Notes on Higher-Order Convex Functions (II)

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (II), Mathematica, 12 (1936), pp. 227-233 (in French).

PDF

About this paper

Journal

Mathematica

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1936 d -Popoviciu- Mathematica - Notes on convex functions of higher order (II)
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

NOTES ON HIGHER ORDER CONVEX FUNCTIONS (II)

byTiberiu Popoviciuin Cernăuți.

Received June 8, 1936.

On univalent functions and maltivalent functions of a real variable.

  1. Either f ( x ) f ( x ) f(x)f(x)f(x)a real, definite and uniform function in the finite and open interval ( has , b has , b a,ba, bhas,b), has < b has < b a < ba<bhas<b. We therefore assume that f ( x ) f ( x ) f(x)f(x)f(x)has a finite and well-determined value at any point of ( has , b has , b a,ba, bhas,b) except at the ends where it is not defined. The monotonicity of such a function will be understood in the strict sense. It will therefore be a question of increasing or decreasing functions. Similarly, in the following, convexity and concavity should not be confused with non-concavity and non-convexity respectively.
The function f ( x ) f ( x ) f(x)f(x)f(x)has a maximum (or upper bound) at each point M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x)and a minimum (or lower bound) m ( f ; x ) m ( f ; x ) m(f;x)m(f ; x)m(f;x). The number M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x)is the limit of the maximum of f ( x ) f ( x ) f(x)f(x)f(x)in an interval containing the point x x xxxwhen this interval tends towards the point x x xxx. The number m ( f ; x ) m ( f ; x ) m(f;x)m(f ; x)m(f;x)has a similar definition. The number M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x)can become equal to + + +oo+\infty+and the number m ( f ; x ) m ( f ; x ) m(f;x)m(f ; x)m(f;x)can become equal to -oo-\inftyand these two circumstances can also occur at the same time. We always have m ( f ; x ) f ( x ) ≤≤ M ( f ; x ) m ( f ; x ) f ( x ) ≤≤ M ( f ; x ) m(f;x) <= f(x)≤≤M(f;x)m(f ; x) \leq f(x) \leq \leq \mathrm{M}(f ; x)m(f;x)f(x)≤≤M(f;x).
We will attach to the function f ( x ) f ( x ) f(x)f(x)f(x)another function F ( x ) F ( x ) F(x)F(x)F(x)which takes to the point x x xxxall values ​​between m ( f ; x ) m ( f ; x ) m(f;x)m(f ; x)m(f;x)And M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x), these ends included if they are finished. If M ( f ; x ) = + M ( f ; x ) = + M(f;x)=+oo\mathrm{M}(f ; x)=+\inftyM(f;x)=+the function f ( x ) f ( x ) f(x)f(x)f(x)takes, to the point x x xxx, all values ​​greater than some fixed number and there is an analogous property if m ( f ; x ) = m ( f ; x ) = m(f;x)=-oom(f ; x)=-\inftym(f;x)=. When M ( f ; x ) = + M ( f ; x ) = + M(f;x)=+oo\mathrm{M}(f ; x)=+\inftyM(f;x)=+And m ( f ; x ) = m ( f ; x ) = m(f;x)=-oom(f ; x)=-\inftym(f;x)=at the same time, the function
F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)takes all possible values ​​at point x x xxx. The function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)is generally multifaceted. So that f ( x ) f ( x ) f(x)f(x)f(x)is continuous it is necessary and sufficient that the attached function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)be uniform, the functions f ( x ) f ( x ) f(x)f(x)f(x)And F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)then coincide everywhere.
2. The function f ( x ) f ( x ) f(x)f(x)f(x)is univalent if it takes each of its values ​​only once, and this notion of univalence can obviously also be extended to multifaceted functions. A continuous and univalent function is necessarily monotone but univalence alone is not sufficient to assert that the function is monotone ( 1 1 ^(1){ }^{1}1).
We propose to demonstrate the following property:
I. For the function f ( x ) f ( x ) f(x)f(x)f(x)is monotonous it is necessary and sufficient that the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), attached to f ( x ) f ( x ) f(x)f(x)f(x), or univalent.
The condition is obviously necessary and it remains to be shown that it is also sufficient. We will demonstrate it in the following Nos.
3. Let us therefore suppose that F ( x ) F ( x ) F(x)F(x)F(x)is univalent. We can easily see that then at every point x x xxxthe numbers M ( f ; x ) , m ( f ; x ) M ( f ; x ) , m ( f ; x ) M(f;x),m(f;x)\mathrm{M}(f ; x), m(f ; x)M(f;x),m(f;x)are finished. Let's score the points has , b has , b a,ba, bhas,bon the real axis and take a point x x xxxof ( has , b ) ( has , b ) (a,b)(a, b)(has,b). Let us represent the points representing the values m ( f ; x ) m ( f ; x ) m(f;x)m(f ; x)m(f;x)And M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x). Let AA' be the vertical which contains the values ​​of F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)to the point x ( 2 ) x ( 2 ) x^((2))x{ }^{(2)}x(2). Let us also represent the lines BB ', CC ' parallel to the real axis and passing through the points representing the values m ( f ; x ) , M ( f ; x ) m ( f ; x ) , M ( f ; x ) m(f;x),M(f;x)m(f ; x), \mathrm{M}(f ; x)m(f;x),M(f;x)The plan is thus broken down into several regions. First there is the band between BB', CC' including the edges. Then four CM quadrants ( f ; x ) HAS , HAS M ( f ; x ) C ( f ; x ) HAS , HAS M ( f ; x ) C (f;x)A^('),A^(')M(f;x)C(f ; x) \mathrm{A}^{\prime}, \mathrm{A}^{\prime} \mathrm{M}(f ; x) \mathrm{C}(f;x)HAS,HASM(f;x)C', B m ( t ; x ) HAS , HAS m ( f ; x ) B B m ( t ; x ) HAS , HAS m ( f ; x ) B B^(')m(t;x)A,Am(f;x)B\mathrm{B}^{\prime} m(t ; x) \mathrm{A}, \mathrm{A} m(f ; x) \mathrm{B}Bm(t;x)HAS,HASm(f;x)Bnumbered respectively by (I), (II), (III), (IV). The only values ​​taken by the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)in the band are on the segment m ( f ; x ) M ( f ; x ) m ( f ; x ) M ( f ; x ) m(f;x)M(f;x)m(f ; x) \mathrm{M}(f ; x)m(f;x)M(f;x). The strip BB', CC' can also be reduced to a single straight line parallel to the real axis. Property I will be demonstrated if we establish how the values ​​of the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), taken outside the point x x xxx, are distributed in the quadrants (I)-(IV).
4. I. The values ​​taken to the left of x x xxxare either all in quadrant (II) or all in quadrant (III).
The demonstration is very simple. Let us suppose the opposite. It is clear that at any point to the left of x x xxxthe values ​​of F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)are all in one of the quadrants (II), (III). Now let x 1 x 1 x_(1)x_{1}x1And x 2 x 2 x_(2)x_{2}x2two points to the left of x x xxxsuch as values F ( x 1 ) F x 1 F(x_(1))\mathrm{F}\left(x_{1}\right)F(x1)are all in (II) and the values F ( x 2 ) F x 2 F(x_(2))\mathrm{F}\left(x_{2}\right)F(x2)all in (III). Let us designate by J I 1 I 1 J_(1)\mathrm{J}_{1}I1the interval ( x 1 , x 2 x 1 , x 2 x_(1),x_(2)x_{1}, x_{2}x1,x2) and take its middle x 4 x 4 x_(4)^(')x_{4}^{\prime}x4. Let us take as an interval I 2 ( x 1 , x 4 ) I 2 x 1 , x 4 J_(2)(x_(1),x_(4)^('))\mathrm{J}_{2}\left(x_{1}, x_{4}^{\prime}\right)I2(x1,x4)Or ( x 1 , x 2 x 1 , x 2 x_(1)^('),x_(2)x_{1}^{\prime}, x_{2}x1,x2) such that at the ends the values ​​are in different quadrants. Repeating the process we construct a sequence of intervals I 1 , I 2 , , I m , I 1 , I 2 , , I m , J_(1),J_(2),dots,J_(m),dots\mathrm{J}_{1}, \mathrm{~J}_{2}, \ldots, \mathrm{~J}_{m}, \ldotsI1, I2,, Im,such that each is half of the previous one and that at the ends the values ​​of F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)are always in different dials. The intervals I m I m J_(m)\mathrm{J}_{m}Imtend, for m m m rarr oom \rightarrow \inftym, towards a limit point ξ ξ xi\xiξ. It immediately follows that M ( f ; ξ M ( f ; x ) M ( f ; ξ M ( f ; x ) M(f;xi >= M(f;x)\mathrm{M}(f ; \xi \geq \mathrm{M}(f ; x)M(f;ξM(f;x)And m ( f ; ξ ) m ( f ; x ) m ( f ; ξ ) m ( f ; x ) m(f;xi) <= m(f;x)m(f ; \xi) \leq m(f ; x)m(f;ξ)m(f;x), which is clearly in contradiction with the univalence of F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x).
We demonstrate in the same way that:
III. The values ​​taken to the right of x x xxxare either all in quadrant (I) or all in quadrant (IV).
Finally, to specify the distribution of all values ​​of F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), we will demonstrate the following property:
IIII. Values ​​taken outside the point x x xxxare either all in quadrants (I) and (III) or all in quadrants (II) and (IV).
It will be enough to demonstrate, for example, that the values ​​cannot all be in quadrants (I) and (II). Let us suppose the opposite and let F ( x 0 ) F x 0 F(x_(0))\mathrm{F}\left(x_{0}\right)F(x0)a value taken at a point x 0 x 0 x_(0)x_{0}x0to the left of x 0 x 0 x_(0)x_{0}x0. Under the definition of M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x)and properties already demonstrated, all values ​​taken by F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)to the right of x x xxxmust be smaller than F ( x 0 ) F x 0 F(x_(0))\mathrm{F}\left(x_{0}\right)F(x0). On the other hand, still by virtue of the definition of M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x), the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)takes left of x x xxxvalues ​​as close as one wants to M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x). It would therefore follow that the value M ( f ; x ) M ( f ; x ) M(f;x)\mathrm{M}(f ; x)M(f;x)is taken at any point to the right of x x xxxwhich is impossible.
From what we have demonstrated it is easy to deduce that f ( x ) f ( x ) f(x)f(x)f(x)is increasing or decreasing. Property I is therefore completely established.
5. Although the function f ( x ) f ( x ) f(x)f(x)f(x), is not defined at points has has hashashasAnd b b bbbwe can extend the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), attached to f ( x ) f ( x ) f(x)f(x)f(x), on these points the numbers M ( f ; has ) , m ( f ; has ) M ( f ; has ) , m ( f ; has ) M(f;a),m(f;a)\mathrm{M}(f ; a), m(f ; a)M(f;has),m(f;has)And M ( f ; b ) , m ( f ; b ) M ( f ; b ) , m ( f ; b ) M(f;b),m(f;b)\mathrm{M}(f ; b), m(f ; b)M(f;b),m(f;b)being defined. We can then easily see that if the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)thus extended is univalent, it is necessarily bounded. It is easy to deduce the following property:
I. For the function f ( x ) f ( x ) f(x)f(x)f(x)is monotone is bounded it is necessary and sufficient that the attached function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), extended on the ends a and b b bbb, or univalent.
6. Let us now move on to the study of convex or concave functions of order n ( n 1 ) n ( n 1 ) n(n >= 1)n(n \geq 1)n(n1)We assume that we know the main properties and the notations that we have used in this theory. ( 3 ) ( 3 ) ^((3)){ }^{(3)}(3). Let us first say what we mean by a multivalent (uniform or multifaceted) function of order n + 1 n + 1 n+1n+1n+1. Such a function takes at most n + 1 n + 1 n+1n+1n+1times the same value as a polynomial of degree n n nnn(more exactly of degree at most equal to n n nnn) and this regardless of the polynomial considered. Multivalence therefore has a different meaning here as usual.
Let us suppose that the function f ( x ) f ( x ) f(x)f(x)f(x)be continuous and multivalent of order n + 1 n + 1 n+1n+1n+1. Let x 1 < x 2 < < x n + 1 n + 1 x 1 < x 2 < < x n + 1 n + 1 x_(1) < x_(2) < dots < x_(n+1)n+1x_{1}<x_{2}<\ldots<x_{n+1} n+1x1<x2<<xn+1n+1points in ( has , b has , b a,ba, bhas,b) And P ( x 1 , x 2 , , x n + 1 ; f x ) P x 1 , x 2 , , x n + 1 ; f x P(x_(1),x_(2),dots,x_(n+1);f∣x)\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1}; f \mid x\right)P(x1,x2,,xn+1;fx)the Lagrange polynomial taking the values f ( x i ) f x i f(x_(i))f\left(x_{i}\right)f(xi)to the point x i x i x_(i)x_{i}xi. The difference f ( x i ) P ( x 1 , x 2 , , x n + 1 ; f x ) f x i P x 1 , x 2 , , x n + 1 ; f x f(x_(i))-P(x_(1),x_(2),dots,x_(n+1);f∣x)f\left(x_{i}\right)-\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)f(xi)P(x1,x2,,xn+1;fx)is different from zero and keeps the same sign in each of the open intervals ( a , x 1 ) , ( x 1 , x 2 ) , , ( x n + 1 , b ) a , x 1 , x 1 , x 2 , , x n + 1 , b (a,x_(1)),(x_(1),x_(2)),dots,(x_(n+1),b)\left(a, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n+1}, b\right)(has,x1),(x1,x2),,(xn+1,b). Now, I say that in two consecutive intervals this difference takes values ​​of opposite signs. Let us suppose in fact that the values ​​in ( x i , x i + 1 x i , x i + 1 x_(i),x_(i+1)x_{i}, x_{i+1}xi,xi+1), ( x i + 1 , x i + 2 x i + 1 , x i + 2 x_(i+1),x_(i+2)x_{i+1}, x_{i+2}xi+1,xi+2) ( x 0 = a , x n + 2 = b ) x 0 = a , x n + 2 = b (x_(0)=a,x_(n+2)=b)\left(x_{0}=a, x_{n+2}=b\right)(x0=has,xn+2=b)are of the same sign. Let us then take a point x x x^(')x^{\prime}xin the meantime ( x l , x i + 1 x l , x i + 1 x_(l),x_(i+1)x_{l}, x_{i+1}xL,xi+1) and consider the Lagrange polynomial P ( x 1 , x 2 , , x i , x , x i + 2 , , x n + 1 ; f x ) P x 1 , x 2 , , x i , x , x i + 2 , , x n + 1 ; f x P(x_(1),x_(2),dots,x_(i),x^('),x_(i+2),dots,x_(n+1);f∣x)\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{i}, x^{\prime}, x_{i+2}, \ldots, x_{n+1} ; f \mid x\right)P(x1,x2,,xi,x,xi+2,,xn+1;fx). The equation
P ( x 1 , x 2 , , x n + 1 ; f x ) = P ( x 1 , x 2 , , x i , x , x l + 2 , , x n + 1 ; f x ) P x 1 , x 2 , , x n + 1 ; f x = P x 1 , x 2 , , x i , x , x l + 2 , , x n + 1 ; f x P(x_(1),x_(2),dots,x_(n+1);f∣x)=P(x_(1),x_(2),dots,x_(i),x^('),x_(l+2),dots,x_(n+1);f∣x)\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)=\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{i}, x^{\prime}, x_{l+2}, \ldots, x_{n+1} ; f \mid x\right)P(x1,x2,,xn+1;fx)=P(x1,x2,,xi,x,xL+2,,xn+1;fx)is not identically verified and is of degree n n nnnShe has the roots x 1 , x 2 , , x i , x i + 2 , , x n + 1 x 1 , x 2 , , x i , x i + 2 , , x n + 1 x_(1),x_(2),dots,x_(i),x_(i+2),dots,x_(n+1)x_{1}, x_{2}, \ldots, x_{i}, x_{i+2}, \ldots, x_{n+1}x1,x2,,xi,xi+2,,xn+1, so no other root. Taking into account the continuity we easily deduce that, if x x xxx' is close enough to x i + 1 x i + 1 x_(i+1)x_{i+1}xi+1, there is at least one point x x x^('')x^{\prime \prime}xIn ( x i + 1 , x i + 2 x i + 1 , x i + 2 x_(i+1),x_(i+2)x_{i+1}, x_{i+2}xi+1,xi+2) such as
f ( x ) = P ( x 1 , x 2 , , x 1 , x , x 1 + 2 , , x n + 1 ; f x ) f x = P x 1 , x 2 , , x 1 , x , x 1 + 2 , , x n + 1 ; f x f(x^(''))=P(x_(1),x_(2),dots,x_(1),x^('),x_(1+2),dots,x_(n+1);f∣x^(''))^(')f\left(x^{\prime \prime}\right)=\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{1}, x^{\prime}, x_{1+2}, \ldots, x_{n+1} ; f \mid x^{\prime \prime}\right)^{\prime}f(x)=P(x1,x2,,x1,x,x1+2,,xn+1;fx)
which is in contradiction with the property of multivalence.
Consider n + 3 n + 3 n+3n+3n+3points x 1 < x 2 < < x n + 3 x 1 < x 2 < < x n + 3 x_(1) < x_(2) < dots < x_(n+3)x_{1}<x_{2}<\ldots<x_{n+3}x1<x2<<xn+3. The differences f ( x ) P ( x 1 , x 2 , , x n + 1 ; f x ) , f ( x ) P ( x 2 , x 3 , , x n + 2 ; f x ) f ( x ) P x 1 , x 2 , , x n + 1 ; f x , f ( x ) P x 2 , x 3 , , x n + 2 ; f x f(x)-P(x_(1),x_(2),dots,x_(n+1);f∣x),f(x)-P(x_(2),x_(3),dots,x_(n+2);f∣x)f(x)-\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right), f(x)-\mathrm{P}\left(x_{2}, x_{3}, \ldots, x_{n+2} ; f \mid x\right)f(x)P(x1,x2,,xn+1;fx),f(x)P(x2,x3,,xn+2;fx)then present values ​​of the same signs at the point x n + 3 x n + 3 x_(n+3)x_{n+3}xn+3. We can easily see by noticing, for example, that the second Lagrange polynomial is deduced from the first by a continuous deformation. If we now consider m n + 2 m n + 2 m >= n+2m \geq n+2mn+2points
(1)
x 1 < x 2 < < x m x 1 < x 2 < < x m x_(1) < x_(2) < dots < x_(m)x_{1}<x_{2}<\ldots<x_{m}x1<x2<<xm
we see that the differences in order n + 1 n + 1 n+1n+1n+1
[ x i < x i + 1 , , x i + n + 1 ; f ] , i = 1 , 2 , , m n 1 x i < x i + 1 , , x i + n + 1 ; f , i = 1 , 2 , , m n 1 [x_(i) < x_(i+1),dots,x_(i+n+1);f],quad i=1,2,dots,m-n-1\left[x_{i}<x_{i+1}, \ldots, x_{i+n+1} ; f\right], \quad i=1,2, \ldots, m-n-1[xi<xi+1,,xi+n+1;f],i=1,2,,mn1
( 3 ) ( 3 ) ^((3)){ }^{(3)}(3)See Tiberiu Popoviciu, "On some properties of functions of one and two real variables". Mathematica t. V11l, p. 1-86.
are all different from zero and of the same sign. Any divided difference taken on n + 2 n + 2 n+2n+2n+2any point of the sequence (1) will be different from zero and will have the same sign. Finally, any two divided differences [ x 1 , x 2 , , x n + 2 ; f ] , [ x 1 , x 2 , , x n + 2 ] x 1 , x 2 , , x n + 2 ; f , x 1 , x 2 , , x n + 2 [x_(1),x_(2),dots,x_(n+2);f],[x_(1)^('),x_(2)^('),dots,x_(n+2)^(')]\left[x_{1}, x_{2}, \ldots, x_{n+2} ; f\right],\left[x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n+2}^{\prime}\right][x1,x2,,xn+2;f],[x1,x2,,xn+2]are different from zero and have the same sign. It is sufficient to arrange all the points x i , x i x i , x i x_(i),x_(i)x_{i}, x_{i}xi,xiinto a sequence (1). We can therefore state the following property:
II. If the function f ( x ) f ( x ) f(x)f(x)f(x)is continuous and multivalent of order n + 1 n + 1 n+1n+1n+1it is necessarily convex or concave of order n.
7. Multivalence of order n + 1 n + 1 n+1n+1n+1is not sufficient to assert the convexity or concavity of order n ( 4 ) n 4 n(^(4))n\left({ }^{4}\right)n(4). We will demonstrate the following property:
III. For the function f ( x ) f ( x ) f(x)f(x)f(x)either convex or concave of order n n nnnit is necessary and sufficient that the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), attached to f ( x ) f ( x ) f(x)f(x)f(x)be multivalent in order n + 1 n + 1 n+1n+1n+1.
The condition is obviously necessary. It remains to be shown that it is also sufficient.
8. I say first that:
If F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)is multivalent in order n + 1 n + 1 n+1n+1n+1it is bounded at every point of (a, b).
Suppose, for example, that at a point x , M ( f ; x ) = + x , M ( f ; x ) = + x,M(f;x)=+oox, \mathrm{M}(f ; x)=+\inftyx,M(f;x)=+. There then necessarily exists a sequence of points x 1 , x 2 , , x m , x 1 , x 2 , , x m , x_(1),x_(2),dots,x_(m),dotsx_{1}, x_{2}, \ldots, x_{m}, \ldotsx1,x2,,xm,of ( a , b ) ( a , b ) (a,b)(a, b)(has,b)tending towards x x xxxand a sequence of values F ( x 1 ) , F ( x 2 ) , , F ( x m ) , F x 1 , F x 2 , , F x m , F(x_(1)),F(x_(2)),dots,F(x_(m)),dots\mathrm{F}\left(x_{1}\right), \mathrm{F}\left(x_{2}\right), \ldots, \mathrm{F}\left(x_{m}\right), \ldotsF(x1),F(x2),,F(xm),, taken at these points, and tending towards + ; F ( x m ) + + ; F x m + +oo;F(x_(m))rarr+oo+\infty ; \mathrm{F}\left(x_{m}\right) \rightarrow+\infty+;F(xm)+For m m m rarr oom \rightarrow \inftym. Either P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x)the Lagrange polynomial taking the values F ( x 1 ) , F ( x 2 ) , , F ( x n ) , F ( x m ) ( m > n ) F x 1 , F x 2 , , F x n , F x m ( m > n ) F(x_(1)),F(x_(2)),dots dots,F(x_(n)),F(x_(m))(m > n)\mathrm{F}\left(x_{1}\right), \mathrm{F}\left(x_{2}\right), \ldots \ldots, \mathrm{F}\left(x_{n}\right), \mathrm{F}\left(x_{m}\right)(m>n)F(x1),F(x2),,F(xn),F(xm)(m>n)to the points x 1 , x 2 , , x n , x m x 1 , x 2 , , x n , x m x_(1),x_(2),dots,x_(n),x_(m)x_{1}, x_{2}, \ldots, x_{n}, x_{m}x1,x2,,xn,xm. We can easily see that, for m m mmmlarge enough, there is a value F ( x ) F ( x ) F(x)\mathbf{F}(x)F(x)to the point x x xxxsuch as F ( x ) = P ( x ) F ( x ) = P ( x ) F(x)=P(x)\mathrm{F}(x)=\mathrm{P}(x)F(x)=P(x)This results from the continuity of a
( 4 ) ( 4 ) ^((4)){ }^{(4)}(4)The function
f ( x ) = { x 2 2 0 < x ≤≤ 1 2 4 x 2 12 x + 1 8 1 2 < x < 1 f ( x ) = x 2 2 0 < x ≤≤ 1 2 4 x 2 12 x + 1 8 1 2 < x < 1 f(x)={[(x^(2))/(2),0 < x≤≤(1)/(2)],[-(4x^(2)-12 x+1)/(8),(1)/(2) < x < 1]:}f(x)=\left\{\begin{array}{cc} \frac{x^{2}}{2} & 0<x \leq \leq \frac{1}{2} \\ -\frac{4 x^{2}-12 x+1}{8} & \frac{1}{2}<x<1 \end{array}\right.f(x)={x220<x≤≤124x212x+1812<x<1
is indeed bivalent but is not convere or concave of order 1. This function is even discontinuous at the point 1 2 1 2 (1)/(2)\frac{1}{2}12. It is easy to construct a ple example for n n nnnany
polynomial and is in contradiction with the property of multivalence of order n + 1 n + 1 n+1n+1n+1.
9. Let us move on to the demonstration of property III and therefore suppose that F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)be multivalent in order n + 1 n + 1 n+1n+1n+1. Let us consider again n + 1 n + 1 n+1n+1n+1points x 1 < x 2 < x n + 1 x 1 < x 2 < x n + 1 x_(1) < x_(2)dots < x_(n+1)x_{1}<x_{2} \ldots<x_{n+1}x1<x2<xn+1In ( a , b ) ( a , b ) (a,b)(a, b)(has,b)and certain determined values F ( x 1 ) , F ( x 2 ) , , F ( x n + 1 ) F x 1 , F x 2 , , F x n + 1 F(x_(1)),F(x_(2)),dots,F(x_(n+1))\mathrm{F}\left(x_{1}\right), \mathrm{F}\left(x_{2}\right), \ldots, \mathrm{F}\left(x_{n+1}\right)F(x1),F(x2),,F(xn+1)of the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)at these points. Either P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x)the Lagrange polynomial taking the values F ( x i ) F x i F(x_(i))\mathrm{F}\left(x_{i}\right)F(xi)to the points x t x t x_(t)x_{t}xt. We have the following property:
III I III I III_(I)\mathrm{III}_{\mathrm{I}}IIII. The difference F ( x ) P ( x ) F ( x ) P ( x ) F(x)-P(x)\mathrm{F}(x)-\mathrm{P}(x)F(x)P(x)is different from zero and takes values ​​of the same sign in each of the open intervals ( a , x 1 a , x 1 a,x_(1)a, x_{1}has,x1), ( x 1 , x 2 ) , , ( x n + 1 , b ) x 1 , x 2 , , x n + 1 , b (x_(1),x_(2)),dots,(x_(n+1),b)\left(x_{1}, x_{2}\right), \ldots,\left(x_{n+1}, b\right)(x1,x2),,(xn+1,b).
In other words, the values ​​of the function F ( x ) F ( x ) F(x)F(x)F(x)remain, in each interval ( x i , x i + 1 ) ( x 0 = a , x n + 2 = b ) x i , x i + 1 x 0 = a , x n + 2 = b (x_(i),x_(i+1))(x_(0)=a,x_(n+2)=b)\left(x_{i}, x_{i+1}\right)\left(x_{0}=a, x_{n+2}=b\right)(xi,xi+1)(x0=has,xn+2=b), on the same side of the polynomial P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x)The demonstration is done exactly as for property II.
If we take to F ( x l ) F x l F(x_(l))F\left(x_{l}\right)F(xL)all values ​​between m ( f ; x l ) , M ( f ; x l i ) m f ; x l , M f ; x l i m(f;x_(l)),M(f;x_(li))m\left(f ; x_{l}\right), \mathrm{M}\left(f ; x_{l i}\right)m(f;xL),M(f;xLi)and for each point x l x l x_(l)x_{l}xL, we obtain a family of polynomials P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x). This family has an upper limit function ϕ 1 ( x ) ϕ 1 ( x ) phi_(1)(x)\phi_{1}(x)ϕ1(x)and a lower limit function ϕ 2 ( x ) ϕ 2 ( x ) phi_(2)(x)\phi_{2}(x)ϕ2(x). Any point located in the band formed by the functions ϕ 1 ( x ) , ϕ 2 ( x ) ϕ 1 ( x ) , ϕ 2 ( x ) phi_(1)(x),phi_(2)(x)\phi_{1}(x), \phi_{2}(x)ϕ1(x),ϕ2(x)enjoys the property that there exists a polynomial of the family passing through this point. We can therefore notice that the values ​​of F ( x ) F ( x ) F(x)F(x)F(x)taken outside the points x l x l x_(l)x_{l}xLare all outside the band included between ϕ 1 ( x ) ϕ 1 ( x ) phi_(1)(x)\phi_{1}(x)ϕ1(x)And ϕ 2 ( x ) ϕ 2 ( x ) phi_(2)(x)\phi_{2}(x)ϕ2(x).
Let us now demonstrate the following property:
III II III II III_(II)\mathrm{III}_{\mathrm{II}}IIIII. The difference F ( x ) P ( x ) F ( x ) P ( x ) F(x)-P(x)\mathrm{F}(x)-\mathrm{P}(x)F(x)P(x)is of opposite sign in two consecutive intervals ( x i , x i + 1 x i , x i + 1 x_(i),x_(i+1)x_{i}, x_{i+1}xi,xi+1), ( x i + 1 , x i + 2 x i + 1 , x i + 2 x_(i+1),x_(i+2)x_{i+1}, x_{i+2}xi+1,xi+2).
Let us suppose the opposite therefore that, for example, F ( x ) > P ( x ) F ( x ) > P ( x ) F(x) > P(x)\mathrm{F}(x)>\mathrm{P}(x)F(x)>P(x)in these intervals. For F ( x t + 1 ) F x t + 1 F(x_(t+1))\mathrm{F}\left(x_{t+1}\right)F(xt+1)let's take the value M ( f ; x t + 1 ) M f ; x t + 1 M(f;x_(t+1))\mathrm{M}\left(f ; x_{t+1}\right)M(f;xt+1). Either x x x^(')x^{\prime}xa point in ( x i , x i + 1 x i , x i + 1 x_(i),x_(i+1)x_{i}, x_{i+1}xi,xi+1) And F ( x ) F x F(x^('))\mathrm{F}\left(x^{\prime}\right)F(x)one of the values ​​taken at this point. Let us construct the Lagrange polynomial Q ( x ) Q ( x ) Q(x)Q(x)Q(x)taking the values F ( x 1 ) F x 1 F(x_(1))F\left(x_{1}\right)F(x1), F ( x 2 ) , , F ( x i ) , F ( x ) , F ( x i + 2 ) , , F ( x n + 1 ) F x 2 , , F x i , F x , F x i + 2 , , F x n + 1 F(x_(2)),dots,F(x_(i)),F(x^(')),F(x_(i+2)),dots,F(x_(n+1))\mathrm{F}\left(x_{2}\right), \ldots, \mathrm{F}\left(x_{i}\right), \mathrm{F}\left(x^{\prime}\right), \mathrm{F}\left(x_{i+2}\right), \ldots, \mathrm{F}\left(x_{n+1}\right)F(x2),,F(xi),F(x),F(xi+2),,F(xn+1)at the corresponding points. The difference P ( x ) Q ( x ) P ( x ) Q ( x ) P(x)-Q(x)\mathrm{P}(x)-\mathrm{Q}(x)P(x)Q(x)is a polynomial of degree n n nnnwhich cancels out for x = x 1 , x 2 , , x i , x i + 2 , , x n + 1 x = x 1 , x 2 , , x i , x i + 2 , , x n + 1 x=x_(1),x_(2),dots,x_(i),x_(i+2),dots,x_(n+1)x=x_{1}, x_{2}, \ldots, x_{i}, x_{i+2}, \ldots, x_{n+1}x=x1,x2,,xi,xi+2,,xn+1, so at no other point of ( a , b a , b a,ba, bhas,b). The property then results exactly like property III.
10. To complete the demonstration we still have to show that:
III III III  _("III ")_{\text {III }}III . The function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)is uniform in every respect.
Let us keep the previous notations. It suffices to demonstrate that we have M ( f ; x 1 ) = m ( f ; x 1 ) M f ; x 1 = m f ; x 1 M(f;x_(1))=m(f;x_(1))\mathrm{M}\left(f ; x_{1}\right)=m\left(f ; x_{1}\right)M(f;x1)=m(f;x1). To demonstrate this, let us assume that
M ( f ; x 1 ) > m ( f ; x 1 ) M f ; x 1 > m f ; x 1 M(f;x_(1)) > m(f;x_(1))\mathrm{M}\left(f ; x_{1}\right)>m\left(f ; x_{1}\right)M(f;x1)>m(f;x1). To fix the ideas, let us suppose that F ( x ) > P ( x ) F ( x ) > P ( x ) F(x) > P(x)\mathrm{F}(x)>\mathrm{P}(x)F(x)>P(x)to the left of x 1 x 1 x_(1)x_{1}x1; we then have F ( x ) < P ( x ) F ( x ) < P ( x ) F(x) < P(x)\mathrm{F}(x)<\mathrm{P}(x)F(x)<P(x)in the meantime ( x 1 , x 2 x 1 , x 2 x_(1),x_(2)x_{1}, x_{2}x1,x2). Let's take F ( x 1 ) = m ( f ; x 1 ) F x 1 = m f ; x 1 F(x_(1))=m(f;x_(1))\mathrm{F}\left(x_{1}\right)=m\left(f ; x_{1}\right)F(x1)=m(f;x1)and let the points be fixed x 3 , x 4 , , x n + 1 x 3 , x 4 , , x n + 1 x_(3),x_(4),dots,x_(n+1)x_{3}, x_{4}, \ldots, x_{n+1}x3,x4,,xn+1as well as the values F ( x 3 ) , F ( x 4 ) , , F ( x n + 1 ) F x 3 , F x 4 , , F x n + 1 F(x_(3)),F(x_(4)),dots,F(x_(n+1))\mathrm{F}\left(x_{3}\right), \mathrm{F}\left(x_{4}\right), \ldots, \mathrm{F}\left(x_{n+1}\right)F(x3),F(x4),,F(xn+1). Under the definition of M ( f ; x 1 ) M f ; x 1 M(f;x_(1))\mathrm{M}\left(f ; x_{1}\right)M(f;x1)we can take for x 2 x 2 x_(2)x_{2}x2successively the terms of a sequence of points x 2 , x 2 , , x 2 ( m ) , x 2 , x 2 , , x 2 ( m ) , x_(2)^('),x_(2)^(''),dots,x_(2)^((m)),dotsx_{2}^{\prime}, x_{2}^{\prime \prime}, \ldots, x_{2}^{(m)}, \ldotsx2,x2,,x2(m),tending towards x 1 x 1 x_(1)x_{1}x1and such that the corresponding values F ( x 2 ( m ) ) F x 2 ( m ) F(x_(2)^((m)))\mathrm{F}\left(x_{2}^{(m)}\right)F(x2(m))tend towards M ( f ; x 4 ) M f ; x 4 M(f;x_(4))\mathrm{M}\left(f ; x_{4}\right)M(f;x4)For m m m rarr oom \rightarrow \inftym. Let us designate by P m ( x ) P m ( x ) P_(m)(x)\mathrm{P}_{m}(x)Pm(x)the polynomial deduced from P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x)by replacing x 2 x 2 x_(2)x_{2}x2And F ( x 2 ) F x 2 F(x_(2))\mathrm{F}\left(x_{2}\right)F(x2)by x 2 ( m ) x 2 ( m ) x_(2)^((m))x_{2}^{(m)}x2(m)And F ( x 2 ( m ) ) F x 2 ( m ) F(x_(2)^((m)))\mathrm{F}\left(x_{2}^{(m)}\right)F(x2(m))respectively. If x 0 x 0 x_(0)x_{0}x0is a point to the left of x 1 x 1 x_(1)x_{1}x1We have
F ( x 0 ) < P m ( x 0 ) . P m ( x 0 ) pour m F x 0 < P m x 0 . P m x 0  pour  m {:[F(x_(0)) < P_(m)(x_(0)).],[P_(m)(x_(0))rarr-ooquad" pour "m rarr oo]:}\begin{gathered} \mathrm{F}\left(x_{0}\right)<\mathrm{P}_{m}\left(x_{0}\right) . \\ \mathrm{P}_{m}\left(x_{0}\right) \rightarrow-\infty \quad \text { pour } m \rightarrow \infty \end{gathered}F(x0)<Pm(x0).Pm(x0) For m
But
and so we arrive at an impossibility. Here we take into account a simple property which results from the continuity of a polynomial (5). We must therefore have M ( f ; x 1 ) = m ( f ; x 1 ) M f ; x 1 = m f ; x 1 M(f;x_(1))=m(f;x_(1))\mathrm{M}\left(f ; x_{1}\right)=m\left(f ; x_{1}\right)M(f;x1)=m(f;x1)which demonstrates property IIIII.
It therefore follows that:
III IV III IV III_(IV)\mathrm{III}_{\mathrm{IV}}IIIIV. If the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), attached to f ( x ) f ( x ) f(x)f(x)f(x), is multivalent in order n + 1 n + 1 n+1n+1n+1, the function f ( x ) f ( x ) f(x)f(x)f(x)is continuous.
Property III then follows from Property II.
11. Exactly as in No. 9 we can still state the following property:
III'. For the function f ( x ) f ( x ) f(x)f(x)f(x)either bounded and convex or concave of order n n nnnit is necessary and sufficient that the attached function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), extended on the ends a and b, is multivalent of order n + 1 n + 1 n+1n+1n+1.
(5). This can be demonstrated using the Lagrange interpolation formula.
polynomial and is in contradiction with the property of multivalence of order n + 1 n + 1 n+1n+1n+1.
9. Let us move on to the demonstration of property III and therefore suppose that F ( x ) F ( x ) F(x)F(x)F(x)be multivalent in order n + 1 n + 1 n+1n+1n+1. Let us consider again n + 1 n + 1 n+1n+1n+1points x 4 < x 2 < x n + 1 x 4 < x 2 < x n + 1 x_(4) < x_(2)dots < x_(n+1)x_{4}<x_{2} \ldots<x_{n+1}x4<x2<xn+1In ( a , b ) ( a , b ) (a,b)(a, b)(has,b)and certain determined values F ( x 1 ) , F ( x 2 ) , , F ( x n + 1 ) F x 1 , F x 2 , , F x n + 1 F(x_(1)),F(x_(2)),dots,F(x_(n+1))\mathrm{F}\left(x_{1}\right), \mathrm{F}\left(x_{2}\right), \ldots, \mathrm{F}\left(x_{n+1}\right)F(x1),F(x2),,F(xn+1)of the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)at these points. Either P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x)the Lagrange polynomial taking the values F ( x i ) F x i F(x_(i))\mathrm{F}\left(x_{i}\right)F(xi)to the points x i x i x_(i)x_{i}xi. We have the following property:
III I . La III I . La III_(I).La\mathrm{III}_{\mathrm{I}} . \mathrm{La}IIII.Theredifference F ( x ) P ( x ) F ( x ) P ( x ) F(x)-P(x)\mathrm{F}(x)-\mathrm{P}(x)F(x)P(x)is different from zero and takes values ​​of the same sign in each of the open intervals ( a , x 1 a , x 1 a,x_(1)a, x_{1}has,x1), ( x 1 , x 2 ) , , ( x n + 1 , b ) x 1 , x 2 , , x n + 1 , b (x_(1),x_(2)),dots,(x_(n+1),b)\left(x_{1}, x_{2}\right), \ldots,\left(x_{n+1}, b\right)(x1,x2),,(xn+1,b).
In other words, the values ​​of the function F ( x ) F ( x ) F(x)F(x)F(x)remain, in each interval ( x l , x i + 1 ) ( x 0 = a , x n + 2 = b ) x l , x i + 1 x 0 = a , x n + 2 = b (x_(l),x_(i+1))(x_(0)=a,x_(n+2)=b)\left(x_{l}, x_{i+1}\right)\left(x_{0}=a, x_{n+2}=b\right)(xL,xi+1)(x0=has,xn+2=b), on the same side of the polynomial P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x). The demonstration is done exactly as for the property I I I I I_(I)\mathrm{I}_{\mathrm{I}}II.
If we take to F ( x l ) F x l F(x_(l))\mathrm{F}\left(x_{l}\right)F(xL)all values ​​included against m ( f ; x i ) , M ( f ; x i l ) m f ; x i , M f ; x i l m(f;x_(i)),M(f;x_(il))m\left(f ; x_{i}\right), \mathrm{M}\left(f ; x_{i l}\right)m(f;xi),M(f;xiL)ef for each point x i x i x_(i)x_{i}xi, we obtain a family of polynomials P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x). This family has an upper limit function ϕ 1 ( x ) ϕ 1 ( x ) phi_(1)(x)\phi_{1}(x)ϕ1(x)and a lower limit function ϕ 2 ( x ) ϕ 2 ( x ) phi_(2)(x)\phi_{2}(x)ϕ2(x). Any point located in the band formed by the functions ϕ 1 ( x ) , ϕ 2 ( x ) ϕ 1 ( x ) , ϕ 2 ( x ) phi_(1)(x),phi_(2)(x)\phi_{1}(x), \phi_{2}(x)ϕ1(x),ϕ2(x)enjoys the property that there exists a polynomial of the family passing through this point. We can therefore notice that the values ​​of F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)taken outside the points x i x i x_(i)x_{i}xiare all outside the band included between ϕ 1 ( x ) ϕ 1 ( x ) phi_(1)(x)\phi_{1}(x)ϕ1(x)And ϕ 2 ( x ) ϕ 2 ( x ) phi_(2)(x)\phi_{2}(x)ϕ2(x).
Let us now demonstrate the following property:
III II . The difference F ( x ) P ( x ) F ( x ) P ( x ) F(x)-P(x)\mathrm{F}(x)-\mathrm{P}(x)F(x)P(x)is of opposite sign in two consecutive intervals ( x i , x l + 1 ) , ( x l + 1 , x l + 2 ) x i , x l + 1 , x l + 1 , x l + 2 (x_(i),x_(l+1)),(x_(l+1),x_(l+2))\left(x_{i}, x_{l+1}\right),\left(x_{l+1}, x_{l+2}\right)(xi,xL+1),(xL+1,xL+2).
Let us suppose the opposite therefore that, for example, F ( x ) > P ( x ) F ( x ) > P ( x ) F(x) > P(x)F(x)>P(x)F(x)>P(x)in these intervals. For F ( x i + 1 ) F x i + 1 F(x_(i+1))\mathrm{F}\left(x_{i+1}\right)F(xi+1)let's take the value M ( f ; x t + 1 ) M f ; x t + 1 M(f;x_(t+1))\mathrm{M}\left(f ; x_{t+1}\right)M(f;xt+1). Either x x x^(')x^{\prime}xa point in ( x l , x i + 1 ) x l , x i + 1 (x_(l),x_(i+1))\left(x_{l}, x_{i+1}\right)(xL,xi+1)And F ( x ) F x F(x^('))\mathrm{F}\left(x^{\prime}\right)F(x)one of the values ​​taken at this point. Let us construct the Lagrange polynomial Q ( x ) Q ( x ) Q(x)Q(x)Q(x)taking the values F ( x 1 ) F x 1 F(x_(1))F\left(x_{1}\right)F(x1), F ( x 2 ) , , F ( x i ) , F ( x ) , F ( x i + 2 ) , , F ( x n + 1 ) F x 2 , , F x i , F x , F x i + 2 , , F x n + 1 F(x_(2)),dots,F(x_(i)),F(x^(')),F(x_(i+2)),dots,F(x_(n+1))\mathrm{F}\left(x_{2}\right), \ldots, \mathrm{F}\left(x_{i}\right), \mathrm{F}\left(x^{\prime}\right), \mathrm{F}\left(x_{i+2}\right), \ldots, \mathrm{F}\left(x_{n+1}\right)F(x2),,F(xi),F(x),F(xi+2),,F(xn+1)at the corresponding points. The difference P ( x ) Q ( x ) P ( x ) Q ( x ) P(x)-Q(x)\mathrm{P}(x)-\mathrm{Q}(x)P(x)Q(x)is a polynomial of degree n n nnnwhich cancels out for x = x 1 , x 2 , , x i , x i + 2 , , x n + 1 x = x 1 , x 2 , , x i , x i + 2 , , x n + 1 x=x_(1),x_(2),dots,x_(i),x_(i+2),dots,x_(n+1)x=x_{1}, x_{2}, \ldots, x_{i}, x_{i+2}, \ldots, x_{n+1}x=x1,x2,,xi,xi+2,,xn+1, so at no other point of ( a , b a , b a,ba, bhas,b). The property then results exactly like property III.
10. To complete the demonstration we still have to show that:
III III. The function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x)is uniform at all points.
Let us keep the previous notations. It suffices to demonstrate that we have M ( f ; x 1 ) = m ( f ; x 1 ) M f ; x 1 = m f ; x 1 M(f;x_(1))=m(f;x_(1))\mathrm{M}\left(f ; x_{1}\right)=m\left(f ; x_{1}\right)M(f;x1)=m(f;x1). To demonstrate this, let us assume that
M ( f ; x 1 ) > m ( f ; x 1 ) M f ; x 1 > m f ; x 1 M(f;x_(1)) > m(f;x_(1))\mathrm{M}\left(f ; x_{1}\right)>m\left(f ; x_{1}\right)M(f;x1)>m(f;x1). To fix the ideas, let us suppose that F ( x ) > P ( x ) F ( x ) > P ( x ) F(x) > P(x)\mathrm{F}(x)>\mathrm{P}(x)F(x)>P(x)to the left of x 1 x 1 x_(1)x_{1}x1; we then have F ( x ) < P ( x ) F ( x ) < P ( x ) F(x) < P(x)\mathrm{F}(x)<\mathrm{P}(x)F(x)<P(x)in the meantime ( x 1 , x 2 x 1 , x 2 x_(1),x_(2)x_{1}, x_{2}x1,x2). Let's take F ( x 1 ) = m ( f ; x 1 ) F x 1 = m f ; x 1 F(x_(1))=m(f;x_(1))\mathrm{F}\left(x_{1}\right)=m\left(f ; x_{1}\right)F(x1)=m(f;x1)and let the points be fixed x 3 , x 4 , , x n + 1 x 3 , x 4 , , x n + 1 x_(3),x_(4),dots,x_(n+1)x_{3}, x_{4}, \ldots, x_{n+1}x3,x4,,xn+1as well as the values F ( x 3 ) , F ( x 4 ) , , F ( x n + 1 ) F x 3 , F x 4 , , F x n + 1 F(x_(3)),F(x_(4)),dots,F(x_(n+1))F\left(x_{3}\right), F\left(x_{4}\right), \ldots, F\left(x_{n+1}\right)F(x3),F(x4),,F(xn+1). Under the definition of M ( f ; x 1 ) M f ; x 1 M(f;x_(1))\mathrm{M}\left(f ; x_{1}\right)M(f;x1)we can take for x 2 x 2 x_(2)x_{2}x2successively the terms of a sequence of points x 2 , x 2 , , x 2 ( m ) , x 2 , x 2 , , x 2 ( m ) , x_(2)^('),x_(2)^(''),dots,x_(2)^((m)),dotsx_{2}^{\prime}, x_{2}^{\prime \prime}, \ldots, x_{2}^{(m)}, \ldotsx2,x2,,x2(m),tending towards x 1 x 1 x_(1)x_{1}x1and such that the corresponding values F ( x 2 ( m ) ) F x 2 ( m ) F(x_(2)^((m)))\mathrm{F}\left(x_{2}^{(m)}\right)F(x2(m))tend towards M ( f ; x 4 ) M f ; x 4 M(f;x_(4))\mathrm{M}\left(f ; x_{4}\right)M(f;x4)For m m m rarr oom \rightarrow \inftym. Let us designate by P m ( x ) P m ( x ) P_(m)(x)\mathrm{P}_{m}(x)Pm(x)the polynomial deduced from P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x)by replacing x 2 x 2 x_(2)x_{2}x2And F ( x 2 ) F x 2 F(x_(2))\mathrm{F}\left(x_{2}\right)F(x2)by x 3 ( m ) x 3 ( m ) x_(3)^((m))x_{3}^{(m)}x3(m)And F ( x 2 ( m ) ) F x 2 ( m ) F(x_(2)^((m)))\mathrm{F}\left(x_{2}^{(m)}\right)F(x2(m))respectively. If x 0 x 0 x_(0)x_{0}x0is a point to the left of x 1 x 1 x_(1)x_{1}x1We have
F ( x 0 ) < P m ( x 0 ) F x 0 < P m x 0 F(x_(0)) < P_(m)(x_(0))\mathrm{F}\left(x_{0}\right)<\mathrm{P}_{m}\left(x_{0}\right)F(x0)<Pm(x0)
But
P m ( x 0 ) pour m P m x 0  pour  m P_(m)(x_(0))rarr-ooquad" pour "m rarr oo\mathrm{P}_{m}\left(x_{0}\right) \rightarrow-\infty \quad \text { pour } m \rightarrow \inftyPm(x0) For m
and we therefore arrive at an impossibility. Here we take into account a simple property which results from the continuity of a polynomial ( 5 5 ^(5){ }^{5}5). So we must have M ( f ; x 1 ) = m ( f ; x 1 ) M f ; x 1 = m f ; x 1 M(f;x_(1))=m(f;x_(1))M\left(f ; x_{1}\right)=m\left(f ; x_{1}\right)M(f;x1)=m(f;x1)which demonstrates property III 11 11 _(11){ }_{11}11.
It therefore follows that:
III IV III IV III_(IV)\mathrm{III}_{\mathrm{IV}}IIIIV. If the function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), attached to f ( x ) f ( x ) f(x)f(x)f(x), is multivalent in order n + 1 n + 1 n+1n+1n+1, the function f ( x ) f ( x ) f(x)f(x)f(x)is continuous.
Property III then follows from Property II.
11. Exactly as in No. 9 we can still state the following property:
III'. For the function f ( x ) f ( x ) f(x)f(x)f(x)either bounded and convex or concave of order n n nnnit is necessary and sufficient that the attached function F ( x ) F ( x ) F(x)\mathrm{F}(x)F(x), extended on the ends a and b, is multivalent of order n + 1 n + 1 n+1n+1n+1.
(5). This can be demonstrated using Lagrange's interpolation formula.

  1. ( 1 ) ( 1 ) ^((1)){ }^{(1)}(1)For example, the function
    is indeed univalent but is not monotonic.
    (²) The reader is asked to draw the figure.
1936

Related Posts