T. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (VIII), Bull. de la Sect. Sci, de l’Acad. Roum, 22 (1939) no. 1, pp. 34-41 (in French). [JFM 65.0214.02].
Bulletin de la Section Scientifique de l’Académie Roumaine
Publisher Name
DOI
Print ISSN
Online ISSN
google scholar link
??
Paper (preprint) in HTML form
1939 a -Popoviciu- Bull. Sect. Sci. Acad. Roum. - Notes on convex functions of higher order
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
ROMANIAN ACADEMY
BULLETIN OF THE SCIENTIFIC SECTION
NOTE ON HIGHER ORDER CONVEX FUNCTIONS (VIII)
BY
T'IBERIU POPOVICIU
Note presented by Mr. S. Stoilov, M. v. AR, in the session of July 14, 1939.
ON THE LOCAL DEFINITION OF ORDER FUNCTIONSnn
I. Let E 1 to 1; any=minE,a <= b==\min \mathrm{E}, a \leqq b=max E the c:quad\quade) of E. If, t closed it is necessarily in in soli turootepsilon_(i)=>\epsilon_{i} \Rightarrowalmost-closed areE^(˙)\dot{E}ofE\mathbf{E}is the set ... ... its derivativeE^(')\mathrm{E}^{\prime}except the endshashas,bbwhich do not belong to E. If E = E, we will say that the set E is almost closed. We will say that a subsetE_(1)\mathrm{E}_{1}of E is a section ofE_(1)\mathrm{E}_{1}whether it is formed by a single point or withx_(1)inE_(1)x_{1} \in \mathrm{E}_{1},x_(2)inE_(1)x_{2} \in E_{1}all points ofE\mathbb{E}belonging to the interval (x_(1),x_(2)x_{1}, x_{2}) belong toE_(1)^(1)\mathrm{E}_{1}{ }^{1}). If two sections of E have at least one point in common, their union and their intersection are still sections of E . If two sections of E have no points in common, every point of one is to the left of every point of the other. In this case, they are either separated by E , so their union is not a section, or they are two consecutive sections, so their union is still a section of E .
The neighborhoodV_(x)^(k)\mathrm{V}_{x}^{k}from one pointxxis a section of E having at leastkkpoints left and at leastkkpoints to the right ofxx. If there is onlyr < k(r > 0)r<k(r>0)points of E to the left (right) ofx,V_(x)^(k)x, \mathrm{~V}_{x}^{k}must contain all these points and at least2k-r2 krpoints to the right (left) ofxx. In addition, the neighborhoodsV_(a)^(k)V_{a}^{k}must contain withx_(1)inV_(a)^(k)x_{1} \in V_{a}^{k}all points ofF_(1)F_{1}belonging to the closed interval (ax_(1)a x_{1}). The same applies to the surrounding areas.V_(b)^(k)\mathrm{V}_{b}^{k}. In this definitionkkis a natural number, so ifx in Ex \in Ewe havex inV_(x)^(k)x \in \mathrm{~V}_{x}^{k}. In the following we only consider neighborhoods.V_(x)^(k)\mathrm{V}_{x}^{k}Orx inE^(˙)x \in \dot{E}. I, when we consider several neighborhoodsV_(x)^(k)\mathrm{V}_{x}^{k}they are all taken for the same value ofkk. It is then useless to consider setsEEhaving less than2k+22 k+2points.
2. Two neighborhoodsV_(x)^(k)V_{x}^{k}corresponding to the same pointxxhave at least2k2 kcommon points^(1){ }^{\mathbf{1}}). Now consider a neighborhoodV_(x_(0))^(k)V_{x_{0}}^{k}and eitherx_(1)inV_(x_(0))^(k)x_{1} \in \mathrm{~V}_{x_{0}}^{k}a point to the right ofx_(0)x_{0}. Let us further assume thatV_(x_(0))^(k)\mathrm{V}_{x_{0}}^{k}still has at leasts >= 0s \geq 0points to the right ofx_(1)x_{1}. Consider a neighborhoodV_(x_(1))^(k)\mathrm{V}_{x_{1}}^{k}ofx_(1)x_{1}and let's see how many points it can have in common withV_(x_(0))^(k)\mathrm{V}_{x_{0}}^{k}. We immediately see thatV_(x_(0))^(k)*V_(x_(1))^(k)V_{x_{0}}^{k} \cdot V_{x_{1}}^{k}have at least min(s,k)(s, k)points in common to the right ofx_(1)x_{1}. If there is at leastkkpoints of E to the left ofx_(1),V_(x_(0))^(k),V_(x_(1))^(k)x_{1}, \mathrm{~V}_{x_{0}}^{k}, \mathrm{~V}_{x_{1}}^{k}have at leastkkcommon points to the left ofx_(1)x_{1}. It remains to be seen what happens if there is onlyr < kr<kpoints of E to the left ofx_(1)x_{1}. In this cases > 2k longrightarrow rs>2 k \longrightarrow rAndV_(x_(0))^(k),V_(x_(1))^(k)\mathrm{V}_{x_{0}}^{k}, \mathrm{~V}_{x_{1}}^{k}have at least2k-r2 k-rcommon points to the right ofx_(1)x_{1}and have in common all the points of E to the left ofx_(1)x_{1}. In any case, we can say thatV_(x_(0))^(k),V_(x_(1))^(k)\mathrm{V}_{x_{0}}^{k}, \mathrm{~V}_{x_{1}}^{k}have at least min(s,k)+k+I(s, k)+k+\mathrm{I}common points. A similar property remains ifx_(1) < x_(0)x_{1}<x_{0}, SO
Lemma I. IfV_(x_(0))^(k)\mathrm{V}_{x_{0}}^{k}is a neighborhood of a pointx_(0)x_{0}ofE^(˙)\dot{\mathrm{E}}AndV_(x_(1))^(k)\mathrm{V}_{x_{1}}^{k}a neighborhood of a pointx_(1)x_{1}ofV_(x_(0))^(k)\mathrm{V}_{x_{0}}^{k}, the setsV_(x_(0))^(k),V_(x_(1))^(k)\mathrm{V}_{x_{0}}^{k}, \mathrm{~V}_{x_{1}}^{k}have at leastmin(s,k)+k+I\min (s, k)+k+\mathrm{I}common points, assuming thatV_(z_(0))^(k)\mathrm{V}_{z_{0}}^{k}has at leasts( >= 0)s(\geq 0)points to the right ofx_(1)x_{1}ifx_(0) < x_(1)x_{0}<x_{1}or to the left ofx_(1)x_{1}ifx_(1) < x_(0)x_{1}<x_{0}.
Corollary I. If Enn'has no point betweenx_(0),x_(1)x_{0}, x_{1}, two neighborhoodsV_(x_(0))^(k),quadV_(x_(1))^(k)\mathrm{V}_{x_{0}}^{k}, \quad \mathrm{~V}_{x_{1}}^{k}have at least2k2 kcommon points.
3. Now consider two neighborhoodsV_(p)^(k),V_(q)^(k),p <= q\mathrm{V}_{p}^{k}, \mathrm{~V}_{q}^{k}, p \leq q, which are not separated by E . We distinguish the following four cases: I^(0)V_(p)^(k),V_(q)^(k)\mathrm{I}^{0} \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}have at least2k2 kcommon points, 2^(0)V_(p)^(h),V_(q)^(h)2^{0} V_{p}^{h}, V_{q}^{h}haver,k <= r < 2kr, k \leq r<2 k, common points, 3^(0)V_(p)^(k),V_(q)^(k)3^{0} \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}haver,I <= r < kr, \mathrm{I} \leqq r<k, common points, 4^(0)V_(p)^(k),V_(q)^(k)4^{0} \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}have nothing in common.
Whenp=qp=qwe are in the case1^(0)1^{0}. For cases2^(0),3^(0),4^(0)2^{0}, 3^{0}, 4^{0}it is therefore necessary thatp < qp<q. In the case2^(0)2^{0}bex_(1) < x_(2) < dots < x_(1)x_{1}<x_{2}<\ldots<x_{1}the common points ofV_(p)^(k),V_(q)^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{q}^{k}. Consider any neighborhoodsV_(x_(1))^(k),V_(x_(2))^(k)dots\mathrm{V}_{x_{1}}^{k}, \mathrm{~V}_{x_{2}}^{k} \ldots,V_(x_(j))^(k)\mathrm{V}_{x_{j}}^{k}. In the sequel
two consecutive terms have at least2k2 kcommon points, by virtue of corollary I. Ifppcoincides with a pointx_(i),V_(p)^(k),V_(x_(i))^(k)x_{i}, \mathrm{~V}_{p}^{k}, \mathrm{~V}_{x_{i}}^{k}have at least2k2 kcommon points. Otherwise we havep < x_(1)p<x_{1}Orx_(p) < px_{p}<pand the setsV_(p)^(k),V_(x_(1))^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{x_{1}}^{k}OrV_(p)^(k),V_(x_(p))^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{x_{p}}^{k}onit at least2k2 kcommon points. The same is true forV_(q)^(k)\mathrm{V}_{q}^{k}. Ifp < q <= x_(1)p<q \leq x_{1}Orx_(gamma) <= p < qV_(p)^(k),V_(q)^(k)x_{\gamma} \leq p<q \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}have at least2k2 kcommon points and we are actually in the case1^(0)1^{0}. Let's examine the case3^(0)3^{0}.
Let's still bex_(1) < x_(2) < dots < x_(r)x_{1}<x_{2}<\ldots<x_{r}the common points ofV_(p)^(k),V_(q)^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{q}^{k}and let (I) be any neighborhoods. The same considerations apply as before except that we can only assert thatV_(p)^(k),V_(x_(1))^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{x_{1}}^{k}OrV_(p)^(k),V_(x_(p))^(k)\mathrm{V}_{p}^{k}, \mathrm{~V}_{x_{p}}^{k}have at leastk+rk+rcommon points, these pairs of neighborhoods are therefore in the case1^(0)1^{0}Or2^(0)2^{0}. The same applies toV_(q)^(k)\mathrm{V}_{q}^{k}. Ifp < q <= x_(1)p<q \leq x_{1}Orx <= p < q,V_(p)^(k),V_(q)^(k)x \leq p<q, \mathrm{~V}_{p}^{k}, \mathrm{~V}_{q}^{k}have at leastk+rk+rcommon points and we are actually in the case1^(0)1^{0}Or2^(0)2^{0}. We still have the case4^(0)4^{0}. In this case eitherddthe right end ofV_(p)^(k)\mathrm{V}_{p}^{k}AndV_(d)^(k)\mathrm{V}_{d}^{k}any neighborhood ofdd. We immediately see that the two neighborhoodsV_(p)^(k),V_(kd)\mathrm{V}_{p}^{k}, \mathrm{~V}_{k d}and the two neighborhoodsV_(d)^(k),V_(q)^(k)\mathrm{V}_{d}^{k}, \mathrm{~V}_{q}^{k}are in the case1^(0),2^(0)1^{0}, 2^{0}Or3^(0)3^{0}:
The previous analysis shows us that we can state
Lemma II. IfV_(p)^(k),V_(q)^(k),p < q\mathrm{V}_{p}^{k}, \mathrm{~V}_{q}^{k}, p<qare two neighborhoods that are not separated by E, or they have at least2k2 kcommon points, or we can find a finite number of pointsx_(1),x_(2)dots,x_(m)x_{1}, x_{2} \ldots, x_{m}of E such that, ifV_(x_(i))^(k)\mathrm{V}_{x_{i}}^{k}are any neighborhoods, in the sequence
two consecutive terms have at least2k2 kcommon points.
4. Let us attach to eachx inE^(˙)x \in \dot{E}a neighborhoodV_(x)^(k)V_{x}^{k}and eitherQ\mathscr{Q}all of these neighborhoods. Ifa,b in Ea, b \in Ethe almost-closureE^(˙)\dot{E}coincides with the closurebar(E)\overline{\mathrm{E}}of E , so is a closed set. In this case, we can apply the Bore1-Lebesgue theorem and choose in Q a finite number of terms covering entirely the set E, therefore a fortiori the set E. These terms can obviously be arranged in a sequence in such a way that two consecutive terms are not separated by E . Taking into account Lemma II, we deduce the
Lemma III. Ifa,b in Ea, b \in Eand ifVVis a set of neighborhoodsV_(**)^(k)V_{*}^{k}corresponding to all pointsxxofE^(˙)= bar(E)\dot{\mathrm{E}}=\overline{\mathrm{E}}, we can choose a finite number of terms in Q),
completely covering the set E and two consecutive onesV_(x_(i))^(k),V_(x_(i+1))^(k)\mathrm{V}_{x_{i}}^{k}, \mathrm{~V}_{x_{i+1}}^{k}having at least2k2 kcommon points.
5. A functionf=f(x)f=f(x), uniform and defined on any linear set E is said to be convex, non-concave, polynomial, non-convex or concave of ordernnon E if inequality
(2)
is satisfied whateverx_(1),x_(2),dots,x_(n+2)inEx_{1}, x_{2}, \ldots, x_{n+2} \in \mathrm{E}.
All these functions are order functionsn(^(1))n\left({ }^{\mathbf{1}}\right).
Any convex, non-concave, etc. function of ordernnon E is still convex, non-concave,... etc. of ordernnon any subset of E.
We recall that the necessary and sufficient condition forff, defined on a finite set
Cette propriété résulte du fait que toute différence divisée sur n+2n+2 points de (3) est une moyenne arithmétique des différences divisées spécifiées par l'inégalité (4), donc
Si i_(1) < i_(2) < dots < i_(n+2)\mathrm{i}_{1}<i_{2}<\ldots<i_{n+2} on a d'ailleurs surement A_(i_(1)) > 0,A_(i_(n+2)-n-1) > 0\mathrm{A}_{i_{1}}>0, \mathrm{~A}_{i_{n+2}-n-1}>0. Les A_(i)A_{i} sont indépendants de la fonction /̸\not /.
De cette propriété nous déduisons, en particulier, que:
Lemme IV. Si une fonction ff est convexe, non-concave, . . . etc. d'ordre nn sur deux sections E_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2} de E_(1)\mathrm{E}_{1} ayant au moins n+In+\mathrm{I} points communs elle est convexe, non-concave,... etc. d'ordre n sur la réunion des ensembles F_(1),F_(2)\mathrm{F}_{1}, \mathrm{~F}_{2}.
Ceci résulte immédiatement de ce qui précède et du fait que si alpha_(1),alpha_(2)\alpha_{1}, \alpha_{2}, dots,alpha_(n+2)\ldots, \alpha_{n+2} sont n+2n+2 points de la réunion de E_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2} et beta_(1),beta_(2),dots,beta_(n+1)\beta_{1}, \beta_{2}, \ldots, \beta_{n+1}, n+n+ I points communs à E_(1)\mathrm{E}_{1} et E_(2)\mathrm{E}_{2}, les points alpha_(i)\alpha_{i}, beta_(i)\beta_{i} rangés dans 1'ordre croissant jouissent de la propriété que n+2n+2 points consécutifs quelconques appartiennent tous à E_(1)\mathrm{E}_{1} ou à F_(2)\mathrm{F}_{2}.
6. Introduisons maintenant la définition suivante:
Définition I. La fonction ff est dite localement convexe, non-concave, ... etc. d'ordre nn sur E si à tout x inE^(˙)x \in \dot{\mathrm{E}} correspond un voisinage V_(x)^(k)\mathrm{V}_{x}^{k} ờ la fonction est convexe, non-concave, ... etc. d'ordre nn.
Nous supposons toujours n >=n \geq I. Pour que la définition précédente ait un sens précis il faut que. EE ait au moins n+2n+2 points et que l'on ait 2k >= n+I2 k \geq n+I. La plus petite valeur de kk qu'on peut ainsi admettre est donc [(n+2)/(2)]\left[\frac{n+2}{2}\right], en désignant, comme d'habitude, par [alpha][\alpha] le plus grand entier compris dans alpha\alpha.
Nous avons maintenant la propriété suivante:
Théorème I. Toute fonction localement convexe, non-concave..., etc. d'ordre nn sur E , avec k=[(3+2)/(2)]k=\left[\frac{3+2}{2}\right], est convexe, non-concave, . . etc. d'ordre nn sur E .
Il suffit de démontrer la propriété pour une section de E contenant ses extrémités. La propriété résulte alors des lemmes III et IV. Dans le cas d'un intervalle les voisinages peuvent être pris au sens ordinarie et la propriété a été donnée alors pour n=1n=1 par M. J. B 1aquier ^(1){ }^{1} ).
On peut facilement voir que la considération de la presque-fermeture E dans la définition I est essentielle. Si dans cette définition onplace l'hypothèse x inE^(˙)x \in \dot{\mathrm{E}} par l'hypothèse moins restrictive x inEx \in \mathrm{E} le théo rème I peut ne pas être vrai pour un ensemble qui n'est fermé. Par exemple la fonetic unest pas presque-
f(x)={[x",",0 <= x < I],[x-I",",I < x <= 2]:}f(x)= \begin{cases}x, & 0 \leq x<I \\ x-I, & I<x \leq 2\end{cases}
est bien localement polynomiale de tout ordre n >= In \geq I avec la nouvelle définition (pour un kk quelconque), mais n'est pas d'ordre nn sur son ensemble de définition.
On pourrait encore chercher si on ne peut pas améliorer la propriété par une définition plus restrictive du voisinage. On peut facilement voir que si nn est pair il suffit de considérer des voisinage ayant au moins n+1n+1 points différents de xx et ayant tous au moins (n+2)/(2)\frac{n+2}{2} points d'une même côté de xx et au moins (n)/(2)\frac{n}{2} points de l'autre côté de xx.
7. On peut aussi imposer à un voisinage d'autres conditions entrenant la convexité. On peut dire, par exemple, que ff a localement une droite d'appui si, quel que soit le point x_(0)x_{0} de E , différent d'une extrémité a,ba, b, il existe un voisinage V_(x_(0))^(r)V_{x_{0}}^{\mathrm{r}} et une droite non-vérticale Delta\Deltapassing through the point (x_(0),f(x_(0))x_{0}, f\left(x_{0}\right)) leaving the curvey=f(x)y=f(x)not belowDelta\DeltaForx inV_(x_(0))^(I)x \in \mathrm{~V}_{x_{0}}^{\mathrm{I}}. We then have 1 e
Theorem II. Any functionff, defined and continuous on the almost closed set E and having locally a support line, is non-concave of order I on F.
The demonstration follows from the facts that every non-concave function of order ia locally has a support line and that this property is not true for a function which is not non-concave of order 1. In
In fact, in this latter case, we can find three pointsx_(1) < x_(2) < x_(3)x_{1}<x_{2}<x_{3}of E such that[x_(1),x_(2),x_(3);f] < o\left[x_{1}, x_{2}, x_{3} ; f\right]<\mathrm{o}. the set of points where the functionf(x)--(x-x_(3))/(x_(1)-x_(3))f(x_(1))-(x-x_(1))/(x_(3)-x_(1))f(x_(3))f(x)- -\frac{x-x_{3}}{x_{1}-x_{3}} f\left(x_{1}\right)-\frac{x-x_{1}}{x_{3}-x_{1}} f\left(x_{3}\right)reaches its maximum (> 0>0) on the part of E included in the closed interval (x_(1),x_(3)x_{1}, x_{3}), is closed. The ends of this set are points ofEE, different froma,ba, b, where there is no local support line.
We demonstrate Theorem III in the same way
. Any function,ff, defined and continuous on an almost closed set E which is such that, whateverx_(0)inEx_{0} \in \mathrm{E}, different from a andbb, there are two pointsx^('),x^(''),x^(') < x_(0) < x^('')x^{\prime}, x^{\prime \prime}, x^{\prime}<x_{0}<x^{\prime \prime}such that ifV_(epsi_(0))^(I)\mathrm{V}_{\boldsymbol{\varepsilon}_{0}}^{\mathrm{I}}C(x^('),x^(''))\left(x^{\prime}, x^{\prime \prime}\right)we can find two pointsx_(1),x_(2)x_{1}, x_{2}ofV_(x_(0))^(1),x_(1) < x_(0) < x_(2)\mathrm{V}_{x_{0}}^{\mathbf{1}}, x_{1}<x_{0}<x_{2}verifying the inequality[x_(0),x_(1),x_(2);f] >= 0\left[x_{0}, x_{1}, x_{2} ; f\right] \geqq 0, is non-concave of order I on E.
These properties can be generalized further, but there is no point in doing so here.
8. We could also introduce the following definition:
Definition II. The functionffis locally of ordernnon E, if at allx inEx \in \mathbb{E}corresponds to a neighborhoodV_(**)^(k)\mathrm{V}_{*}^{k}where the function is of ordernn.
A locally order functionnnis not generally of ordernnon E, however large it may bekk. For example, the function f(x)=(x-I)^(n+I),0 <= x <= I;=0,I <= x <= 2;=-(x-2)^(n+I),2 <= x <= 3f(x)=(x-I)^{n+I}, 0 \leq x \leq I ;=0, I \leq x \leq 2 ;=-(x-2)^{n+I}, 2 \leq x \leq 3
is locally of ordernn(regardless ofkk) and yet is not of ordernnin the closed interval ( 0.3 ).
But, we have
Lemma V. If a functionffis convex or concave of ordernnon two sectionsE_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2}of E having at leastn+2n+2common points, it is convex or concave of ordernnon the meeting of the setsE_(1),E_(2)\mathrm{E}_{1}, \mathrm{E}_{2}.
This lemma is a consequence of Lemma IV sinceffcannot be convex on one section and concave on the other.
We immediately deduce
Theorem IV. If at allx inE^(˙)x \in \dot{E}corresponds to a neighborhoodV_(x)^(k)V_{x}^{k}, withk=[(n+3)/(2)]k=\left[\frac{n+3}{2}\right]where the functionffis convex or concave of ordernn, this function is convex or concave of ordernnon E.
Here again the property can be improved by a more restrictive definition of the neighborhood ifnnis odd. It is then sufficient to consider neighborhoods having at leastn+2n+2different points ofxxand having all at least(n+3)/(2)\frac{n+3}{2}points on the same side ofxxand at least(n+1)/(2)\frac{n+1}{2}points on the other side ofxx.
40 note on smooth convex functions of higher order (viii)
Before finishing, let us make some remarks on the divided differences of a functionff. Let us pose.
Finite or infinite numbersbar(Delta)_(n),Delta __(n)\bar{\Delta}_{n}, \underline{\Delta}_{n}AndDelta_(n)\Delta_{n}are thenn-th upper bound, thenn-th lower bound and thenn-th terminal offfon E. We will also designate them bybar(Delta)_(n)[f;E],Delta __(n)[f;E]\bar{\Delta}_{n}[f ; \mathrm{E}], \underline{\Delta}_{n}[f ; \mathrm{E}]AndDelta_(n)[f;E]^(1)\Delta_{n}[f ; \mathrm{E}]{ }^{\mathbf{1}}).
So we have
(5)quadDelta_(n)[f;E_(1)+E_(2)] >= max(Delta_(n)[f;E_(1)],Delta_(n)[f;E_(2)])\quad \Delta_{n}\left[f ; \mathrm{E}_{1}+\mathrm{E}_{2}\right] \geq \max \left(\Delta_{n}\left[f ; \mathrm{E}_{1}\right], \Delta_{n}\left[f ; \mathrm{E}_{2}\right]\right).
Letalpha_(1),alpha_(2),dots,alpha_(n+1),n+I\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}, n+\mathrm{I}points ofE_(1)+E_(2)\mathrm{E}_{1}+\mathrm{E}_{2}Andbeta_(1),beta_(2),dots,beta_(n)n\beta_{1}, \beta_{2}, \ldots, \beta_{n} ncommon points toE_(1)\mathrm{E}_{1}AndE_(2)\mathrm{E}_{2}. If we arrange the pointsbeta_(i),alpha_(i)\beta_{i}, \alpha_{i}in a sequence (3),n+In+Iconsecutive points always belong toE_(1)E_{1}or toE_(2)E_{2}. We deduce that
done
^(1){ }^{1}) The numbersbar(Delta)_(n),Delta __(n),Delta_(n)\bar{\Delta}_{n}, \underline{\Delta}_{n}, \Delta_{n}may be infinite, we use the usual conventions on operations with signs+-oo\pm \infty. See, e.g., C. Carath éodory, Vorlesüngen über reelle Funktionen, pp. 14, 15.
The two inequalities (5), (6) prove the property. The first two equalities of the lemma are proved in exactly the same way.
We can now state
Theorem V. If f is a function defined on E, (bounded), we can find three pointsx_(0),x_(1),x_(2)x_{0}, x_{1}, x_{2}(distinct or not) from the closurebar(E)\overline{\mathrm{E}}of E so that, whatever the neighborhoodsV_(x_(0))^(k),V_(x_(1))^(k),V_(x_(1))^(k)V_{x_{0}}^{k}, V_{x_{1}}^{k}, V_{x_{1}}^{k}, withk=[(n+1)/(2)]k=\left[\frac{n+1}{2}\right], we have
Let us demonstrate, for example, the last equality. If the equality were not true, we could attach to eachx in bar(E)x \in \overline{\mathrm{E}}a neighborhoodV_(x)^(k)\mathrm{V}_{x}^{k}OrDelta_(n)[f;V_(x)^(k)]<<A_(n)[f;E]\Delta_{n}\left[f ; \mathrm{V}_{x}^{k}\right]< <A_{n}[f ; E]. Lemmas III and VI show us that this is impossible. We prove the first two inequalities in the same way. It goes without saying that we always assumen >= In \geq I.
We have already reported this property, forDelta_(n)\Delta_{n}assumed to be finite, in the case where E is everywhere dense in(a,b)^(1)(a, b){ }^{1}) and also whenDelta_(n)\Delta_{n}is infinite under certain restrictions^(2){ }^{2}).
In the theoremVVThe definition of neighborhood can be modified in various ways, but we are not concerned with this question here.
Cernăuti, July 8, 1939.
^(1){ }^{1}) In note VI we gave a slightly different definition of section. In this note E , was always closed and we only needed closed sections ofE_(". ")\mathrm{E}_{\text {. }}.
^(1){ }^{1}) This is sufficient for our considerations. In reality the two neighborhoods have at least2k+2 k+I common points and even always an infinity ifx inE^(')x \in E^{\prime}.
^(1)){ }^{1)}For the notations and properties of these functions see my previous work.
^(1){ }^{1}) J. B1aquier, Sobve dos condiciones carateristicas de las functiones convexas, Atti Congresso Bologna, 2, 349-353 (1930).
^(1){ }^{1}) Tiberiu Popoviciu, On some properties of functions of one or two real variables. Thesis, Paris 1933 or Mathematica, 8, 1-85 (1934), sp. p. 10. ^(2){ }^{2}) Tiberiu Popoviciu, Notes on Higher Order Convex Functions (I). Mathematica, 12, 81-92 (1936), sp. p. 89.