-\infty)-(+\infty)=-\infty<0(+)u=u()=(+)()=+>0,()u=uD(+)=()(+)=<0if u u uuuis a finite number. Furthermore, we will follow the conventions ( + ) ( + ) = ( ) ( + ) ( + ) = ( ) (+oo)-(+oo)=(-oo)-(+\infty)-(+\infty)=(-\infty)-(+)(+)=()- ( ) = 0 ( ) = 0 -(-oo)=0-(-\infty)=0()=0Then each term of the sequence (7) is either zero or has a determined sign. The sequence (7) can be viewed as the limit, for ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0ε0, of the sequence (6) corresponding to a e ε e ε e_(epsi)e_{\varepsilon}eε, possibly by removing certain null terms arising from the fact that some E i E i E_(i)E_{i}Eican have only one point. The sequence (7) therefore presents k k kkkvariations.
From the foregoing, it follows that
Theorem 5. The number of variations of the sequence (7), corresponding to the decomposition (5), is independent of this decomposition. If k k kkkis this number, the function is of order ( 0 k 0 k 0∣k0 \mid k0k) on E E EEE.
We can establish the invariance of the number of variations of the sequence (7), independently of the definition, already given, of the order of a function. We thus obtain a new definition of the order of a segment-monotone function.
6. We will now extend the previous results to the case n > 0 n > 0 n > 0n>0n>0First, we will construct the sequences es in this case. To do this, let's specify the points of es that belong to a E i E i E_(i)E_{i}EiFirst of all i 1 , m i 1 , m i!=1,mi \neq 1, mi1,m, SO E i E i E_(i)E_{i}Eiis neither the first nor the last term of the decomposition (5) of E E EEEfor the function f f fff, of order n n nnnby segments. If E i E i E_(i)E_{i}Eiwithin 2 ( n + 1 ) 2 ( n + 1 ) 2(n+1)2(n+1)2(n+1)all these points belong to e ε e ε e_(epsi)e_{\varepsilon}eε. If E i E i E_(i)E_{i}Eihas at least 2 ( n + 1 ) 2 ( n + 1 ) 2(n+1)2(n+1)2(n+1)points it has in common with e ε e ε e_(epsi)e_{\varepsilon}eεExactly 2 ( n + 1 ) 2 ( n + 1 ) 2(n+1)2(n+1)2(n+1)points x i , x i , , x i ( n + 1 ) ; y i , y i , , y i ( n + 1 ) x i , x i , , x i ( n + 1 ) ; y i , y i , , y i ( n + 1 ) x_(i)^('),x_(i)^(''),dots,x_(i)^((n+1));y_(i)^('),y_(i)^(''),dots,y_(i)^((n+1))x_{i}^{\prime}, x_{i}^{\prime \prime}, \ldots, x_{i}^{(n+1)} ; y_{i}^{\prime}, y_{i}^{\prime \prime}, \ldots, y_{i}^{(n+1)}xi,xi,,xi(n+1);yi,yi,,yi(n+1)Let's agree that x i < x i < < x i ( n + 1 ) y i > y i > > y i ( n + 1 ) x i < x i < < x i ( n + 1 ) y i > y i > > y i ( n + 1 ) x_(i)^(') < x_(i)^('') < dots < x_(i)^((n+1))*y_(i)^(') > y_(i)^('') > dots > y_(i)^((n+1))x_{i}^{\prime}<x_{i}^{\prime \prime}<\ldots<x_{i}^{(n+1)} \cdot y_{i}^{\prime}>y_{i}^{\prime \prime}>\ldots>y_{i}^{(n+1)}xi<xi<<xi(n+1)yi>yi>>yi(n+1). If a a aahasdoes not belong to E i E i E_(i)E_{i}Eiwe take x i u i < ε , x i x i < ε , , i x i ( n + 1 ) x i ( n ) < ε x i u i < ε , x i x i < ε , , i x i ( n + 1 ) x i ( n ) < ε x_(i)-u_(i) < epsi,x_(i)-x_(i) < epsi,dots,^(i)x_(i)^((n+1))-x_(i)^((n)) < epsix_{i}-u_{i}<\varepsilon, x_{i}-x_{i}<\varepsilon, \ldots,{ }^{i} x_{i}^{(n+1)}-x_{i}^{(n)}<\varepsilonxiui<ε,xixi<ε,,ixi(n+1)xi(n)<ε. If a i ε E a i ε E a_(i)epsi Ea_{i} \varepsilon EhasiεE, let us designate by a i a i a_(i)a_{i}hasithe left end of E a i E a i E-a_(i)E-a_{i}Ehasi, by a i a i a_(i)^('')a_{i}^{\prime \prime}hasithe left end of E ( a + a i ) E a + a i E-(a+a_(i))E-\left(a+a_{i}\right)E(has+hasi)and so on. The general case is that a i , a i , , a i ( r 1 ) a i , a i , , a i ( r 1 ) a_(i),a_(i),dots,a_(i)^((r-1))a_{i}, a_{i}, \ldots, a_{i}^{(r-1)}hasi,hasi,,hasi(r1)are isolated points of E i E i E_(i)E_{i}EiAnd a i < a i < < a i ( r 1 ) < a i ( r ) = a i ( r + 1 ) = a i < a i < < a i ( r 1 ) < a i ( r ) = a i ( r + 1 ) = a_(i) < a_(i) < dots < a_(i)^((r-1)) < a_(i)^((r))=a_(i)^((r+1))=dotsa_{i}<a_{i}<\ldots<a_{i}^{(r-1)}<a_{i}^{(r)}=a_{i}^{(r+1)}=\ldotshasi<hasi<<hasi(r1)<hasi(r)=hasi(r+1)=Two scenarios are possible: 1 a i ( r ) ε E i 1 a i ( r ) ε E i 1^(@)a_(i)^((r))epsiE_(i)1^{\circ} a_{i}^{(r)} \varepsilon E_{i}1hasi(r)εEiand we take x i = a i , x i = a i x i = a i , x i = a i x_(i)^(')=a_(i),x_(i)^('')=a_(i)^(')x_{i}^{\prime}=a_{i}, x_{i}^{\prime \prime}=a_{i}^{\prime}xi=hasi,xi=hasi... x i ( r + 1 ) = u i ( r ) , x i ( r + 2 ) x i ( r + 1 ) < ε , x i ( r + 3 ) x i ( r + 2 ) < ε , x i ( r + 1 ) = u i ( r ) , x i ( r + 2 ) x i ( r + 1 ) < ε , x i ( r + 3 ) x i ( r + 2 ) < ε , x_(i)^((r+1))=u_(i)^((r)),x_(i)^((r+2))-x_(i)^((r+1)) < epsi,x_(i)^((r+3))-x_(i)^((r+2)) < epsi,dotsx_{i}^{(r+1)}=u_{i}^{(r)}, x_{i}^{(r+2)}-x_{i}^{(r+1)}<\varepsilon, x_{i}^{(r+3)}-x_{i}^{(r+2)}<\varepsilon, \ldotsxi(r+1)=ui(r),xi(r+2)xi(r+1)<ε,xi(r+3)xi(r+2)<ε,. a i ( n + 1 ) x i ( n ) < ε , 2 a i ( r ) a i ( n + 1 ) x i ( n ) < ε , 2 a i ( r ) a_(i)^((n+1))-x_(i)^((n)) < epsi,2^(@)a_(i)^((r))a_{i}^{(n+1)}-x_{i}^{(n)}<\varepsilon, 2^{\circ} a_{i}^{(r)}hasi(n+1)xi(n)<ε,2hasi(r)does not belong to i E i E i E_(i)E_{i}Eiand then we take x i = a i , x i = a i , , x i ( r ) = a i ( r 1 ) , x i ( r + 1 ) x i ( r ) < ε , x i ( r + 2 ) a i ( r + 1 ) < ε , , x i ( n + 1 ) x i ( n ) < ε .11 x i = a i , x i = a i , , x i ( r ) = a i ( r 1 ) , x i ( r + 1 ) x i ( r ) < ε , x i ( r + 2 ) a i ( r + 1 ) < ε , , x i ( n + 1 ) x i ( n ) < ε .11 x_(i)^(')=a_(i),x_(i)^('')=a_(i)^('),dots,x_(i)^((r))=a_(i)^((r-1)),x_(i)^((r+1))-x_(i)^((r)) < epsi,x_(i)^((r+2))-a_(i)^((r+1)) < epsi,dots,x_(i)^((n+1))-x_(i)^((n)) < epsi.11x_{i}^{\prime}=a_{i}, x_{i}^{\prime \prime}=a_{i}^{\prime}, \ldots, x_{i}^{(r)}=a_{i}^{(r-1)}, x_{i}^{(r+1)}-x_{i}^{(r)}<\varepsilon, x_{i}^{(r+2)}-a_{i}^{(r+1)}<\varepsilon , \ldots, x_{i}^{(n+1)}-x_{i}^{(n)}<\varepsilon .11xi=hasi,xi=hasi,,xi(r)=hasi(r1),xi(r+1)xi(r)<ε,xi(r+2)hasi(r+1)<ε,,xi(n+1)xi(n)<ε.11It is possible, of course, that r n + 1 r n + 1 r >= n+1r \geq n+1rn+1, then all the points x i x i x_(i)x_{i}xihave a fixed position. The points y i , y i , , y i ( n + 1 ) y i , y i , , y i ( n + 1 ) y_(i)^('),y_(i)^(''),dots,y_(i)^((n+1))y_{i}^{\prime}, y_{i}^{\prime \prime}, \ldots, y_{i}^{(n+1)}yi,yi,,yi(n+1)are distributed in the same way in the vicinity of the end b i b i b_(i)b_{i}biThe points of e ε e ε e_(epsi)e_{\varepsilon}eεbelonging to E 1 E 1 E_(1)E_{1}E1and to E m E m E_(m)E_{m}Em. If E 1 E 1 E_(1)E_{1}E1within n + 2 n + 2 n+2n+2n+2all these points belong to e ε e ε e_(epsi)e_{\varepsilon}eε. If E 1 E 1 E_(1)E_{1}E1has at least n + 2 n + 2 n+2n+2n+2points it has in common with e ε e ε e_(epsi)e_{\varepsilon}eεExactly n + 2 n + 2 n+2n+2n+2points x 1 , y 1 , y 1 , , y 1 ( n + 1 ) x 1 , y 1 , y 1 , , y 1 ( n + 1 ) x_(1)^('),y_(1)^('),y_(1)^(''),dots,y_(1)^((n+1))x_{1}^{\prime}, y_{1}^{\prime}, y_{1}^{\prime \prime}, \ldots, y_{1}^{(n+1)}x1,y1,y1,,y1(n+1), where the n + 1 n + 1 n+1n+1n+1the last points are distributed in the neighborhood of b 1 b 1 b_(1)b_{1}b1as above. The point x 1 x 1 x_(1)^(')x_{1}^{\prime}x1coincides with a 1 a 1 a_(1)a_{1}has1if a 1 ε E a 1 ε E a_(1)epsi Ea_{1} \varepsilon Ehas1εEand we have x 1 a 1 < ε x 1 a 1 < ε x_(1)^(')-a_(1) < epsix_{1}^{\prime}-a_{1}<\varepsilonx1has1<εif a 1 a 1 a_(1)a_{1}has1does not belong to E 1 E 1 E_(1)E_{1}E1. When a 1 = a 1 = a_(1)=-ooa_{1}=-\inftyhas1=we take x 1 x 1 x_(1)^(')x_{1}^{\prime}x1such as x 1 < 1 x 1 < 1 x_(1)^(') < -^(1)x_{1}^{\prime}<-{ }^{1}x1<1
The same is true for E m E m E_(m)E_{m}Emexcept that here we will have n + 1 n + 1 n+1n+1n+1points in the vicinity of a m a m a_(m)a_{m}hasmand a point in the vicinity of b m b m b_(m)b_{m}bm.
In this way, the set es is perfectly characterized. If the positive number ε ε epsi\varepsilonεis quite small, we have x i ( n + 1 ) < y i ( n + 1 ) , i = 2 , 3 , x i ( n + 1 ) < y i ( n + 1 ) , i = 2 , 3 , x_(i)^((n+1)) < y_(i)^((n+1)),i=2,3,dotsx_{i}^{(n+1)}<y_{i}^{(n+1)}, i=2,3, \ldotsxi(n+1)<yi(n+1),i=2,3,, m 1 , x 1 < y 1 ( n + 1 ) , x m ( n + 1 ) < y m m 1 , x 1 < y 1 ( n + 1 ) , x m ( n + 1 ) < y m m-1,x_(1) < y_(1)^((n+1)),x_(m)^((n+1)) < y_(m)m-1, x_{1}<y_{1}^{(n+1)}, x_{m}^{(n+1)}<y_{m}m1,x1<y1(n+1),xm(n+1)<ymIt can still happen that ε ε ^(')epsi{ }^{\prime} \varepsilonεbe
completely determined. This is what happens, for example, if E E EEEis finished and ε ε epsi\varepsilonεis small enough. In general, the points of e ε e ε e_(epsi)e_{\varepsilon}eεare some fixed and others variable, decreasing towards ai or increasing towards b i b i b_(i)b_{i}bi.
We still have
Theorem 6. There exists a positive number ε 1 ε 1 epsi_(1)\varepsilon_{1}ε1such as, for ε < ε 1 ε < ε 1 epsi < epsi_(1)\varepsilon<\varepsilon_{1}ε<ε1the sequel d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of e ε ε epsi\varepsilonεpresents the same number k k kkkof bets.
For the demonstration, we will follow a slightly different path than in the case n = 0 n = 0 n=0n=0n=0The function being of order n n nnnby segments, the number of variations of the sequence d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of a sequel e e eeehas a maximum, in other words the function is of a certain order ( n k ) ( n k ) (n∣k)(n \mid k)(nk). Either e e eeea maximizing sequence and e i e i e_(i)e_{i}eithe part of e e eeebelonging to E i E i E_(i)E_{i}EiLet us then consider a sequence e ε e ε e_(epsi)e_{\varepsilon}eε. If ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0is quite small all points of e i e i e_(i)e_{i}eithat do not belong to e ε e ε e_(epsi)e_{\varepsilon}eεare in the interval ( x i ( n + 1 ) , y i ( n + 1 ) ) [ x i ( n + 1 ) , y i ( n + 1 ) (x_(i)^((n+1)),y_(i)^((n+1)))[:}\left(x_{i}^{(n+1)}, y_{i}^{(n+1)}\right)\left[\right.(xi(n+1),yi(n+1))[Or ( x i , y i ( n + 1 ) ) x i , y i ( n + 1 ) (x_(i)^('),y_(i)^((n+1)))\left(x_{i}^{\prime}, y_{i}^{(n+1)}\right)(xi,yi(n+1))if i = 1 , ( x m ( n + 1 ) , y m ) i = 1 , x m ( n + 1 ) , y m i=1,(x_(m)^((n+1)),y_(m)^('))i=1,\left(x_{m}^{(n+1)}, y_{m}^{\prime}\right)i=1,(xm(n+1),ym)if i = m ] i = m {:i=m]\left.i=m\right]i=m]The result is that the consequences d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of e ε e ε e_(epsi)e_{\varepsilon}eεand the meeting e e e^(**)e^{*}eof e e eeeAnd e ε e ε e_(epsi)e_{\varepsilon}eεpresent the same number of variations. But since e is maximizing, e e e^(**)e^{*}eis also maximizing, therefore the sequence d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of e ε e ε e_(epsi)e_{\varepsilon}eεpresents k k kkkvariations and the theorem is proven.
The previous property can also be stated in the following form:
Theorem 7. If ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0As the number of variations of the sequence tends towards zero, the number of variations of the sequence d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of e ε e ε e_(epsi)e_{\varepsilon}eεtends towards a limit. If k k kkkis this limit, the function is of order ( n k n k n∣kn \mid knk) on E E EEE.
Either e ε = { x 1 , x 2 , , x r } e ε = x 1 , x 2 , , x r e_(epsi)={x_(1),x_(2),dots,x_(r)}e_{\varepsilon}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}eε={x1,x2,,xr}The sequel d n + 1 d n + 1 d_(n+1)d_{n+1}dn+1of e ε e ε e_(epsi)e_{\varepsilon}eεcan be replaced later
Δ n 2 ( f ) Δ n 1 ( f ) , Δ n 3 ( f ) Δ n 2 ( f ) , , Δ n r n ( f ) Δ n r n 1 ( f ) . Δ n 2 ( f ) Δ n 1 ( f ) , Δ n 3 ( f ) Δ n 2 ( f ) , , Δ n r n ( f ) Δ n r n 1 ( f ) . Delta_(n)^(2)(f)-Delta_(n)^(1)(f),Delta_(n)^(3)(f)-Delta_(n)^(2)(f),dots,Delta_(n)^(r-n)(f)-Delta_(n)^(r-n-1)(f).\Delta_{n}^{2}(f)-\Delta_{n}^{1}(f), \Delta_{n}^{3}(f)-\Delta_{n}^{2}(f), \ldots, \Delta_{n}^{r-n}(f)-\Delta_{n}^{r-n-1}(f) .Δn2(f)Δn1(f),Δn3(f)Δn2(f),,Δnrn(f)Δnrn1(f).
So if ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0ε0, the number of variations of this sequence tends towards k k kkkWe can also
introduce a sequence analogous to (7), using derivatives up to the order n n nnnorder functions n n nnnand the limits of these derivatives as we approach an extremity a i a i a_(i)a_{i}hasiOr b i b i b_(i)b_{i}biand which still exist in the literal or literal sense. We will leave aside this generalization.

  1. 1 ) 1 ) ^(1)){ }^{1)}1)This note was in press in the Bulletin of the Faculty of Sciences of Cernăuți in June 1940. Having managed to find the manuscript, I am now publishing it without modifications.
    2 2 ^(2){ }^{2}2) Bulletin of the Scientific Section of the Romanian Academy, vol. 22.
    2 2 ^(2){ }^{2}2Disquisitiones Mathematicae et Physicae, 1, 35-42, 1940.
1942

Related Posts