Notes on Higher-Order Convex Functions (VI)

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (VI), Revue Mathématique de l’Union Interbalkanique, 2 (1939) nos. 3-4, pp. 31-40 (in French).

PDF

About this paper

Journal

Revue Mathématique de l’Union Interbalkanique

Publisher Name
DOI
Print ISSN
Online ISSN

[MR0001253, JFM 65.0213.04, Zbl 0021.39403]

google scholar link

??

Paper (preprint) in HTML form

Notes on Higher-Order Convex Functions (VI)(¹)

By TIBERIU POPOVICIU

in Cernăuti

On the extrema of order functions𝐧\mathbf{n}.

  1. 1.

    We will consider functionsf=f(x)f=f(x), uniform and defined on == bounded and closed linear set E . This set can be finite or infinite, but when it is a function of ordernnhe has at leastn+2n+2points. We will designate byhas=minE,has<b=maxE\mathrm{a}=\min\mathrm{E},\mathrm{a}<\mathrm{b}=\max\mathrm{E}the ends of E . We will say that a function is continuous resp. semi-continuous on E if it is so on the derivative E ' of E . We will say that a subset of E is a section of E if it is formed by all the points of E belonging to a closed interval (c,d\mathrm{c},\mathrm{d}),cd\mathrm{c}\leqslant\mathrm{d}. We will designate such a subset by (cEd). We will say that the sections (cFd), (c1Ea1\mathrm{c}_{1}\mathrm{Ea}_{1}) are separated by E ifd<c1\mathrm{d}<\mathrm{c}_{1}and if the open interval(d,c1)\left(\mathrm{d},\mathrm{c}_{1}\right)contains at least one point of E . Several sections of E are separated by E if they are two by two separated by F. We will also say that these are separate sections of E. For all other notations and properties of functions of order n the reader is asked to refer to our previous work.

A non-concave function of odd order on E is upper semicontinuous and therefore always reaches its maximum. But such a function may not reach its minimum. An even-order function>0>0may not reach its maximum or its minimum. This is, for example, the function

f(0)=f(1)=0,f(x)=12x,0<x<1\mathrm{f}(0)=\mathrm{f}(1)=0,\quad\mathrm{f}(\mathrm{x})=1-2\mathrm{x},\quad 0<\mathrm{x}<1

If the maximum or minimum of an order functionnnis reached inn+2n+2points it is reached at all points of the smallest section which contains these points.
2. To simplify let us setk=n2k=\frac{n}{2}Orn+12\frac{n+1}{2}following thatnnis even or odd. We then have the following property

If the continuous function f is non-concave of order in on E , the setE(M)\mathrm{E}(\mathrm{M})OrM=maxf\mathrm{M}=\max\mathrm{f}is reached is formed by at mostk+1\mathrm{k}+1separate sections of E .

For simplicity we write max, min instead of max, min.
(ε\varepsilon) (\equiv)
The demonstration is simple. Indeed, ifE(M)\mathrm{E}(\mathrm{M})had another structure we could find2k+22\mathrm{k}+2pointsx1<x1<<xk+1<xk+1\mathrm{x}_{1}<\mathrm{x}_{1}^{\prime}<\ldots<\mathrm{x}_{\mathrm{k}+1}<\mathrm{x}_{\mathrm{k}+1}^{\prime}of E so that

f(x1)=f(x2)==f(xk+i)=M\displaystyle\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)=\ldots=\mathrm{f}\left(\mathrm{x}_{\mathrm{k}+\mathrm{i}}\right)=\mathrm{M}
f(xi)<M,i=1.2,,k+1\displaystyle\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)<\mathrm{M},\quad\mathrm{i}=2,\ldots,\mathrm{k}+1

and we would then have

[x1,x1,x2,x2,,xk+1,xk+1;f]<0 if n is even, [x1,x2,x2,,xk+1,xk+1;f]<0 if n is odd, \begin{array}[]{ll}{\left[x_{1},x_{1}^{\prime},x_{2},x_{2}^{\prime},\ldots,x_{k+1},x_{k+1}^{\prime};f\right]<0}&\text{ si }n\text{ est pair, }\\ {\left[x_{1}^{\prime},x_{2},x_{2}^{\prime},\ldots,x_{k+1},x_{k+1}^{\prime};f\right]<0}&\text{ si }n\text{ est impair, }\end{array}
00footnotetext: (1) Notes I and II appeared in Mathematica, 12, 81-92, 227-233 (1936). Notes III, IV and V will appear in the same journal. All these notes are independent of each other.

which is in contradiction with the hypothesis of non-concavity of ordernnof f.
We can specify the structure of the wholeE(M)\mathrm{E}(\mathrm{M}).
If n is odd and ifE(M)\mathrm{E}(\mathrm{M})contains at least n points it contains at least one of the ends a, b. IfE(M)\mathrm{E}(\mathrm{M})contains at leastn+1\mathrm{n}+1points they contain both ends a, b. So for a non-concave function of odd orderE(M)\mathrm{E}(\mathrm{M})cannot contain more thann+1n+1points without the function reducing to a constant on E.

Ifnnis even andE(M)E(M)contains more thannnpoints it contains the end b.
In general, ifE(M)\mathrm{E}(\mathrm{M})is not formed by a single section of E it contains at mostn+1\mathrm{n}+1points.

Ifnnis odd and ifE(M)\mathrm{E}(\mathrm{M})is formed by k separate sections of E it contains a or b and if it is formed byk+1\mathrm{k}+1separate sections of E it contains a and b.

If n is even and ifE(M)\mathrm{E}(\mathrm{M})is formed byk+1\mathrm{k}+1separate sections of E it contains the end b.

Let us retain, in particular, the following property:
If the continuous function f is non-concave of order n on E, the setE(M)\mathrm{E}(\mathrm{M})verifies the following property:
A.E(M)\mathrm{E}(\mathrm{M})cannot be formed by at leastnk+1\mathrm{n}-\mathrm{k}+1separate sections of E , without containing one of the endshas,b\mathrm{a},\mathrm{b}for odd n and the end b for even n.

If E reduces to an interval(has,b)(a,b)and if n is odd,E(M)\mathrm{E}(\mathrm{M})contains at mostk+1k+1points unlessffis not a constant in(has,b)(a,b). Ifnnis evenE(M)\mathrm{E}(\mathrm{M})contains or at mostk+L\mathrm{k}+\mathrm{l}points or is formed by an interval(c,b),hasc(\mathrm{c},\mathrm{b}),\mathrm{a}\leq\mathrm{c}.

There is no need to specify the structure ofE(M)\mathrm{E}(\mathrm{M}).
3. We can find analogous results for the minimum.

If the continuous function f is non-concave of order n on E, the setE(m)\mathrm{E}(\mathrm{m})Orm=minf\mathrm{m}=\min\mathrm{f}is reached is formed by at mostnk+1\mathrm{n}-\mathrm{k}+1separate sections of E .

The structure ofE(m)\mathrm{E}(\mathrm{m})can be specified easily. For example, as soon asE(m)\mathrm{E}(\mathrm{m})is not reduced to a section it contains at mostn+1\mathrm{n}+1points. For even-order functions the structure ofE(m)\mathrm{E}(\mathrm{m})is also deduced from the structure ofE(M)\mathrm{E}(\mathrm{M}), noting that the functionf(x)-\mathrm{f}(-\mathrm{x})is also non-concave of order n .

In particular therefore
B. If n is even, the setE(m)\mathrm{E}(\mathrm{m})cannot be formed by at leastk+1\mathrm{k}+1separate sections of E without containing the end a.

For non-concave functions of odd order, we retain the following property
C. If n is odd, the setE(m)\mathrm{E}(\mathrm{m})is formed by at most k separate sections of E .

If E reduces to an interval(has,b),F(m)(\mathrm{a},\mathrm{b}),\mathrm{F}(\mathrm{m})contains or at mostnk+1\mathrm{n}-\mathrm{k}+1points or is reduced to an interval which contains the endpoint a for even n.
4. If the functionffis non-concave of ordernnthe same is true of the functionfP,P\mathrm{f}-\mathrm{P},\mathrm{P}being a polynomial of degreen()1\mathrm{n}\left({}^{1}\right). If f is not a polynomial of order n we can always determine the polynomialPPso that the wholeE(M)E(M),E(m)\mathrm{E}(\mathrm{m})corresponding tofP\mathrm{f}-\mathrm{P}are formed by the maximum number of sections
(1) A polynomial of degree n for us is a polynomial of effective degree𝐧\leq\mathbf{n}.

Lies of E, so thatE(M)+E(m)\mathrm{E}(\mathrm{M})+\mathrm{E}(\mathrm{m})be formed byn+2\mathrm{n}+2separate sections of È. in fact,TiT_{i}the best approximation polynomial of Tchebycheff of the deme of the functionffonEE.TiT_{i}is therefore the (unique) polynomial for which

minmax|fP|\min\max|\mathrm{f}-\mathrm{P}|\text{, }

reached when P is a polynomial of degree i. We then have the -irant property ( 1 )

IfTn\mathrm{T}_{\mathrm{n}}is the Chebyshefi polynomial of degree nd\geqthe functionffcone-shaped and non-concave of order n, not reducing to a polynomial of degree n, == can findn+2\mathrm{n}+2and onlyn+2\mathrm{n}+2consecutive points where the differenceTn\mathrm{T}_{\mathrm{n}}reached the maximum value|fTn|\left|\mathrm{f}-\mathrm{T}_{\mathrm{n}}\right|with alternating signs.

This property is equivalent to the following
If f is a continuous function of order n, not reducing to a polynomial of degree n, the polynomialsTn,Tn+1\mathrm{T}_{\mathrm{n}},\mathrm{T}_{\mathrm{n}+1}are distinct, thereforeTn+1\mathrm{T}_{\mathrm{n}+1}is actually of degreen+1\mathrm{n}+1.

If f is non-concave of order n , the functionfTn\mathrm{f}-\mathrm{T}_{\mathrm{n}}therefore enjoys the property thatE(M)\mathrm{E}(\mathrm{M})is formed byk+1\mathrm{k}+1AndE(m)\mathrm{E}(\mathrm{m})bynk+1\mathrm{n}-\mathrm{k}+1separate sections of E , unless, of course, f is not polynomial.

Let us also note the following property
IfTn\mathrm{T}_{\mathrm{n}}is the Tchebycheff polynomial of degree n of the continuous function f and of order 11, the max value|fTn|\left|\mathrm{f}-\mathrm{T}_{\mathrm{n}}\right|is necessarily reached at the ends a and b. We have moreover[f(has)Tn(has)][f(b)Tn(b)]\left[\mathrm{f}(\mathrm{a})-\mathrm{T}_{\mathrm{n}}(\mathrm{a})\right]\left[\mathrm{f}(\mathrm{b})-\mathrm{T}_{\mathrm{n}}(\mathrm{b})\right]\geqOr0\leq 0depending on whether n is odd or even.
5. We will now establish, and this is the main aim of this work, the reciprocals of the preceding properties and first those of the propertiesHAS,B,C\mathrm{A},\mathrm{B},\mathrm{C}. Before arriving at these properties we will deal with an auxiliary problem.

Letx1>x2>>xr,r\mathrm{x}_{1}>\mathrm{x}_{2}>\ldots>\mathrm{x}_{\mathrm{r}},\mathrm{r}points of E such that each open interval(xi,xi+1),i=1.2,,r1\left(\mathrm{x}_{\mathrm{i}},\mathrm{x}_{\mathrm{i}+1}\right),\mathrm{i}=1,2,\ldots,r-1contains at least one point of E . The pointsxr,x1\mathrm{x}_{\mathrm{r}},\mathrm{x}_{1}may or may not coincide with the endshas,b\mathrm{a},\mathrm{b}. Let us pose

 And F0=(x1Eb) if x1<bFr=(hasExr) if has<xr\text{ et }\begin{array}[]{ll}F_{0}=\left(x_{1}Eb\right)&\text{ si }x_{1}<b\\ F_{r}=\left(aEx_{r}\right)&\text{ si }a<x_{r}\end{array}

We therefore have, depending on the case,r1,rr-1,rOrr+1r+1setsFiF_{i}. We will also assume that ifr=1,has<x1<br=1,a<x_{1}<band ifr=2r=2we don't have at the same timehas=x2,x1=b\mathrm{a}=\mathrm{x}_{2},\mathrm{x}_{1}=\mathrm{b}. So the numbers+2\mathrm{s}+2setsFi\mathrm{F}_{\mathrm{i}}is still2\geq 2, SOs0s\geq 0.

Now consider a continuous functionffwhich cancels out at the pointsxix_{i}and such that eachFiF_{i}contains at least one pointxix_{i}where it takes a positive value

Let's ask

R=(xx1)(xx2)(xxr)R=\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{r}\right)
00footnotetext: (i) We have already given this property in our little book "Despre cea mai bunà aproximatie a functiilor continue prin-polinoame", Monografii Matematice, Cluj 66 pp,, 1937, sp. p. 22. I the demonstration given in this book forE=\mathrm{E}=interval is obviously valid for any bounded and closed E.

and either

μ=minmax(E)(fRQ),\mu=\min\max_{(\mathrm{E})}(\mathrm{f}-\mathrm{RQ}),

whenQQruns through the set of polynomials of degree s.
We haveμ>0\mu>0.
We obviously haveμ0\mu\geqslant 0. Either

δ=[x1,x2,,xr,xo,x1,,xr;f],\delta=\left[x_{1},x_{2},\ldots,x_{r},x_{o}^{\prime},x_{1}^{\prime},\ldots,x_{r}^{\prime};f\right],

with the condition of deleting the pointx,\mathrm{x}^{\prime}{}_{,}ifx1=b\mathrm{x}_{1}=\mathrm{b}and the pointxr\mathrm{x}^{\prime}{}_{\mathrm{r}}ifxr=has.δ\mathrm{x}_{\mathrm{r}}=\mathrm{a}.\deltais therefore a divided difference of orderr+s+1\mathrm{r}+\mathrm{s}+1. On the other hand
(1)

[x1,x2,,xr,xo,x1,xr;fRQ]=δ,\left[x_{1},x_{2},\ldots,x_{r},x_{o}^{\prime},x_{1}^{\prime},\ldots x_{r}^{\prime};f-RQ\right]=\delta,

whatever the polynomialQQof degreess.
If we hadμ=0\mu=0we could find, whatever|δ|2>ε>0\frac{|\delta|}{2}>\varepsilon>0, a polynomialQQsuch as

[x1,x2,,xr,x0,x1,,xr;fRQ]>ε>δ2 Or <ε<δ2\left[\mathrm{x}_{1},\mathrm{x}_{2},\ldots,\mathrm{x}_{\mathrm{r}},\mathrm{x}_{0}^{\prime},\mathrm{x}_{1}^{\prime},\ldots,\mathrm{x}_{\mathrm{r}}^{\prime};\mathrm{f}-\mathrm{R}Q\right]>-\varepsilon>\frac{\delta}{2}\text{ ou }<\varepsilon<\frac{\delta}{2}

following thatx1=bx_{1}=bOrx1<bx_{1}<b, which is in contradiction with (1).
6. Let us now demonstrate the

Lemma I. If the polynomialQ=c0xs+c1xs1++csQ=c_{0}\mathrm{x}^{s}+c_{1}\mathrm{x}^{s-1}+\ldots+c_{s}, OrQ-Qchecks for inequality

R(x)Q(x)<HAS,xE,(HAS>0),\mathrm{R}(\mathrm{x})Q(\mathrm{x})<\mathrm{A},\quad\mathrm{x}\subset\mathrm{E},\quad(\mathrm{\penalty 10000\ A}>0), (2)

we can find a positive number B , depending on A but not on the polynomial Q, such that we have

|ci|<B,i=0.1,,s\left|c_{i}\right|<B,i=0,1,\ldots,s

This lemma follows from the following
Lemma II. If the polynomialQ=c0xs+c1xs1++csQ=c_{0}x^{s}+c_{1}x^{s-1}+\ldots+c_{s}, OrQ-Qchecks for inequality
(3)

(1)iQ(yi)<HAS,i=1.2,,s+2,(HAS>0),(-1)^{\mathrm{i}}\mathrm{Q}\left(\mathrm{y}_{\mathrm{i}}\right)<\mathrm{A}^{*},\quad\mathrm{i}=1,2,\ldots,\mathrm{\penalty 10000\ s}+2,\quad\left(\mathrm{\penalty 10000\ A}^{*}>0\right),

we can find a positive numberB\mathrm{B}^{*}, depending onHAS\mathrm{A}^{*}but not of the polynomial Q, such that we have

|ci|<B,i=0.1,,s.\left|c_{i}\right|<B^{*},\quad i=0,1,\ldots,s.

Let us first demonstrate the property for the first coefficientc0\mathrm{c}_{0}. If we poseW=(xy1)(xy2)(xys+2)\mathrm{W}=\left(\mathrm{x}-\mathrm{y}_{1}\right)\left(\mathrm{x}-\mathrm{y}_{2}\right)\ldots\left(\mathrm{x}-\mathrm{y}_{\mathrm{s}+2}\right), the Lagrange interpolation formula gives us

c0=i=1s+1(yiys+2)Q(yi)W(yi)=i=2s+2(yiy1)Q(yi)W(yi)c_{0}=\sum_{i=1}^{s+1}\frac{\left(y_{i}-y_{s+2}\right)Q\left(y_{i}\right)}{W^{\prime}\left(y_{i}\right)}=\sum_{i=2}^{s+2}\frac{\left(y_{i}-y_{1}\right)Q\left(y_{i}\right)}{W^{\prime}\left(y_{i}\right)}

But

(1)iW(yi)>0,i=1.2,,s+2(-1)^{\mathrm{i}}\mathrm{\penalty 10000\ W}^{\prime}\left(\mathrm{y}_{\mathrm{i}}\right)>0,\quad\mathrm{i}=1,2,\ldots,\mathrm{\penalty 10000\ s}+2

and we deduce from it

HASi=2s+2y1yi(1)iW(yi)<c0<HASi=1s+1yiys+2(1)iW(yi).-A^{*}\cdot\sum_{i=2}^{s+2}\frac{y_{1}-y_{i}}{(-1)^{i}W^{\prime}\left(y_{i}\right)}<c_{0}<A^{*}\cdot\sum_{i=1}^{s+1}\frac{y_{i}-y_{s+2}}{(-1)^{i}W^{\prime}\left(y_{i}\right)}. ()

Now suppose that the property is true for the coefficientsc0\mathrm{c}_{0},c1,,cI1\mathrm{c}_{1},\ldots,\mathrm{c}_{\mathrm{j}-1}and demonstrate it for the coefficientcI\mathrm{c}_{\mathrm{j}}. We have

|ci|<B1,i=0.1,,I1,\left|c_{i}\right|<B_{1}^{*},\quad i=0,1,\ldots,j-1,

(1) We deduce an analogous limitation if - ? verifies inequality (3).

Bit being a constant depending onHASA^{*}but noQQ. If we poseQ1=cIxsi+cI+,xsI1++csQ_{1}=c_{j}x^{s}i+-c_{j+},x^{s-j-1}+\ldots+c_{s}, We have
(1)iQ1(yi)=(1)iQ(yi)(1)i(c0xs+c1xs1++cI1xsI+1)(-1)^{i}Q_{1}\left(y_{i}\right)=(-1)^{i}Q\left(y_{i}\right)-(-1)^{i}\left(c_{0}x^{s}+c_{1}x^{s-1}+\ldots+c_{j-1}x^{sj+1}\right), Bonc

(1)iQ(yi)<HAS1=HAS+B1maxt=1.2,,s+2(yt+s|yt|s1++yt)sI+1i=1.2,,s+2I\begin{gathered}(-1)^{i}Q\left(y_{i}\right)<A_{1}^{*}=A^{*}+B_{1}^{*}\max_{t=1,2,\ldots,s+2}\left(y_{t}{}^{s}+\left|y_{t}\right|^{s-1}+\ldots+y_{t}{}^{s-j+1}\right)\\ i=1,2,\ldots,s+2-j\end{gathered}

AndHAS1\mathrm{A}_{1}^{*}depends onHAS\mathrm{A}^{*}only. The limitation ofcI\mathrm{c}_{\mathrm{j}}thus comes back to the limitation of a first coefficient.

Lemma II is therefore proven. Note that we can take for B* a number of the formK.HAS,K\mathrm{K}.\mathrm{A}^{*},\mathrm{\penalty 10000\ K}being independent ofHAS\mathrm{A}^{*}and the polynomial Q .

The lemmaIIresults easily. Just take foryiy_{i}the pointsxix_{i}and to note that from (2) results an inequality of the form (3) forQQOrQ-Q, with the value

HAS=HASmin(i)|R(xi)|\mathrm{A}^{*}=\frac{\mathrm{A}}{\min_{(\mathrm{i})}\left|\mathrm{R}\left(\mathrm{x}_{\mathrm{i}}^{\prime}\right)\right|}

We will say, to simplify the language, that a polynomialQQof degree s for which the minimum is reached, is a polynomial of best upper bound of f on the set E. From Lemma I, we deduce, by classical reasoning, that

There exists at least one polynomial with the best upper bound.
The proof consists of first noting that max (fRQ\mathrm{f}-\mathrm{RQ}) is a continuous function of the coefficients ofQQ. We then see that it is sufficient to consider the polynomialsQQfor which

f(x,R(x)Q(x)maxf,xEf\left(x^{\prime},-R(x)Q(x)\leqslant\max f,\quad x\in E\right.

so the polynomialsQQfor which

R(x)Q(x)maxfminf,xE.-R(x)Q(x)\leqslant\max f-\min f,\quad x\subset E.
  1. 7.

    We will now demonstrate that

IfQQis a polynomial with best upper bound, the functionfRQ\mathrm{f}-\mathrm{RQ}reached the valueμ\muon each of the setsFi\mathrm{F}_{\mathrm{i}}.

Let us assume the opposite and let.

 (t) Fi1,Fi2,,Fit,i1<i2<<it,ts+1\text{ (t) }\quad\mathrm{F}_{\mathrm{i}_{1}},\mathrm{\penalty 10000\ F}_{\mathrm{i}_{2}},\ldots,\mathrm{\penalty 10000\ F}_{\mathrm{i}_{\mathrm{t}}},\mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{t}},\mathrm{t}\leqslant\mathrm{\penalty 10000\ s}+1

those of the setsFiF_{i}on which the valueμ\muis reached. We therefore have

max(FiI)(fRQ)=μ,I=1.2,,t\displaystyle\max_{\left(F_{ij}\right)}(f-RQ)=\mu,\quad j=2,\ldots,t
max(τi)(fRQ)<μiiI,I=1.2,,t\displaystyle\max_{\left(\tau_{i}\right)}(f-RQ)<\mu\quad i\neq i_{j},j=2,\ldots,t

We can then find aμ1<μ\mu_{1}<\musuch as

fRQμ1,xFi,ii,I=1.2,,tf-RQ\leq\mu_{1},x\subset F_{i},i\neq i,\quad j=1,2,\ldots,t

Let's construct the polynomialU=Pi(xxI)\mathrm{U}=\Pi\left(\mathrm{x}-\mathrm{x}_{\mathrm{j}}\right)where j takes only the values ​​is +1 for whichiI+iii\mathrm{i}_{\mathrm{j}+\mathrm{i}}-\mathrm{i}_{\mathrm{i}}is odd,1It11\leqslant\mathrm{j}\leqslant\mathrm{t}-1. Ift=1,U=1\mathrm{t}=1,\mathrm{U}=1. It is still so if all the differencesiI+1iIi_{j+1}-i_{j}are even.

We see that U is of degree s and that RU has the same sign at all points of the sets (1). Letλ\lambdaa constant of this same sign;λ\lambdaRU is therefore positive on sets (4) except on their ends where this polynomial vanishes.

This being said, we can easily see that we can take|λ||\lambda|small enough that we have

fR(Q+λU)<μ,xFiI,I=1.2,,t\displaystyle f-R(Q+\lambda U)<\mu,x\subset F_{i_{j}},j=2,\ldots,t
fR(Q+λU)μ+μ12<μ,xFi,iiI,I=1.2,,t\displaystyle f-R(Q+\lambda U)\leq\frac{\mu+\mu_{1}}{2}<\mu,x\subset F_{i},i\neq i_{j},j=2,\ldots,t

AndQQwould not be a best-bound polynomial. The property is therefore demonstrated.

We can also note that
if Q is a polynomial of best upper bound, the set on whichfRQ\mathrm{f}-\mathrm{RQ}reached the valueμ\mucannot contain any of the pointsxi\mathrm{x}_{\mathrm{i}}and cannot be formed by less thans+2\mathrm{s}+2separate sections of E .

In the following, the existence of a polynomial with the best upper bound will be sufficient, but we can demonstrate the following property

There exists a single polynomial with the best upper bound.
Suppose the opposite and letQ,Q1Q,Q_{1}two distinct polynomials with best upper bound. IfQ2=Q+Q12Q_{2}=\frac{Q+Q_{1}}{2}, We have

fRQ2=12\displaystyle\mathrm{f}-\mathrm{RQ}_{2}=\frac{1}{2} [(fRQ)+(fRQ1)]μ,xE\displaystyle{\left[(\mathrm{f}-\mathrm{RQ})+\left(\mathrm{f}-\mathrm{R}Q_{1}\right)\right]\leqslant\mu,\quad\mathrm{x}\subset\mathrm{E}} (5)
max(fRQ2)μ\displaystyle\max\left(\mathrm{f}-\mathrm{RQ}_{2}\right)\geqslant\mu

SOQ2Q_{2}is still a polynomial with the best upper bound. We immediately deduce that there exists at leasts+2s+2points, different from pointsxi\mathrm{x}_{\mathrm{i}}, OrfRQ=μ\mathrm{f}-\mathrm{RQ}=\muand, according to (𝟓¯\overline{\mathbf{5}}), at leasts+2\mathrm{s}+2such points where

fRQ=fRQ1, Or Q=Q1\mathrm{f}-\mathrm{RQ}=\mathrm{f}-\mathrm{RQ}_{1}\text{, ou }\mathrm{Q}=\mathrm{Q}_{1}

SOQQ1Q\equiv Q_{1}. Uniqueness results from the sole fact that the valueμ\muis reached in at leasts+1\mathrm{s}+1points.
8. Let us now return to functions of order n. Let us demonstrate that

Theorem I. If f is a continuous function defined on È and if, whatever the polynomial P of degree n and the sectionE1\mathrm{E}_{1}of E, the setE1(M)\mathrm{E}_{1}(\mathrm{M})corresponding tofP\mathrm{f}-\mathrm{P}verifies property A, the function f is non-concave of order n onE()1\mathrm{E}\left({}^{1}\right).

It suffices to demonstrate that if f is not non-concave of order no one can find aE1E_{1}and a polynomialPPsuch asE1(M)E_{1}(M)does not verify ownershipHASA.

If f is not aon-concave of order no can find n +2 pointsx1>x2>>xn+2x_{1}>x_{2}>\ldots>x_{n+2}such that we have
(v)

[x1,x2,;xn+2;f]<0.\left[\mathrm{x}_{1},\mathrm{x}_{2},\ldots;\mathrm{x}_{\mathrm{n}+2};\mathrm{f}\right]<0.

We can then find a polynomialSSof degree n such that the functionf1=fSf_{1}=f-Schecks for equalities

f1(x1)=f1(x3)==f1(x2k+1)=0f1(x2)=f1(x1)==f1(x2n2k+2)=2ρ>ρ\begin{gathered}f_{1}\left(x_{1}\right)=f_{1}\left(x_{3}\right)=\ldots=f_{1}\left(x_{2k+1}\right)=0\\ f_{1}\left(x_{2}\right)=f_{1}\left(x_{1}\right)=\ldots=f_{1}\left(x_{2n-2k+2}\right)=2\rho>\rho\end{gathered}

Just takeS=GρS=G-\rho, OrGGis the best approximation polynomial of degreennofffon the pointsx1x_{1}Andρ>0\rho>0this best approximation.

So thenQQthe polynomial of best upper bound off1f_{1}on the whole

00footnotetext: (i) If , more restrictively, we assume thatE1\mathrm{E}_{1}is some subset of E the property is trivial.

E=(xn;E2x1)E=\left(x_{n};{}_{2}Ex_{1}\right), taking as pointsxix_{i}the pointsx1,x3,,x2k+1x_{1},x_{3},\ldots,x_{2k+1}. We immediately see that forP=Gρ+RQ\mathrm{P}=\mathrm{G}-\rho+\mathrm{RQ}property A is not verified for EP onE1\mathrm{E}_{1}.

We immediately deduce
Theorem II. If f is a continuous function defined on E and if, whatever the polynomial P of even degree n and the sectionE1\mathrm{E}_{1}of F, the setE2(m)\mathrm{E}_{2}(\mathrm{\penalty 10000\ m})corresponding tofP\mathrm{f}-\mathrm{P}verifies property B , the function f is non-concarve of even order n on E .

For non-concave functions of odd order we have the following property
Theorem III. If i is a continuous function defined on È and if, whatever the polynomial P of odd degree n, the setE(m)\mathrm{E}(\mathrm{m})corresponding tofP\mathrm{f}-\mathrm{P}verifies property C , the function is non-concave of odd order n on E .

The proof is done as for Theorem I. If f is not non-concave of order n we can findn+2\mathrm{n}+2pointsx1>x2>,>xn+2\mathrm{x}_{1}>\mathrm{x}_{2}>\ldots,>\mathrm{x}_{\mathrm{n}+2}such that we have the inequality ('). We can then find, as above, a polynomialSSof degree in such that iff1=fSf_{1}=f-Swe have

f1(x2)=f1(x4)==f1(x2k)=0\displaystyle f_{1}\left(x_{2}\right)=f_{1}\left(x_{4}\right)=\ldots=f_{1}\left(x_{2k}\right)=0
f1(x1)=f1(x3)==f1(xn+2)<0\displaystyle f_{1}\left(x_{1}\right)=f_{1}\left(x_{3}\right)=\ldots=f_{1}\left(x_{n+2}\right)<0

So thenQQthe polynomial of best upper bound off1-f_{1}on the wholeEE, taking as pointsxix_{i}the pointsx2,x4,,x2kx_{2},x_{4},\ldots,x_{2k}. We immediately see that forP=SRQ\mathrm{P}=\mathrm{S}-\mathrm{RQ}property C is not verified byfP\mathrm{f}-\mathrm{P}on E.
9. Let us make some remarks on the previous theorems. We can always consider only the polynomialsPPwhich all cancel out at the same point, for example we can only consider polynomials divisible byx[P()=0]\mathrm{x}[\mathrm{P}()=0].

In the demonstration of theorems I, II the hypothesisn>1n>1intervenes implicitly. But these theorems remain true forn=0.1\mathrm{n}=0,1. Forn=0\mathrm{n}=0we have the following property, which is almost obvious

If f is defined on E and if, whatever the sectionE1=(cEd)\mathrm{E}_{1}=(\mathrm{cEd})ofE,c,d<E\mathrm{E},\mathrm{c},\mathrm{d}<\mathrm{E}, wehasf(d)=maxfa\mathrm{f}(\mathrm{d})=\max\mathrm{f}, the function f is non-decreasing on E .
( is 1 )
Forn=1\mathrm{n}=1we have the following theorem, due to MS Saks()1\left({}^{1}\right).
If f is a function defined on E and if, whatever the section E, of E and the constantα\alpha, the functionf+αx\mathrm{f}+\alpha\mathrm{x}reaches its maximum at at least one of the ends ofE1\mathrm{E}_{1}the function f is non-concave of order 1 on E .

We have already given Theorem III forn=1\mathrm{n}=1in a previous work.()2\left({}^{2}\right).
The assumption of continuity of f cannot be removed in general, but it can be replaced by less restrictive assumptions. For example, by upper semi-continuity for the maximum and lower semi-continuity for the minimum. As the example of functions of order 0 or 1 shows, we can completely do without such assumptions under certain conditions. We can also impose onfP\mathrm{f}-\mathrm{P}less restrictive conditions and thus characterize functions of order 11. Thus, for example, we have the property, almost obvious.
(1) S. Saks "O funkjach wypuklych i podharmonicznych" Mathesis Polska, 6, 43-55 (1931).
(2) Tiberiu Popoviciu "Two remarks on convex functions" Bulletin de l'Acad. Rounaine, 20, 45-19 (1939).

If f is defined on E and if, whatever the sectionE1=(cEd)\mathrm{E}_{1}=(\mathrm{cE}\mathrm{d})of E, we𝒂f(c)=min(11)f\boldsymbol{a}\mathrm{f}(\mathrm{c})=\min_{\left(1_{1}\right)}\mathrm{f}Orf(d)=max(1)f\mathrm{f}(\mathrm{d})=\max_{\left(\equiv_{1}\right)}\mathrm{f}, the function f is non-decreasing on E .
10. Properties of setsE(M,E(m)\mathrm{E}(\mathrm{M},\mathrm{E}(\mathrm{m})polynomials are very preciseTn,Tn+1\mathrm{T}_{\mathrm{n}}^{\prime},\mathrm{T}_{\mathrm{n}+1}best approximation of a continuous function of order n.

We will now assume that E is a closed interval(has,b)(\mathrm{a},\mathrm{b})and the functionffcontinues in(has,b)(a,b).

Let us pose ( 1 )

τ=τ(x1,x2,,xn+2;f)=\displaystyle\tau=\tau\left(\mathrm{x}_{1},\mathrm{x}_{2},\ldots,\mathrm{x}_{\mathrm{n}+2};\mathrm{f}\right)= U(x1,x2,,xn+2;f)i=1n+2|V(x1,x2,,xi1,xi+1,,xn+2)|\displaystyle\frac{\mathrm{U}\left(\mathrm{x}_{1},\mathrm{x}_{2},\ldots,\mathrm{x}_{\mathrm{n}+2};\mathrm{f}\right)}{\sum_{\mathrm{i}=1}^{\mathrm{n}+2}\left|\mathrm{\penalty 10000\ V}\left(\mathrm{x}_{1},\mathrm{x}_{2},\ldots,\mathrm{x}_{\mathrm{i}-1},\mathrm{x}_{\mathrm{i}+1},\ldots,\mathrm{x}_{\mathrm{n}+2}\right)\right|}
x1\displaystyle\mathrm{x}_{1} >x2>>xn+2.\displaystyle>\mathrm{x}_{2}>\ldots>\mathrm{x}_{\mathrm{n}+2}.

We assume that the reader is familiar with the properties of best approximation polynomials established by Messrs. E. Borel ( 2 ) and𝐂𝐡\mathbf{Ch}. of the Poussin Valley ( 3 ). In particular, recall that the best approximation of order n of the functionffin an interval is equal to the maximum of|τ||\tau|when thexix_{i}remain in this interval. Ifx1,>x2,>>xn2x_{1},>x_{2},>\ldots>x_{n}\vdash_{2}are points for which this maximum is reached,fTnf-T_{n}takes the values ​​alternately±|τ|\pm|\tau|on these points. The polynomialTnT_{n}is characterized completely by the fact thatfTnf-T_{n}reached the maximum value|fTn|\left|\mathrm{f}-\mathrm{T}_{\mathrm{n}}\right|in at leastn+2\mathrm{n}+2consecutive points with alternating signs.
Mr. Ch. de la Vallée Poussin notes that|τ||\tau|is a continuous function of thexi\mathrm{x}_{\mathrm{i}}. But if we take into account that there is a continuous correspondence between continuous functions and their polynomialsTn\mathrm{T}_{\mathrm{n}}we can easily see that
τ\tauis a continuous function when thexi\mathrm{x}_{\mathrm{i}}remain in an interval.
We can also demonstrate this property directly.
It should also be noted that the maximum or minimum, assumed to be non-zero, ofτ\taucan only be achieved for distinct values ​​of thexix_{i}.
11. Let us now prove the following lemma:

Lemma III. Ifτ\taudoes not remain constantly non-positive and ifτ==τ(x1,x2,,xn+2\tau^{\prime}==\tau\left(\mathrm{x}_{1}^{\prime},\mathrm{x}_{2}^{\prime},\ldots,\mathrm{x}_{n+2}^{\prime}\right. ; f)x1>x2>>xn+2\mathrm{x}_{1}^{\prime}>\mathrm{x}_{2}^{\prime}>\ldots>\mathrm{x}_{n+2}^{\prime}is the maximum(>0)(>0)ofτ\tauin the meantime (has,b\mathrm{a},\mathrm{b}),τ\tau^{\prime}is the best approximation of order n of f in the interval (xn+2,x1\mathrm{x}_{\mathrm{n}+2}^{\prime},\mathrm{x}^{\prime}{}_{1}).

Let P be the best approximation polynomial of degree n on the pointsx,1x,2,xn+2\mathrm{x}^{\prime}{}_{1},\mathrm{x}^{\prime}{}_{2},\ldots,\mathrm{x}^{\prime}{}_{\mathrm{n}+{}_{2}}. We will show that P is the polynomial of best approximation of degreennofffin the meantime(xn+2,x1)\left(x_{n+_{2}}^{\prime},x_{1}^{\prime}\right). To do this it is necessary and sufficient to demonstrate that the functionf1=fPf_{1}=f-Premains betweenτ-\tau^{\prime}Andτ\tau^{\prime}In(xn+2,x1)\left(x_{n+2}^{\prime},x_{1}^{\prime}\right). Let's take the pointxI1>x>xI+1,I=1.2,,n+2,x0=x1,xn+3=xn+2\mathrm{x}_{\mathrm{j}-1}^{\prime}>\mathrm{x}>\mathrm{x}_{\mathrm{j}+1}^{\prime},\mathrm{j}=1,2,\ldots,\mathrm{n}+2,\mathrm{x}_{0}^{\prime}=\mathrm{x}_{1}^{\prime},\mathrm{x}_{\mathrm{n}+3}^{\prime}=\mathrm{x}_{\mathrm{n}+2}^{\prime}. We have

τ(x1,x2,,xI1,x,xI+1,,xn+2;f1)τ\tau\left(\mathrm{x}_{1}^{\prime},\mathrm{x}_{2}^{\prime},\ldots,\mathrm{x}_{\mathrm{j}-1}^{\prime},\mathrm{x},\mathrm{x}_{\mathrm{j}+1}^{\prime},\ldots,\mathrm{x}_{\mathrm{n}+2}^{\prime};\mathrm{f}_{1}\right)\leqslant\tau^{\prime}
00footnotetext: (1) We use the notations employed in our previous work. V is the Vandermonde determinant and U is what we obtain from this determinant when we replace the elementsxix_{i}of the last columnppprf(xi)f\left(x_{i}\right)respectively.
(2) E. Borel "Lectures on functions of real variables" Paris (1905), Chap. IV.
(3) Ch. de la Vallée Poussin "Lectures on the approximation of functions of a real variable", Paris (1919), Chap. VI.

But

=τ+(1)n(x1,x2,,xI1,x,xI+1,,xn+1,f1)=i=1n+2V(x1,x2,,xI1,xI+1,,xn+2)[f1(x)(1)I1τ]=\tau^{\prime}+\frac{(-1)^{n\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{j-1}^{\prime},x,x_{j+1}^{\prime},\ldots,x_{n+1}^{\prime},f_{1}\right)=}}{\sum_{i=1}^{n+2}\mid V\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{j-1}^{\prime},x_{j+1}^{\prime},\ldots,x_{n+2}^{\prime}\right)\left[f_{1}(x)-(-1)^{j-1}\tau^{\prime}\right]}

it in the sum of the denominator replacesxI\mathrm{x}_{\mathrm{j}}^{\prime}by x .
So we have

(1)I1[f1(x)(1)I1τ]0,x(xI+1,xI1),(-1)^{j-1}\left[f_{1}(x)-(-1)^{j-1}\tau^{\prime}\right]\leqslant 0,\quad x\subset\left(x_{j+1}^{\prime},x_{j-1}^{\prime}\right),

=which proves the property.
We prove it in exactly the same way as
Lemma IV. Ifτ\taudoes not remain constantly non-negative and ifτ"==τ(x",1x",2,x";n+2f),x">1x">2>x"n+2\tau^{\prime\prime}==\tau\left(\mathrm{x}^{\prime\prime}{}_{1},\mathrm{x}^{\prime\prime}{}_{2},\ldots,\mathrm{x}^{\prime\prime}{}_{\mathrm{n}+2};\mathrm{f}\right),\mathrm{x}^{\prime\prime}{}_{1}>\mathrm{x}^{\prime\prime}{}_{2}>\ldots>\mathrm{x}^{\prime\prime}{}_{\mathrm{n}+2}is the minimum (0\langle 0) ofτ\tauin the interval(has,b),τ"(\mathrm{a},\mathrm{b}),-\tau^{\prime\prime}is the best approximation of order n of f in the interralle(x",n+2x")1\left(\mathrm{x}^{\prime\prime}{}_{\mathrm{n}+2},\mathrm{x}^{\prime\prime}{}_{1}\right).

Note that in both lemmas the pointsx,1x,2,xn+2\mathrm{x}^{\prime}{}_{1},\mathrm{x}^{\prime}{}_{2},\ldots,\mathrm{x}^{\prime}{}_{\mathrm{n}+2}resp-xx",2,x"n+2\mathrm{x}^{-}\mathrm{x}^{\prime\prime}{}_{2},\ldots,\mathrm{x}^{\prime\prime}{}_{\mathrm{n}+2}are points wherefTn\mathrm{f}-\mathrm{T}_{\mathrm{n}}reached with alternating signs, the maximum meleur|fTn|,Tn\left|\mathrm{f}-\mathrm{T}_{\mathrm{n}}\right|,\mathrm{T}_{\mathrm{n}}and the maximum being taken in the interval (xn+2,x1\mathrm{x}_{\mathrm{n}+{}_{2}},\mathrm{x}_{1}^{\prime}) esp.(x",n+2x")1\left(x^{\prime\prime}{}_{n+2},x^{\prime\prime}{}_{1}\right).

Lemma V. If the continuous function f is not of order n in the interwall(has,b)(\mathrm{a},\mathrm{b}), we can find a subinterval(c,d)(\mathrm{c},\mathrm{d})of(has,b)(\mathrm{a},\mathrm{b})such that ifτ1(>0)\tau_{1}(>0),τ2(<0)\tau_{2}(<0)are the maximum and minimum ofτ\tauIn(c,d)(\mathrm{c},\mathrm{d})we haveτ1=τ2\tau_{1}=-\tau_{2}.

Always be

0<τ=max(has,b)τ,0>τ"=min(has,b)τ0<\tau^{\prime}=\max_{(\mathrm{a},\mathrm{\penalty 10000\ b})}\tau,0>\tau^{\prime\prime}=\min_{(\mathrm{a},\mathrm{\penalty 10000\ b})}\tau

If we haveτ=τ"\tau^{\prime}=-\tau^{\prime\prime}the property is demonstrated(c,d)=(has,b)(c,d)=(a,b). Let us suppose thatτ>τ"\tau^{\prime}>-\tau^{\prime\prime}. We can find, by Lemma IV, an interval(has,b)\left(a^{\prime},b^{\prime}\right)Or

min(hashas,b)τ=τ",max(has,b)=τ1τ"\min_{\left(a^{a^{\prime}},b^{\prime}\right)}\tau=\tau^{\prime\prime},\max_{\left(a^{\prime},b^{\prime}\right)}=\tau_{1}^{\prime}\leqslant-\tau^{\prime\prime}

Ifτ1=τ"\tau_{1}^{\prime}=-\tau^{\prime\prime}the property is demonstrated,(c,d)=(has,b)(\mathrm{c},\mathrm{d})=\left(\mathrm{a}^{\prime},\mathrm{b}^{\prime}\right). Let us suppose thatτ1<τ"\tau_{1}^{\prime}<\cdots\tau^{\prime\prime}and either

max(has1,b1)τ=τ1,min(has1b1)τ=τ2has1=has+λhas1+λ,b1=b+λb1+λ,λ(0,+)\begin{gathered}\max_{\left(a_{1},b_{1}\right)}\tau=\tau_{1}^{*},\min_{\left(a_{1}b_{1}\right)}\tau=\tau_{2}^{*}\\ a_{1}=\frac{a+\lambda a^{\prime}}{1+\lambda},b_{1}=\frac{b+\lambda b^{\prime}}{1+\lambda},\quad\lambda\subset(0,+\infty)\end{gathered}

But,𝝉1+𝝉2\boldsymbol{\tau}_{1}^{*}+\boldsymbol{\tau}_{2}^{*}is obviously a continuous function ofλ\lambdaAnd

𝝉1+𝝉2=𝝉+𝝉">0, For λ=0,𝝉1+𝝉2𝝉1+𝝉"<0, For λ+.\begin{array}[]{ll}\boldsymbol{\tau}_{1}^{*}+\boldsymbol{\tau}_{2}^{*}=\boldsymbol{\tau}^{\prime}+\boldsymbol{\tau}^{\prime\prime}>0,&\text{ pour }\lambda=0,\\ \boldsymbol{\tau}_{1}^{*}+\boldsymbol{\tau}_{2}^{*}\rightarrow\boldsymbol{\tau}_{1}^{\prime}+\boldsymbol{\tau}^{\prime\prime}<0,&\text{ pour }\lambda\rightarrow+\infty.\end{array}

So there is a positive value ofλ\lambdafor whichτ1=τ2\tau_{1}^{*}=-\tau^{*}{}_{2}, which demonstrates the property.

We demonstrate the same way ifτ<τ"\tau^{\prime}<-\tau^{\prime\prime}based on Lemma III.
12. Let alwaysffa continuous function and suppose that it is not Zorder n in(has,b)(\mathrm{a},\mathrm{b}). Consider the subinterval(c,d)(\mathrm{c},\mathrm{d})defined by Lemma V.

EitherTn\mathrm{T}_{\mathrm{n}}the best approximation polynomial of degree n of f in ( c , d ). We can then findn+2\mathrm{n}+2pointsx1>x2>>xn+2\mathrm{x}_{1}^{\prime}>\mathrm{x}_{2}^{\prime}>\ldots>\mathrm{x}_{\mathrm{n}+2}^{\prime}Or

τ(x1,x2,,xn+2;f)=τ1\tau\left(\mathrm{x}_{1}^{\prime},\mathrm{x}_{2}^{\prime},\ldots,\mathrm{x}_{\mathrm{n}+2}^{\prime};\mathrm{f}\right)=\tau_{1} (7)

and wherefTn\mathrm{f}-\mathrm{T}_{\mathrm{n}}takes, with alternating signs, the max valuefTn\mathrm{f}-\mathrm{T}_{\mathrm{n}}. We can also findn+2\mathrm{n}+2pointsx",1>x">2>x"n+2\mathrm{x}^{\prime\prime}{}_{1},>\mathrm{x}^{\prime\prime}{}_{2}>\ldots>\mathrm{x}^{\prime\prime}{}_{n+2}Or

τ(x",1x",2,x";n+2f)=τ2\tau\left(\mathrm{x}^{\prime\prime}{}_{1},\mathrm{x}^{\prime\prime}{}_{2},\ldots,\mathrm{x}^{\prime\prime}{}_{\mathrm{n}+2};\mathrm{f}\right)=\tau_{2} (8)

and wherefTnf-T_{n}takes, with alternating signs, the max valuesfTn!f-T_{n}!.
Relations (7), (8) andτ1=τ2>0\tau_{1}=-\tau_{2}>0show us that we can always choose among the pointsxi,xi"\mathrm{x}_{\mathrm{i}}^{\prime},\mathrm{x}_{\mathrm{i}}^{\prime\prime}a sequence of at leastn+3\mathrm{n}+3consecutive points wherefTn\mathrm{f}-\mathrm{T}_{\mathrm{n}}takes, with alternating signs, the maximum valuefTn\mid\mathrm{f}-\mathrm{T}_{\mathrm{n}}. It follows thatTn\mathrm{T}_{\mathrm{n}}is also the polynomial of best degree approximationn+1\mathrm{n}+1of f in (c, d) therefore

Lemma VI. If the continuous function f is not of order n in the interval (has,b\mathrm{a},\mathrm{b}), we can find a subinterval of (has,b\mathrm{a},\mathrm{b}) where the best approximation polynomialsTn,Tn+1\mathrm{T}_{\mathrm{n}},\mathrm{T}_{\mathrm{n}+1}of degreesn,n+1\mathrm{n},\mathrm{n}+1coincide, so where the polynomial of best degree approximationn+1\mathrm{n}+1is of effective degreen\leq\mathrm{n}.

If we notice thatTnTn+has\mathrm{T}_{\mathrm{n}}\equiv\mathrm{T}_{\mathrm{n}+\mathrm{a}}also takes place in any interval where f reduces to a polynomial of degree n, we deduce the

Theorem IV. If f is a continuous function in the closed interval(has,b)(\mathrm{a},\mathrm{b})and if, whatever the closed subinterval(c,d)(\mathrm{c},\mathrm{d})of(has,b)(\mathrm{a},\mathrm{b}), the Chebysheff polynomialTn+1\mathrm{T}_{\mathrm{n}+1}of degreen+1\mathrm{n}+1of f in (c,d\mathrm{c},\mathrm{d}) is actually of degreen+1\mathrm{n}+1, the function f is convex or concave of order n in(has,b)(\mathrm{a},\mathrm{b}).

Note that ifffis not in ordernnin the meantime (has,ba,b), in the meantime(c,d)(\mathrm{c},\mathrm{d})from Lemma V the function is certainly not polynomial of order n. It is easy to deduce the following result

Theorem V. If f is a continuous function in the closed interval (has,b\mathrm{a},\mathrm{b}) and if, whatever the closed subinterval(c,d)(\mathrm{c},\mathrm{d})of(has,b)(\mathrm{a},\mathrm{b}), the Chebysheff polynomialTn\mathrm{T}_{\mathrm{n}}of degree 11 of f in (c,d\mathrm{c},\mathrm{d}) checks for equalities|f(c)Tn(c)|==|f(d)Tn(d)|=max(c,d)|fTn|\left|\mathrm{f}(\mathrm{c})-\mathrm{T}_{\mathrm{n}}(\mathrm{c})\right|==\left|\mathrm{f}(\mathrm{d})-\mathrm{T}_{\mathrm{n}}(\mathrm{d})\right|=\max_{(\mathrm{c},\mathrm{d})}\left|\mathrm{f}-\mathrm{T}_{\mathrm{n}}\right|, the function f is of order n in(has,b)(\mathrm{a},\mathrm{b}).

Indeed, for a function which is not of order n it is sufficient to shorten the interval a little(c,d)(\mathrm{c},\mathrm{d})of Lemma V to find an interval where the property is not satisfied.

Cernăuti, April 11, 1939

1939

Related Posts