Notes on Higher Order Convex Functions (VIII)

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (VIII), Bull. de la Sect. Sci, de l’Acad. Roum, 22 (1939) no. 1, pp. 34-41 (in French). [JFM 65.0214.02].

PDF

About this paper

Journal

Bulletin de la Section Scientifique de l’Académie Roumaine

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1939 a -Popoviciu- Bull. Sect. Sci. Acad. Roum. - Notes on convex functions of higher order
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ROMANIAN ACADEMY

BULLETIN OF THE SCIENTIFIC SECTION

NOTE ON HIGHER ORDER CONVEX FUNCTIONS (VIII)

BY

T'IBERIU POPOVICIU

Note presented by Mr. S. Stoilov, M. v. AR, in the session of July 14, 1939.
ON THE LOCAL DEFINITION OF ORDER FUNCTIONS n n nnn
I. Let E 1 to 1; any = min E , has b = = min E , has b = =minE,a <= b==\min \mathrm{E}, a \leqq b==minE,hasb=max E the c: quad\quade) of E. If, t closed it is necessarily in in soli turoot ϵ i ϵ i epsilon_(i)=>\epsilon_{i} \Rightarrowϵialmost-closed are E ˙ E ˙ E^(˙)\dot{E}E˙of E E E\mathbf{E}Eis the set ... ... its derivative E E E^(')\mathrm{E}^{\prime}Eexcept the ends has has hashashas, b b bbbwhich do not belong to E. If E = E, we will say that the set E is almost closed. We will say that a subset E 1 E 1 E_(1)\mathrm{E}_{1}E1of E is a section of E 1 E 1 E_(1)\mathrm{E}_{1}E1whether it is formed by a single point or with x 1 E 1 x 1 E 1 x_(1)inE_(1)x_{1} \in \mathrm{E}_{1}x1E1, x 2 E 1 x 2 E 1 x_(2)inE_(1)x_{2} \in E_{1}x2E1all points of E E E\mathbb{E}Ebelonging to the interval ( x 1 , x 2 x 1 , x 2 x_(1),x_(2)x_{1}, x_{2}x1,x2) belong to E 1 1 E 1 1 E_(1)^(1)\mathrm{E}_{1}{ }^{1}E11). If two sections of E have at least one point in common, their union and their intersection are still sections of E . If two sections of E have no points in common, every point of one is to the left of every point of the other. In this case, they are either separated by E , so their union is not a section, or they are two consecutive sections, so their union is still a section of E .
The neighborhood V x k V x k V_(x)^(k)\mathrm{V}_{x}^{k}Vxkfrom one point x x xxxis a section of E having at least k k kkkpoints left and at least k k kkkpoints to the right of x x xxx. If there is only r < k ( r > 0 ) r < k ( r > 0 ) r < k(r > 0)r<k(r>0)r<k(r>0)points of E to the left (right) of x , V x k x , V x k x,V_(x)^(k)x, \mathrm{~V}_{x}^{k}x, Vxkmust contain all these points and at least 2 k r 2 k r 2k-r2 kr2krpoints to the right (left) of x x xxx. In addition, the neighborhoods V has k V has k V_(a)^(k)V_{a}^{k}Vhaskmust contain with x 1 V has k x 1 V has k x_(1)inV_(a)^(k)x_{1} \in V_{a}^{k}x1Vhaskall points of F 1 F 1 F_(1)F_{1}F1belonging to the closed interval ( a x 1 a x 1 ax_(1)a x_{1}hasx1). The same applies to the surrounding areas. V b k V b k V_(b)^(k)\mathrm{V}_{b}^{k}Vbk. In this definition k k kkkis a natural number, so if x E x E x in Ex \in ExEwe have x V x k x V x k x inV_(x)^(k)x \in \mathrm{~V}_{x}^{k}x Vxk. In the following we only consider neighborhoods. V x k V x k V_(x)^(k)\mathrm{V}_{x}^{k}VxkOr x E ˙ x E ˙ x inE^(˙)x \in \dot{E}xE˙. I, when we consider several neighborhoods V x k V x k V_(x)^(k)\mathrm{V}_{x}^{k}Vxkthey are all taken for the same value of k k kkk. It is then useless to consider sets E E EEEhaving less than 2 k + 2 2 k + 2 2k+22 k+22k+2points.
2. Two neighborhoods V x k V x k V_(x)^(k)V_{x}^{k}Vxkcorresponding to the same point x x xxxhave at least 2 k 2 k 2k2 k2kcommon points 1 1 ^(1){ }^{\mathbf{1}}1). Now consider a neighborhood V x 0 k V x 0 k V_(x_(0))^(k)V_{x_{0}}^{k}Vx0kand either x 1 V x 0 k x 1 V x 0 k x_(1)inV_(x_(0))^(k)x_{1} \in \mathrm{~V}_{x_{0}}^{k}x1 Vx0ka point to the right of x 0 x 0 x_(0)x_{0}x0. Let us further assume that V x 0 k V x 0 k V_(x_(0))^(k)\mathrm{V}_{x_{0}}^{k}Vx0kstill has at least s 0 s 0 s >= 0s \geq 0s0points to the right of x 1 x 1 x_(1)x_{1}x1. Consider a neighborhood V x 1 k V x 1 k V_(x_(1))^(k)\mathrm{V}_{x_{1}}^{k}Vx1kof x 1 x 1 x_(1)x_{1}x1and let's see how many points it can have in common with V x 0 k V x 0 k V_(x_(0))^(k)\mathrm{V}_{x_{0}}^{k}Vx0k. We immediately see that V x 0 k V x 1 k V x 0 k V x 1 k V_(x_(0))^(k)*V_(x_(1))^(k)V_{x_{0}}^{k} \cdot V_{x_{1}}^{k}Vx0kVx1khave at least min ( s , k ) ( s , k ) (s,k)(s, k)(s,k)points in common to the right of x 1 x 1 x_(1)x_{1}x1. If there is at least k k kkkpoints of E to the left of x 1 , V x 0 k , V x 1 k x 1 , V x 0 k , V x 1 k x_(1),V_(x_(0))^(k),V_(x_(1))^(k)x_{1}, \mathrm{~V}_{x_{0}}^{k}, \mathrm{~V}_{x_{1}}^{k}x1, Vx0k, Vx1khave at least k k kkkcommon points to the left of x 1 x 1 x_(1)x_{1}x1. It remains to be seen what happens if there is only r < k r < k r < kr<kr<kpoints of E to the left of x 1 x 1 x_(1)x_{1}x1. In this case s > 2 k r s > 2 k r s > 2k longrightarrow rs>2 k \longrightarrow rs>2krAnd V x 0 k , V x 1 k V x 0 k , V x 1 k V_(x_(0))^(k),V_(x_(1))^(k)\mathrm{V}_{x_{0}}^{k}, \mathrm{~V}_{x_{1}}^{k}Vx0k, Vx1khave at least 2 k r 2 k r 2k-r2 k-r2krcommon points to the right of x 1 x 1 x_(1)x_{1}x1and have in common all the points of E to the left of x 1 x 1 x_(1)x_{1}x1. In any case, we can say that V x 0 k , V x 1 k V x 0 k , V x 1 k V_(x_(0))^(k),V_(x_(1))^(k)\mathrm{V}_{x_{0}}^{k}, \mathrm{~V}_{x_{1}}^{k}Vx0k, Vx1khave at least min ( s , k ) + k + I ( s , k ) + k + I (s,k)+k+I(s, k)+k+\mathrm{I}(s,k)+k+Icommon points. A similar property remains if x 1 < x 0 x 1 < x 0 x_(1) < x_(0)x_{1}<x_{0}x1<x0, SO
Lemma I. If V x 0 k V x 0 k V_(x_(0))^(k)\mathrm{V}_{x_{0}}^{k}Vx0kis a neighborhood of a point x 0 x 0 x_(0)x_{0}x0of E ˙ E ˙ E^(˙)\dot{\mathrm{E}}E˙And V x 1 k V x 1 k V_(x_(1))^(k)\mathrm{V}_{x_{1}}^{k}Vx1ka neighborhood of a point x 1 x 1 x_(1)x_{1}x1of V x 0 k V x 0 k V_(x_(0))^(k)\mathrm{V}_{x_{0}}^{k}Vx0k, the sets V x 0 k , V x 1 k V x 0 k , V x 1 k V_(x_(0))^(k),V_(x_(1))^(k)\mathrm{V}_{x_{0}}^{k}, \mathrm{~V}_{x_{1}}^{k}Vx0k, Vx1khave at least min ( s , k ) + k + I min ( s , k ) + k + I min(s,k)+k+I\min (s, k)+k+\mathrm{I}min(s,k)+k+Icommon points, assuming that V z 0 k V z 0 k V_(z_(0))^(k)\mathrm{V}_{z_{0}}^{k}Vz0khas at least s ( 0 ) s ( 0 ) s( >= 0)s(\geq 0)s(0)points to the right of x 1 x 1 x_(1)x_{1}x1if x 0 < x 1 x 0 < x 1 x_(0) < x_(1)x_{0}<x_{1}x0<x1or to the left of x 1 x 1 x_(1)x_{1}x1if x 1 < x 0 x 1 < x 0 x_(1) < x_(0)x_{1}<x_{0}x1<x0.
Corollary I. If E n n nnn'has no point between x 0 , x 1 x 0 , x 1 x_(0),x_(1)x_{0}, x_{1}x0,x1, two neighborhoods V x 0 k , V x 1 k V x 0 k , V x 1 k V_(x_(0))^(k),quadV_(x_(1))^(k)\mathrm{V}_{x_{0}}^{k}, \quad \mathrm{~V}_{x_{1}}^{k}Vx0k, Vx1khave at least 2 k 2 k 2k2 k2kcommon points.
3. Now consider two neighborhoods V p k , V q k , p q V p k , V q k , p q V_(p)^(k),V_(q)^(k),p <= q\mathrm{V}_{p}^{k}, \mathrm{~V}_{q}^{k}, p \leq qVpk, Vqk,pq, which are not separated by E . We distinguish the following four cases:
I 0 V p k , V q k I 0 V p k , V q k I^(0)V_(p)^(k),V_(q)^(k)\mathrm{I}^{0} \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}I0 Vpk, Vqkhave at least 2 k 2 k 2k2 k2kcommon points,
2 0 V p h , V q h 2 0 V p h , V q h 2^(0)V_(p)^(h),V_(q)^(h)2^{0} V_{p}^{h}, V_{q}^{h}20Vph,Vqhhave r , k r < 2 k r , k r < 2 k r,k <= r < 2kr, k \leq r<2 kr,kr<2k, common points,
3 0 V p k , V q k 3 0 V p k , V q k 3^(0)V_(p)^(k),V_(q)^(k)3^{0} \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}30 Vpk, Vqkhave r , I r < k r , I r < k r,I <= r < kr, \mathrm{I} \leqq r<kr,Ir<k, common points,
4 0 V p k , V q k 4 0 V p k , V q k 4^(0)V_(p)^(k),V_(q)^(k)4^{0} \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}40 Vpk, Vqkhave nothing in common.
When p = q p = q p=qp=qp=qwe are in the case 1 0 1 0 1^(0)1^{0}10. For cases 2 0 , 3 0 , 4 0 2 0 , 3 0 , 4 0 2^(0),3^(0),4^(0)2^{0}, 3^{0}, 4^{0}20,30,40it is therefore necessary that p < q p < q p < qp<qp<q. In the case 2 0 2 0 2^(0)2^{0}20be x 1 < x 2 < < x 1 x 1 < x 2 < < x 1 x_(1) < x_(2) < dots < x_(1)x_{1}<x_{2}<\ldots<x_{1}x1<x2<<x1the common points of V p k , V q k V p k , V q k V_(p)^(k),V_(q)^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{q}^{k}Vpk, Vqk. Consider any neighborhoods V x 1 k , V x 2 k V x 1 k , V x 2 k V_(x_(1))^(k),V_(x_(2))^(k)dots\mathrm{V}_{x_{1}}^{k}, \mathrm{~V}_{x_{2}}^{k} \ldotsVx1k, Vx2k, V x j k V x j k V_(x_(j))^(k)\mathrm{V}_{x_{j}}^{k}VxIk. In the sequel
(I) V x 1 k , V x 2 k , , V x k k (I) V x 1 k , V x 2 k , , V x k k {:(I)V_(x_(1))^(k)","V_(x_(2))^(k)","dots","V_(x_(k))^(k):}\begin{equation*} V_{x_{1}}^{k}, V_{x_{2}}^{k}, \ldots, V_{x_{k}}^{k} \tag{I} \end{equation*}(I)Vx1k,Vx2k,,Vxkk
two consecutive terms have at least 2 k 2 k 2k2 k2kcommon points, by virtue of corollary I. If p p pppcoincides with a point x i , V p k , V x i k x i , V p k , V x i k x_(i),V_(p)^(k),V_(x_(i))^(k)x_{i}, \mathrm{~V}_{p}^{k}, \mathrm{~V}_{x_{i}}^{k}xi, Vpk, Vxikhave at least 2 k 2 k 2k2 k2kcommon points. Otherwise we have p < x 1 p < x 1 p < x_(1)p<x_{1}p<x1Or x p < p x p < p x_(p) < px_{p}<pxp<pand the sets V p k , V x 1 k V p k , V x 1 k V_(p)^(k),V_(x_(1))^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{x_{1}}^{k}Vpk, Vx1kOr V p k , V x p k V p k , V x p k V_(p)^(k),V_(x_(p))^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{x_{p}}^{k}Vpk, Vxpkonit at least 2 k 2 k 2k2 k2kcommon points. The same is true for V q k V q k V_(q)^(k)\mathrm{V}_{q}^{k}Vqk. If p < q x 1 p < q x 1 p < q <= x_(1)p<q \leq x_{1}p<qx1Or x γ p < q V p k , V q k x γ p < q V p k , V q k x_(gamma) <= p < qV_(p)^(k),V_(q)^(k)x_{\gamma} \leq p<q \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}xγp<q Vpk, Vqkhave at least 2 k 2 k 2k2 k2kcommon points and we are actually in the case 1 0 1 0 1^(0)1^{0}10. Let's examine the case 3 0 3 0 3^(0)3^{0}30.
Let's still be x 1 < x 2 < < x r x 1 < x 2 < < x r x_(1) < x_(2) < dots < x_(r)x_{1}<x_{2}<\ldots<x_{r}x1<x2<<xrthe common points of V p k , V q k V p k , V q k V_(p)^(k),V_(q)^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{q}^{k}Vpk, Vqkand let (I) be any neighborhoods. The same considerations apply as before except that we can only assert that V p k , V x 1 k V p k , V x 1 k V_(p)^(k),V_(x_(1))^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{x_{1}}^{k}Vpk, Vx1kOr V p k , V x p k V p k , V x p k V_(p)^(k),V_(x_(p))^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{x_{p}}^{k}Vpk, Vxpkhave at least k + r k + r k+rk+rk+rcommon points, these pairs of neighborhoods are therefore in the case 1 0 1 0 1^(0)1^{0}10Or 2 0 2 0 2^(0)2^{0}20. The same applies to V q k V q k V_(q)^(k)\mathrm{V}_{q}^{k}Vqk. If p < q x 1 p < q x 1 p < q <= x_(1)p<q \leq x_{1}p<qx1Or x p < q , V p k , V q k x p < q , V p k , V q k x <= p < q,V_(p)^(k),V_(q)^(k)x \leq p<q, \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}xp<q, Vpk, Vqkhave at least k + r k + r k+rk+rk+rcommon points and we are actually in the case 1 0 1 0 1^(0)1^{0}10Or 2 0 2 0 2^(0)2^{0}20. We still have the case 4 0 4 0 4^(0)4^{0}40. In this case either d d dddthe right end of V p k V p k V_(p)^(k)\mathrm{V}_{p}^{k}VpkAnd V d k V d k V_(d)^(k)\mathrm{V}_{d}^{k}Vdkany neighborhood of d d ddd. We immediately see that the two neighborhoods V p k , V k d V p k , V k d V_(p)^(k),V_(kd)\mathrm{V}_{p}^{k}, \mathrm{~V}_{k d}Vpk, Vkdand the two neighborhoods V d k , V q k V d k , V q k V_(d)^(k),V_(q)^(k)\mathrm{V}_{d}^{k}, \mathrm{~V}_{q}^{k}Vdk, Vqkare in the case 1 0 , 2 0 1 0 , 2 0 1^(0),2^(0)1^{0}, 2^{0}10,20Or 3 0 3 0 3^(0)3^{0}30:
The previous analysis shows us that we can state
Lemma II. If V p k , V q k , p < q V p k , V q k , p < q V_(p)^(k),V_(q)^(k),p < q\mathrm{V}_{p}^{k}, \mathrm{~V}_{q}^{k}, p<qVpk, Vqk,p<qare two neighborhoods that are not separated by E, or they have at least 2 k 2 k 2k2 k2kcommon points, or we can find a finite number of points x 1 , x 2 , x m x 1 , x 2 , x m x_(1),x_(2)dots,x_(m)x_{1}, x_{2} \ldots, x_{m}x1,x2,xmof E such that, if V x i k V x i k V_(x_(i))^(k)\mathrm{V}_{x_{i}}^{k}Vxikare any neighborhoods, in the sequence
V p k , V x 1 k , V x 2 k , , V x m k , V q k V p k , V x 1 k , V x 2 k , , V x m k , V q k V_(p)^(k),V_(x_(1))^(k),V_(x_(2))^(k),dots,V_(x_(m))^(k),V_(q)^(k)V_{p}^{k}, V_{x_{1}}^{k}, V_{x_{2}}^{k}, \ldots, V_{x_{m}}^{k}, V_{q}^{k}Vpk,Vx1k,Vx2k,,Vxmk,Vqk
two consecutive terms have at least 2 k 2 k 2k2 k2kcommon points.
4. Let us attach to each x E ˙ x E ˙ x inE^(˙)x \in \dot{E}xE˙a neighborhood V x k V x k V_(x)^(k)V_{x}^{k}Vxkand either Q Q Q\mathscr{Q}Qall of these neighborhoods. If a , b E a , b E a,b in Ea, b \in Ehas,bEthe almost-closure E ˙ E ˙ E^(˙)\dot{E}E˙coincides with the closure E E ¯ bar(E)\overline{\mathrm{E}}Eof E , so is a closed set. In this case, we can apply the Bore1-Lebesgue theorem and choose in Q a finite number of terms covering entirely the set E, therefore a fortiori the set E. These terms can obviously be arranged in a sequence in such a way that two consecutive terms are not separated by E . Taking into account Lemma II, we deduce the
Lemma III. If a , b E a , b E a,b in Ea, b \in Ehas,bEand if V V VVVis a set of neighborhoods V k V k V_(**)^(k)V_{*}^{k}Vkcorresponding to all points x x xxxof E ˙ = E E ˙ = E ¯ E^(˙)= bar(E)\dot{\mathrm{E}}=\overline{\mathrm{E}}E˙=E, we can choose a finite number of terms in Q),
V x 1 k , V x 2 k , , V x m k V x 1 k , V x 2 k , , V x m k V_(x_(1))^(k),quadV_(x_(2))^(k),dots,quadV_(x_(m))^(k)V_{x_{1}}^{k}, \quad V_{x_{2}}^{k}, \ldots, \quad V_{x_{m}}^{k}Vx1k,Vx2k,,Vxmk
completely covering the set E and two consecutive ones V x i k , V x i + 1 k V x i k , V x i + 1 k V_(x_(i))^(k),V_(x_(i+1))^(k)\mathrm{V}_{x_{i}}^{k}, \mathrm{~V}_{x_{i+1}}^{k}Vxik, Vxi+1khaving at least 2 k 2 k 2k2 k2kcommon points.
5. A function f = f ( x ) f = f ( x ) f=f(x)f=f(x)f=f(x), uniform and defined on any linear set E is said to be convex, non-concave, polynomial, non-convex or concave of order n n nnnon E if inequality
(2)
[ x 1 , x 2 , , x n + 2 ; f ] > , , = , ou < 0 x 1 , x 2 , , x n + 2 ; f > , , = , ou < 0 [x_(1),x_(2),dots,x_(n+2);f] > , >= ,=, <= ou < 0\left[x_{1}, x_{2}, \ldots, x_{n+2} ; f\right]>, \geq,=, \leq \mathrm{ou}<0[x1,x2,,xn+2;f]>,,=,Or<0
is satisfied whatever x 1 , x 2 , , x n + 2 E x 1 , x 2 , , x n + 2 E x_(1),x_(2),dots,x_(n+2)inEx_{1}, x_{2}, \ldots, x_{n+2} \in \mathrm{E}x1,x2,,xn+2E.
All these functions are order functions n ( 1 ) n 1 n(^(1))n\left({ }^{\mathbf{1}}\right)n(1).
Any convex, non-concave, etc. function of order n n nnnon E is still convex, non-concave,... etc. of order n n nnnon any subset of E.
We recall that the necessary and sufficient condition for f f fff, defined on a finite set
(3) x 1 < x 2 < < x m , m n + 2 (3) x 1 < x 2 < < x m , m n + 2 {:(3)x_(1) < x_(2) < dots < x_(m)","m >= n+2:}\begin{equation*} x_{1}<x_{2}<\ldots<x_{m}, m \geq n+2 \tag{3} \end{equation*}(3)x1<x2<<xm,mn+2
either convex, non-concave, etc. of order n n nnnis that we have
(4) [ x i , x i + 1 , , x i + n + 1 ; f ] > , , = , ou < o i = 1 , 2 , , m n 1 (4) x i , x i + 1 , , x i + n + 1 ; f > , , = , ou < o i = 1 , 2 , , m n 1 {:[(4)[x_(i),x_(i+1),dots,x_(i+n+1);f] > "," >= ","="," <= ou < o],[i=1","2","dots","m-n-1]:}\begin{gather*} {\left[x_{i}, x_{i+1}, \ldots, x_{i+n+1} ; f\right]>, \geq,=, \leq \mathrm{ou}<\mathrm{o}} \tag{4}\\ i=1,2, \ldots, m-n-1 \end{gather*}(4)[xi,xi+1,,xi+n+1;f]>,,=,Or<oi=1,2,,mn1
Cette propriété résulte du fait que toute différence divisée sur n + 2 n + 2 n+2n+2n+2 points de (3) est une moyenne arithmétique des différences divisées spécifiées par l'inégalité (4), donc
[ x i 1 , x i 2 , , x i n + 2 ; t ] = i = 1 n n 1 A i [ x i , x i + 1 , , x i + n + 1 ; f ] A i 0 , i = 1 , 2 , , m n 1 , i = 1 m n 1 A i = 1 x i 1 , x i 2 , , x i n + 2 ; t = i = 1 n n 1 A i x i , x i + 1 , , x i + n + 1 ; f A i 0 , i = 1 , 2 , , m n 1 , i = 1 m n 1 A i = 1 {:[{:[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+2));t]=sum_(i=1)^(n-n-1)A_(i)[x_(i),x_(i+1),dots,x_(i+n+1);f]:}],[A_(i) >= 0","quad i=1","quad2","dots","m-n-1","sum_(i=1)^(m-n-1)A_(i)=1]:}\begin{gathered} {\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+2}} ; t\right]=\sum_{i=1}^{n-n-1} \mathrm{~A}_{i}\left[x_{i}, x_{i+1}, \ldots, x_{i+n+1} ; f\right]} \\ \mathrm{A}_{i} \geq 0, \quad i=1, \quad 2, \ldots, m-n-1, \sum_{i=1}^{m-n-1} \mathrm{~A}_{i}=1 \end{gathered}[xi1,xi2,,xin+2;t]=i=1nn1 Ai[xi,xi+1,,xi+n+1;f]Ai0,i=1,2,,mn1,i=1mn1 Ai=1
Si i 1 < i 2 < < i n + 2 i 1 < i 2 < < i n + 2 i_(1) < i_(2) < dots < i_(n+2)\mathrm{i}_{1}<i_{2}<\ldots<i_{n+2}i1<i2<<in+2 on a d'ailleurs surement A i 1 > 0 , A i n + 2 n 1 > 0 A i 1 > 0 , A i n + 2 n 1 > 0 A_(i_(1)) > 0,A_(i_(n+2)-n-1) > 0\mathrm{A}_{i_{1}}>0, \mathrm{~A}_{i_{n+2}-n-1}>0Ai1>0, Ain+2n1>0. Les A i A i A_(i)A_{i}Ai sont indépendants de la fonction \not /.
De cette propriété nous déduisons, en particulier, que:
Lemme IV. Si une fonction f f fff est convexe, non-concave, . . . etc. d'ordre n n nnn sur deux sections E 1 , E 2 E 1 , E 2 E_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2}E1,E2 de E 1 E 1 E_(1)\mathrm{E}_{1}E1 ayant au moins n + I n + I n+In+\mathrm{I}n+I points communs elle est convexe, non-concave,... etc. d'ordre n sur la réunion des ensembles F 1 , F 2 F 1 , F 2 F_(1),F_(2)\mathrm{F}_{1}, \mathrm{~F}_{2}F1, F2.
Ceci résulte immédiatement de ce qui précède et du fait que si α 1 , α 2 α 1 , α 2 alpha_(1),alpha_(2)\alpha_{1}, \alpha_{2}α1,α2, , α n + 2 , α n + 2 dots,alpha_(n+2)\ldots, \alpha_{n+2},αn+2 sont n + 2 n + 2 n+2n+2n+2 points de la réunion de E 1 , E 2 E 1 , E 2 E_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2}E1,E2 et β 1 , β 2 , , β n + 1 β 1 , β 2 , , β n + 1 beta_(1),beta_(2),dots,beta_(n+1)\beta_{1}, \beta_{2}, \ldots, \beta_{n+1}β1,β2,,βn+1, n + n + n+n+n+ I points communs à E 1 E 1 E_(1)\mathrm{E}_{1}E1 et E 2 E 2 E_(2)\mathrm{E}_{2}E2, les points α i α i alpha_(i)\alpha_{i}αi, β i β i beta_(i)\beta_{i}βi rangés dans 1'ordre croissant jouissent de la propriété que n + 2 n + 2 n+2n+2n+2 points consécutifs quelconques appartiennent tous à E 1 E 1 E_(1)\mathrm{E}_{1}E1 ou à F 2 F 2 F_(2)\mathrm{F}_{2}F2.
6. Introduisons maintenant la définition suivante:
Définition I. La fonction f f fff est dite localement convexe, non-concave, ... etc. d'ordre n n nnn sur E si à tout x E ˙ x E ˙ x inE^(˙)x \in \dot{\mathrm{E}}xE˙ correspond un voisinage V x k V x k V_(x)^(k)\mathrm{V}_{x}^{k}Vxk ờ la fonction est convexe, non-concave, ... etc. d'ordre n n nnn.
Nous supposons toujours n n n >=n \geqn I. Pour que la définition précédente ait un sens précis il faut que. E E EEE ait au moins n + 2 n + 2 n+2n+2n+2 points et que l'on ait 2 k n + I 2 k n + I 2k >= n+I2 k \geq n+I2kn+I. La plus petite valeur de k k kkk qu'on peut ainsi admettre est donc [ n + 2 2 ] n + 2 2 [(n+2)/(2)]\left[\frac{n+2}{2}\right][n+22], en désignant, comme d'habitude, par [ α ] [ α ] [alpha][\alpha][α] le plus grand entier compris dans α α alpha\alphaα.
Nous avons maintenant la propriété suivante:
Théorème I. Toute fonction localement convexe, non-concave..., etc. d'ordre n n nnn sur E , avec k = [ 3 + 2 2 ] k = 3 + 2 2 k=[(3+2)/(2)]k=\left[\frac{3+2}{2}\right]k=[3+22], est convexe, non-concave, . . etc. d'ordre n n nnn sur E .
Il suffit de démontrer la propriété pour une section de E contenant ses extrémités. La propriété résulte alors des lemmes III et IV. Dans le cas d'un intervalle les voisinages peuvent être pris au sens ordinarie et la propriété a été donnée alors pour n = 1 n = 1 n=1n=1n=1 par M. J. B 1aquier 1 1 ^(1){ }^{1}1 ).
On peut facilement voir que la considération de la presque-fermeture E dans la définition I est essentielle. Si dans cette définition onplace l'hypothèse x E ˙ x E ˙ x inE^(˙)x \in \dot{\mathrm{E}}xE˙ par l'hypothèse moins restrictive x E x E x inEx \in \mathrm{E}xE le théo rème I peut ne pas être vrai pour un ensemble qui n'est fermé. Par exemple la fonetic unest pas presque-
f ( x ) = { x , 0 x < I x I , I < x 2 f ( x ) = x ,      0 x < I x I ,      I < x 2 f(x)={[x",",0 <= x < I],[x-I",",I < x <= 2]:}f(x)= \begin{cases}x, & 0 \leq x<I \\ x-I, & I<x \leq 2\end{cases}f(x)={x,0x<IxI,I<x2
est bien localement polynomiale de tout ordre n I n I n >= In \geq InI avec la nouvelle définition (pour un k k kkk quelconque), mais n'est pas d'ordre n n nnn sur son ensemble de définition.
On pourrait encore chercher si on ne peut pas améliorer la propriété par une définition plus restrictive du voisinage. On peut facilement voir que si n n nnn est pair il suffit de considérer des voisinage ayant au moins n + 1 n + 1 n+1n+1n+1 points différents de x x xxx et ayant tous au moins n + 2 2 n + 2 2 (n+2)/(2)\frac{n+2}{2}n+22 points d'une même côté de x x xxx et au moins n 2 n 2 (n)/(2)\frac{n}{2}n2 points de l'autre côté de x x xxx.
7. On peut aussi imposer à un voisinage d'autres conditions entrenant la convexité. On peut dire, par exemple, que f f fff a localement une droite d'appui si, quel que soit le point x 0 x 0 x_(0)x_{0}x0 de E , différent d'une extrémité a , b a , b a,ba, ba,b, il existe un voisinage V x 0 r V x 0 r V_(x_(0))^(r)V_{x_{0}}^{\mathrm{r}}Vx0r et une droite non-vérticale Δ Δ Delta\DeltaΔpassing through the point ( x 0 , f ( x 0 ) x 0 , f x 0 x_(0),f(x_(0))x_{0}, f\left(x_{0}\right)x0,f(x0)) leaving the curve y = f ( x ) y = f ( x ) y=f(x)y=f(x)y=f(x)not below Δ Δ Delta\DeltaΔFor x V x 0 I x V x 0 I x inV_(x_(0))^(I)x \in \mathrm{~V}_{x_{0}}^{\mathrm{I}}x Vx0I. We then have 1 e
Theorem II. Any function f f fff, defined and continuous on the almost closed set E and having locally a support line, is non-concave of order I on F.
The demonstration follows from the facts that every non-concave function of order ia locally has a support line and that this property is not true for a function which is not non-concave of order 1. In
In fact, in this latter case, we can find three points x 1 < x 2 < x 3 x 1 < x 2 < x 3 x_(1) < x_(2) < x_(3)x_{1}<x_{2}<x_{3}x1<x2<x3of E such that [ x 1 , x 2 , x 3 ; f ] < o x 1 , x 2 , x 3 ; f < o [x_(1),x_(2),x_(3);f] < o\left[x_{1}, x_{2}, x_{3} ; f\right]<\mathrm{o}[x1,x2,x3;f]<o. the set of points where the function f ( x ) x x 3 x 1 x 3 f ( x 1 ) x x 1 x 3 x 1 f ( x 3 ) f ( x ) x x 3 x 1 x 3 f x 1 x x 1 x 3 x 1 f x 3 f(x)--(x-x_(3))/(x_(1)-x_(3))f(x_(1))-(x-x_(1))/(x_(3)-x_(1))f(x_(3))f(x)- -\frac{x-x_{3}}{x_{1}-x_{3}} f\left(x_{1}\right)-\frac{x-x_{1}}{x_{3}-x_{1}} f\left(x_{3}\right)f(x)xx3x1x3f(x1)xx1x3x1f(x3)reaches its maximum ( > 0 > 0 > 0>0>0) on the part of E included in the closed interval ( x 1 , x 3 x 1 , x 3 x_(1),x_(3)x_{1}, x_{3}x1,x3), is closed. The ends of this set are points of E E EEE, different from a , b a , b a,ba, bhas,b, where there is no local support line.
We demonstrate Theorem III in the same way
. Any function, f f fff, defined and continuous on an almost closed set E which is such that, whatever x 0 E x 0 E x_(0)inEx_{0} \in \mathrm{E}x0E, different from a and b b bbb, there are two points x , x , x < x 0 < x x , x , x < x 0 < x x^('),x^(''),x^(') < x_(0) < x^('')x^{\prime}, x^{\prime \prime}, x^{\prime}<x_{0}<x^{\prime \prime}x,x,x<x0<xsuch that if V ε 0 I V ε 0 I V_(epsi_(0))^(I)\mathrm{V}_{\boldsymbol{\varepsilon}_{0}}^{\mathrm{I}}Vε0IC ( x , x ) x , x (x^('),x^(''))\left(x^{\prime}, x^{\prime \prime}\right)(x,x)we can find two points x 1 , x 2 x 1 , x 2 x_(1),x_(2)x_{1}, x_{2}x1,x2of V x 0 1 , x 1 < x 0 < x 2 V x 0 1 , x 1 < x 0 < x 2 V_(x_(0))^(1),x_(1) < x_(0) < x_(2)\mathrm{V}_{x_{0}}^{\mathbf{1}}, x_{1}<x_{0}<x_{2}Vx01,x1<x0<x2verifying the inequality [ x 0 , x 1 , x 2 ; f ] 0 x 0 , x 1 , x 2 ; f 0 [x_(0),x_(1),x_(2);f] >= 0\left[x_{0}, x_{1}, x_{2} ; f\right] \geqq 0[x0,x1,x2;f]0, is non-concave of order I on E.
These properties can be generalized further, but there is no point in doing so here.
8. We could also introduce the following definition:
Definition II. The function f f fffis locally of order n n nnnon E, if at all x E x E x inEx \in \mathbb{E}xEcorresponds to a neighborhood V k V k V_(**)^(k)\mathrm{V}_{*}^{k}Vkwhere the function is of order n n nnn.
A locally order function n n nnnis not generally of order n n nnnon E, however large it may be k k kkk. For example, the function
f ( x ) = ( x I ) n + I , 0 x I ; = 0 , I x 2 ; = ( x 2 ) n + I , 2 x 3 f ( x ) = ( x I ) n + I , 0 x I ; = 0 , I x 2 ; = ( x 2 ) n + I , 2 x 3 f(x)=(x-I)^(n+I),0 <= x <= I;=0,I <= x <= 2;=-(x-2)^(n+I),2 <= x <= 3f(x)=(x-I)^{n+I}, 0 \leq x \leq I ;=0, I \leq x \leq 2 ;=-(x-2)^{n+I}, 2 \leq x \leq 3f(x)=(xI)n+I,0xI;=0,Ix2;=(x2)n+I,2x3
is locally of order n n nnn(regardless of k k kkk) and yet is not of order n n nnnin the closed interval ( 0.3 ).
But, we have
Lemma V. If a function f f fffis convex or concave of order n n nnnon two sections E 1 , E 2 E 1 , E 2 E_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2}E1,E2of E having at least n + 2 n + 2 n+2n+2n+2common points, it is convex or concave of order n n nnnon the meeting of the sets E 1 , E 2 E 1 , E 2 E_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2}E1,E2.
This lemma is a consequence of Lemma IV since f f fffcannot be convex on one section and concave on the other.
We immediately deduce
Theorem IV. If at all x E ˙ x E ˙ x inE^(˙)x \in \dot{E}xE˙corresponds to a neighborhood V x k V x k V_(x)^(k)V_{x}^{k}Vxk, with k = [ n + 3 2 ] k = n + 3 2 k=[(n+3)/(2)]k=\left[\frac{n+3}{2}\right]k=[n+32]where the function f f fffis convex or concave of order n n nnn, this function is convex or concave of order n n nnnon E.
Here again the property can be improved by a more restrictive definition of the neighborhood if n n nnnis odd. It is then sufficient to consider neighborhoods having at least n + 2 n + 2 n+2n+2n+2different points of x x xxxand having all at least n + 3 2 n + 3 2 (n+3)/(2)\frac{n+3}{2}n+32points on the same side of x x xxxand at least n + 1 2 n + 1 2 (n+1)/(2)\frac{n+1}{2}n+12points on the other side of x x xxx.

40 note on smooth convex functions of higher order (viii)

  1. Before finishing, let us make some remarks on the divided differences of a function f f fff. Let us pose.
Δ ¯ n = max ( E ) [ x 1 , x 2 , , x n + 1 ; f ] , Δ n = min ( E ) [ x 1 , x 2 , , x n + 1 ; f ] Δ n = max ( E ) | [ x 1 , x 2 , , x n + 1 ; f ] | = max ( | Δ ¯ n | , | Δ n | ) Δ ¯ n = max ( E ) x 1 , x 2 , , x n + 1 ; f , Δ n = min ( E ) x 1 , x 2 , , x n + 1 ; f Δ n = max ( E ) x 1 , x 2 , , x n + 1 ; f = max Δ ¯ n , Δ n {:[ bar(Delta)_(n)=max_((E))[x_(1),x_(2),dots,x_(n+1);f]","quadDelta_(n)=min_((E))[x_(1),x_(2),dots,x_(n+1);f]],[Delta_(n)=max_((E))|[x_(1),x_(2),dots,x_(n+1);f]|=max(| bar(Delta)_(n)|,|Delta_(n)|)]:}\begin{aligned} \bar{\Delta}_{n}= & \max _{(\mathrm{E})}\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right], \quad \Delta_{n}=\min _{(\mathrm{E})}\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right] \\ & \Delta_{n}=\max _{(\mathrm{E})}\left|\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right]\right|=\max \left(\left|\bar{\Delta}_{n}\right|,\left|\Delta_{n}\right|\right) \end{aligned}Δ¯n=max(E)[x1,x2,,xn+1;f],Δn=min(E)[x1,x2,,xn+1;f]Δn=max(E)|[x1,x2,,xn+1;f]|=max(|Δ¯n|,|Δn|)
Finite or infinite numbers Δ ¯ n , Δ n Δ ¯ n , Δ _ n bar(Delta)_(n),Delta __(n)\bar{\Delta}_{n}, \underline{\Delta}_{n}Δ¯n,ΔnAnd Δ n Δ n Delta_(n)\Delta_{n}Δnare the n n nnn-th upper bound, the n n nnn-th lower bound and the n n nnn-th terminal of f f fffon E. We will also designate them by Δ ¯ n [ f ; E ] , Δ n [ f ; E ] Δ ¯ n [ f ; E ] , Δ _ n [ f ; E ] bar(Delta)_(n)[f;E],Delta __(n)[f;E]\bar{\Delta}_{n}[f ; \mathrm{E}], \underline{\Delta}_{n}[f ; \mathrm{E}]Δ¯n[f;E],Δn[f;E]And Δ n [ f ; E ] 1 Δ n [ f ; E ] 1 Delta_(n)[f;E]^(1)\Delta_{n}[f ; \mathrm{E}]{ }^{\mathbf{1}}Δn[f;E]1).
If we take for E the finite set (3) and we set
Δ k i = [ x i , x i + 1 , , x i + k ; f ] Δ k i = x i , x i + 1 , , x i + k ; f Delta_(k)^(i)=[x_(i),x_(i+1),dots,x_(i+k);f]\Delta_{k}^{i}=\left[x_{i}, x_{i+1}, \ldots, x_{i+k} ; f\right]Δki=[xi,xi+1,,xi+k;f]
We have
Δ ¯ n = max ( Δ n I , Δ n 2 , , Δ n m n ) , Δ n = min ( Δ n I , Δ n 2 , , Δ n m n ) Δ n = max ( | Δ n I | , | Δ n 2 | , , | Δ n m n | ) . Δ ¯ n = max Δ n I , Δ n 2 , , Δ n m n , Δ n = min Δ n I , Δ n 2 , , Δ n m n Δ n = max Δ n I , Δ n 2 , , Δ n m n . {:[ bar(Delta)_(n)=max(Delta_(n)^(I),Delta_(n)^(2),dots,Delta_(n)^(m-n))","Delta_(n)=min(Delta_(n)^(I),Delta_(n)^(2),dots,Delta_(n)^(m-n))],[Delta_(n)=max(|Delta_(n)^(I)|,|Delta_(n)^(2)|,dots,|Delta_(n)^(m-n)|).]:}\begin{gathered} \bar{\Delta}_{n}=\max \left(\Delta_{n}^{\mathrm{I}}, \Delta_{n}^{2}, \ldots, \Delta_{n}^{m-n}\right), \Delta_{n}=\min \left(\Delta_{n}^{\mathrm{I}}, \Delta_{n}^{2}, \ldots, \Delta_{n}^{m-n}\right) \\ \Delta_{n}=\max \left(\left|\Delta_{n}^{\mathrm{I}}\right|,\left|\Delta_{n}^{2}\right|, \ldots,\left|\Delta_{n}^{m-n}\right|\right) . \end{gathered}Δ¯n=max(ΔnI,Δn2,,Δnmn),Δn=min(ΔnI,Δn2,,Δnmn)Δn=max(|ΔnI|,|Δn2|,,|Δnmn|).
Let us also agree to note by E 1 + E 2 E 1 + E 2 E_(1)+E_(2)\mathrm{E}_{1}+\mathrm{E}_{2}E1+E2the meeting of two sets E 1 E 1 E_(1)E_{1}E1And E 2 E 2 E_(2)E_{2}E2, we then have the
Lemma VI. If E 1 , E 2 E 1 , E 2 E_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2}E1,E2are two sections of E having at least n n nnncommon points, we have
Δ ¯ n [ f ; E 1 + E 12 ] = max ( Δ ¯ n [ f ; E 1 ] , Δ ¯ n [ f ; E 2 ] ) Δ n [ f ; E 1 + E 2 ] = min ( Δ n [ f ; E 1 ] , Δ n [ f ; E 2 ] ) Δ n [ f ; E 1 + E 2 ] = max ( Δ n [ f ; E 1 ] , Δ n [ f ; E 2 ] ) . Δ ¯ n f ; E 1 + E 12 = max Δ ¯ n f ; E 1 , Δ ¯ n f ; E 2 Δ _ n f ; E 1 + E 2 = min Δ _ n f ; E 1 , Δ _ n f ; E 2 Δ n f ; E 1 + E 2 = max Δ n f ; E 1 , Δ n f ; E 2 . {:[ bar(Delta)_(n)[f;E_(1)+E_(12)]=max( bar(Delta)_(n)[f;E_(1)], bar(Delta)_(n)[f;E_(2)])],[Delta __(n)[f;E_(1)+E_(2)]=min(Delta __(n)[f;E_(1)],Delta __(n)[f;E_(2)])],[Delta_(n)[f;E_(1)+E_(2)]=max(Delta_(n)[f;E_(1)],Delta_(n)[f;E_(2)]).]:}\begin{aligned} & \bar{\Delta}_{n}\left[f ; \mathrm{E}_{1}+\mathrm{E}_{12}\right]=\max \left(\bar{\Delta}_{n}\left[f ; \mathrm{E}_{1}\right], \bar{\Delta}_{n}\left[f ; \mathrm{E}_{2}\right]\right) \\ & \underline{\Delta}_{n}\left[f ; \mathrm{E}_{1}+\mathrm{E}_{2}\right]=\min \left(\underline{\Delta}_{n}\left[f ; \mathrm{E}_{1}\right], \underline{\Delta}_{n}\left[f ; \mathrm{E}_{2}\right]\right) \\ & \Delta_{n}\left[f ; \mathrm{E}_{1}+\mathrm{E}_{2}\right]=\max \left(\Delta_{n}\left[f ; \mathrm{E}_{1}\right], \Delta_{n}\left[f ; \mathrm{E}_{2}\right]\right) . \end{aligned}Δ¯n[f;E1+E12]=max(Δ¯n[f;E1],Δ¯n[f;E2])Δn[f;E1+E2]=min(Δn[f;E1],Δn[f;E2])Δn[f;E1+E2]=max(Δn[f;E1],Δn[f;E2]).
Let us prove the third equality. If E ; CE , we obviously have
Δ n [ t ; E ] Δ n [ t ; E ] . Δ n t ; E Δ n [ t ; E ] . Delta_(n)[t;E^(**)] <= Delta_(n)[t;E].\Delta_{n}\left[t ; \mathrm{E}^{*}\right] \leq \Delta_{n}[t ; \mathrm{E}] .Δn[t;E]Δn[t;E].
So we have
(5) Δ n [ f ; E 1 + E 2 ] max ( Δ n [ f ; E 1 ] , Δ n [ f ; E 2 ] ) Δ n f ; E 1 + E 2 max Δ n f ; E 1 , Δ n f ; E 2 quadDelta_(n)[f;E_(1)+E_(2)] >= max(Delta_(n)[f;E_(1)],Delta_(n)[f;E_(2)])\quad \Delta_{n}\left[f ; \mathrm{E}_{1}+\mathrm{E}_{2}\right] \geq \max \left(\Delta_{n}\left[f ; \mathrm{E}_{1}\right], \Delta_{n}\left[f ; \mathrm{E}_{2}\right]\right)Δn[f;E1+E2]max(Δn[f;E1],Δn[f;E2]).
Let α 1 , α 2 , , α n + 1 , n + I α 1 , α 2 , , α n + 1 , n + I alpha_(1),alpha_(2),dots,alpha_(n+1),n+I\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}, n+\mathrm{I}α1,α2,,αn+1,n+Ipoints of E 1 + E 2 E 1 + E 2 E_(1)+E_(2)\mathrm{E}_{1}+\mathrm{E}_{2}E1+E2And β 1 , β 2 , , β n n β 1 , β 2 , , β n n beta_(1),beta_(2),dots,beta_(n)n\beta_{1}, \beta_{2}, \ldots, \beta_{n} nβ1,β2,,βnncommon points to E 1 E 1 E_(1)\mathrm{E}_{1}E1And E 2 E 2 E_(2)\mathrm{E}_{2}E2. If we arrange the points β i , α i β i , α i beta_(i),alpha_(i)\beta_{i}, \alpha_{i}βi,αiin a sequence (3), n + I n + I n+In+In+Iconsecutive points always belong to E 1 E 1 E_(1)E_{1}E1or to E 2 E 2 E_(2)E_{2}E2. We deduce that
done
| [ α 1 , α 2 , , α n + x ; f ] | max ( Δ n [ f ; E 1 ] , Δ n [ f ; E 2 ] ) α 1 , α 2 , , α n + x ; f max Δ n f ; E 1 , Δ n f ; E 2 |[alpha_(1),alpha_(2),dots,alpha_(n+x);f]| <= max(Delta_(n)[f;E_(1)],Delta_(n)[f;E_(2)])\left|\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+x} ; f\right]\right| \leqq \max \left(\Delta_{n}\left[f ; \mathrm{E}_{1}\right], \Delta_{n}\left[f ; \mathrm{E}_{2}\right]\right)|[α1,α2,,αn+x;f]|max(Δn[f;E1],Δn[f;E2])
(6)
Δ n [ t ; E 1 + E 2 ] max ( Δ n [ t ; E 1 ] , Δ n [ t ; E 2 ] ) . Δ n t ; E 1 + E 2 max Δ n t ; E 1 , Δ n t ; E 2 . Delta_(n)[t;quadE_(1)+E_(2)]≲max(Delta_(n)[t;quadE_(1)],quadDelta_(n)[t;quadE_(2)]).\Delta_{n}\left[t ; \quad \mathrm{E}_{1}+\mathrm{E}_{2}\right] \lesssim \max \left(\Delta_{n}\left[t ; \quad \mathrm{E}_{1}\right], \quad \Delta_{n}\left[t ; \quad \mathrm{E}_{2}\right]\right) .Δn[t;E1+E2]max(Δn[t;E1],Δn[t;E2]).
1 1 ^(1){ }^{1}1) The numbers Δ ¯ n , Δ n , Δ n Δ ¯ n , Δ _ n , Δ n bar(Delta)_(n),Delta __(n),Delta_(n)\bar{\Delta}_{n}, \underline{\Delta}_{n}, \Delta_{n}Δ¯n,Δn,Δnmay be infinite, we use the usual conventions on operations with signs ± ± +-oo\pm \infty±. See, e.g., C. Carath éodory, Vorlesüngen über reelle Funktionen, pp. 14, 15.
The two inequalities (5), (6) prove the property. The first two equalities of the lemma are proved in exactly the same way.
We can now state
Theorem V. If f is a function defined on E, (bounded), we can find three points x 0 , x 1 , x 2 x 0 , x 1 , x 2 x_(0),x_(1),x_(2)x_{0}, x_{1}, x_{2}x0,x1,x2(distinct or not) from the closure E E ¯ bar(E)\overline{\mathrm{E}}Eof E so that, whatever the neighborhoods V x 0 k , V x 1 k , V x 1 k V x 0 k , V x 1 k , V x 1 k V_(x_(0))^(k),V_(x_(1))^(k),V_(x_(1))^(k)V_{x_{0}}^{k}, V_{x_{1}}^{k}, V_{x_{1}}^{k}Vx0k,Vx1k,Vx1k, with k = [ n + 1 2 ] k = n + 1 2 k=[(n+1)/(2)]k=\left[\frac{n+1}{2}\right]k=[n+12], we have
Δ ¯ n [ f ; V x 0 k ] = Δ ¯ n [ f ; E ] Δ n [ f ; V x 1 k ] = Δ n [ f ; E ] Δ n [ f ; V x 2 k ] = Δ n [ f ; E ] Δ ¯ n f ; V x 0 k = Δ ¯ n [ f ; E ] Δ _ n f ; V x 1 k = Δ n [ f ; E ] Δ n f ; V x 2 k = Δ n [ f ; E ] {:[ bar(Delta)_(n)[f;V_(x_(0))^(k)]= bar(Delta)_(n)[f;E]],[Delta __(n)[f;V_(x_(1))^(k)]=Delta_(n)[f;E]],[Delta_(n)[f;V_(x_(2))^(k)]=Delta_(n)[f;E]]:}\begin{aligned} & \bar{\Delta}_{n}\left[f ; V_{x_{0}}^{k}\right]=\bar{\Delta}_{n}[f ; \mathrm{E}] \\ & \underline{\Delta}_{n}\left[f ; V_{x_{1}}^{k}\right]=\Delta_{n}[f ; \mathrm{E}] \\ & \Delta_{n}\left[f ; V_{x_{2}}^{k}\right]=\Delta_{n}[f ; \mathrm{E}] \end{aligned}Δ¯n[f;Vx0k]=Δ¯n[f;E]Δn[f;Vx1k]=Δn[f;E]Δn[f;Vx2k]=Δn[f;E]
Let us demonstrate, for example, the last equality. If the equality were not true, we could attach to each x E x E ¯ x in bar(E)x \in \overline{\mathrm{E}}xEa neighborhood V x k V x k V_(x)^(k)\mathrm{V}_{x}^{k}VxkOr Δ n [ f ; V x k ] << A n [ f ; E ] Δ n f ; V x k << A n [ f ; E ] Delta_(n)[f;V_(x)^(k)]<<A_(n)[f;E]\Delta_{n}\left[f ; \mathrm{V}_{x}^{k}\right]< <A_{n}[f ; E]Δn[f;Vxk]<<HASn[f;E]. Lemmas III and VI show us that this is impossible. We prove the first two inequalities in the same way. It goes without saying that we always assume n I n I n >= In \geq InI.
We have already reported this property, for Δ n Δ n Delta_(n)\Delta_{n}Δnassumed to be finite, in the case where E is everywhere dense in ( a , b ) 1 ( a , b ) 1 (a,b)^(1)(a, b){ }^{1}(has,b)1) and also when Δ n Δ n Delta_(n)\Delta_{n}Δnis infinite under certain restrictions 2 2 ^(2){ }^{2}2).
In the theorem V V VVVThe definition of neighborhood can be modified in various ways, but we are not concerned with this question here.
Cernăuti, July 8, 1939.

  1. 1 1 ^(1){ }^{1}1) In note VI we gave a slightly different definition of section. In this note E , was always closed and we only needed closed sections of E . E E_(". ")\mathrm{E}_{\text {. }}E.
  2. 1 1 ^(1){ }^{1}1) This is sufficient for our considerations. In reality the two neighborhoods have at least 2 k + 2 k + 2k+2 k+2k+I common points and even always an infinity if x E x E x inE^(')x \in E^{\prime}xE.
  3. 1 ) 1 ) ^(1)){ }^{1)}1)For the notations and properties of these functions see my previous work.
  4. 1 1 ^(1){ }^{1}1) J. B1aquier, Sobve dos condiciones carateristicas de las functiones convexas, Atti Congresso Bologna, 2, 349-353 (1930).
  5. 1 1 ^(1){ }^{1}1) Tiberiu Popoviciu, On some properties of functions of one or two real variables. Thesis, Paris 1933 or Mathematica, 8, 1-85 (1934), sp. p. 10.
    2 2 ^(2){ }^{2}2) Tiberiu Popoviciu, Notes on Higher Order Convex Functions (I). Mathematica, 12, 81-92 (1936), sp. p. 89.
1939

Related Posts