Numerical investigations on ergodicity of solute transport in heterogeneous aquifers

Abstract

Darcy velocities for lognormal hydraulic conductivity with small variance and finite correlation length were approximated by periodic random fields. Accurate simulations of two‐dimensional advection‐dispersion processes were achieved with the global random walk algorithm, using 1010 particles in every transport realization. Reliable statistical estimations were obtained by averaging over 256 realizations.

The main result is a numerical evidence for the mean square convergence of the actual concentrations to the macrodispersion process predicted by a known limit theorem. For small initial plumes the ergodic behavior can be expected after thousands of advection timescales, when the deviation from the theoretical prediction of the cross‐section space‐averaged concentration monotonously decays and falls under 20%. The increase of the transverse dimension of the initial plume slows down the approach to the quasi‐ergodic state and has a nonlinear effect on the variability of the actual concentrations and dispersivities.

Authors

N. Suciu
Institute of Applied Mathematics, Friedrich-Alexander University of
Erlangen-Nuremberg, Erlangen, Germany

C. Vamos
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

J. Vanderborght
Institute of Agrosphere (ICG-IV), Research Center Julich, Julich, Germany.

H. Hardelauf
Institute of Agrosphere (ICG-IV), Research Center Julich, Julich, Germany.

H. Vereecken
Institute of Agrosphere (ICG-IV), Research Center Julich, Julich, Germany.

Keywords

?

Paper coordinates

N. Suciu, C. Vamoş, J. Vanderborght, H. Hardelauf, H. Vereecken (2006), Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res., 42, W04409, doi: 10.1029/2005WR004546

References

see the expanding block below

PDF

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005WR004546

About this paper

Journal

Water Resour. Res.

Publisher Name

EGU

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

[1] Ababou, R., D. McLaughlin, L. W. Gelhar, and A. F. B. Tompson (1989), Numerical simulation of threedimensional saturated flow in randomly heterogeneous porous media, Transp. Porous Media, 4, 549–565.
CrossRef (DOI)

[2] Attinger, S., M. Dentz, H. Kinzelbach, and W. Kinzelbach (1999), Temporal behavior of a solute cloud in a chemically heterogeneous porous medium, J. Fluid Mech., 386, 77–104.
CrossRef (DOI)

[3] Avellaneda, M., and M. Majda (1989), Stieltjes integral representation and effective diffusivity bounds for turbulent diffusion, Phys. Rev. Lett., 62(7), 753–755.
CrossRef (DOI)

[4] Avellaneda, M., and M. Majda (1992), Superdiffusion in nearly stratified flows, J. Stat. Phys., 69(3/4), 689–729.
CrossRef (DOI)

[5] Bellin, A., P. Salandin, and A. Rinaldo (1992), Simulation of dispersion in heterogeneous porous formations: Statistics, firstorder theories, convergence of computations, Water Resour. Res., 28(9), 2211–2227.
CrossRef (DOI)

[6] Berkowitz, B. (2001), Dispersion in heterogeneous geological formations: Preface, Transp. Porous Media, 42, 1–2.
CrossRef (DOI)

[7] Berkowitz, B., and H. Scher (2001), Probabilistic approaches to transport in heterogeneous media, Transp. Porous Media, 42, 241–263.
CrossRef (DOI)

[8] Chin, D. A., and T. Wang (1992), An investigation of the validity of firstorder stochastic dispersion theories in isotropic porous media, Water Resour. Res, 28(6), 1531–1542.
CrossRef (DOI)

[9] Clincy, M., and H. Kinzelbach (2001), Stratified disordered media: Exact solutions for transport parameters and their selfaveraging properties, J. Phys. A Math. Gen., 34, 7142–7152.
CrossRef (DOI)

[10] Cortis, A., H. Scher, and B. Berkowitz (2004), Numerical simulation of nonFickian transport in geological formations with multiplescale heterogeneity, Water Resour. Res., 40, W04209.
CrossRef (DOI)

[11] Cushman, J. H., and M. Moroni (2001), Statistical mechanics with threedimensional particle tracking velocimetry experiments in the study of anomalous dispersion. I. Theory, Phys. Fluids, 13(1), 75–80.
CrossRef (DOI)

[12] Dagan, G. (1984), Solute transport in heterogeneous porous formations, J. Fluid Mech., 145, 151–177.
CrossRef (DOI)

[13] Dagan, G. (1987), Theory of solute transport by groundwater, Water Resour. Res., 19, 183–215.
CrossRef (DOI)

[14] Dagan, G. (1990), Transport in heterogeneous porous formations: Spatial moments, ergodicity, and effective dispersion, Water Resour. Res., 26, 1281–1290.
CrossRef (DOI)

[15] Dagan, G. (2004), Comment on “Exact averaging of stochastic equations for transport in random velocity field,” Transport in Porous Media, 50, 223–241, 2003, and “Probability density functions for solute transport in random field,” Transport in Porous Media, 50, 243–266, 2003, Transp. Porous Media, 55, 113–116.
CrossRef (DOI)

[16] Dagan, G., and A. Fiori (1997), The influence of porescale dispersion on concentration statistical moments in transport through heterogeneous aquifers, Water Resour. Res., 33, 1595–1607.
CrossRef (DOI)

[17] Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000a), Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Pointlike injection, Water Resour. Res., 36, 3591–3604.
CrossRef (DOI)

[18] Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000b), Temporal behavior of a solute cloud in a heterogeneous porous medium 2. Spatially extended injection, Water Resour. Res., 36, 3605–3614.
CrossRef (DOI)

[19] Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2002), Temporal behavior of a solute cloud in a heterogeneous porous medium: 3. Numerical simulations, Water Resour. Res., 38(7), 1118.
CrossRef (DOI)

[20] Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2003), Numerical studies of the transport behavior of a passive solute in a twodimensional incompressible random flow field, Phys. Rev. E, 67, 046306.
CrossRef (DOI)

[21] Eberhard, J. (2004), Approximations for transport parameters and selfaveraging properties for pointlike injections in heterogeneous media, J. Phys. A Math. Gen., 37, 2549–2571.
CrossRef (DOI)

[22] Fernàndez‐Garcia, D., T. H. Illangasekare, and H. Rajaram (2005a), Differences in the scale dependence of dispersivity and retardation factors estimated from forcedgradient and uniform flow tracer tests in threedimensional physically and chemically heterogeneous porous media, Water Resour. Res., 41, W03012, doi:10.1029/2004WR003125.
CrossRef (DOI)

[23] Fernàndez‐Garcia, D., H. Rajaram, and T. H. Illangasekare (2005b), Assessment of the predictive capabilities of the stochastic theories in a threedimensional laboratory test aquifer: Effective hydraulic conductivity and temporal moments of breakthrough curves, Water Resour. Res., 41, W04002.
CrossRef (DOI)

[24] Fiori, A. (1996), Finite Peclet extensions of Dagan’s solutions to transport in anisotropic heterogeneous formations, Water Resour. Res., 32, 193–198.
CrossRef (DOI)

[25] Fiori, A. (1998), On the influence of porescale dispersion in nonergodic transport in heterogeneous formations, Transp. Porous Media, 30, 57–73.
CrossRef (DOI)

[26] Fiori, A., and G. Dagan (2000), Concentration fluctuations in aquifer transport: A rigorous firstorder solution and applications, J. Contam. Hydrol., 45, 139–163.
CrossRef (DOI)

[27] Fiori, A., I. Janković, and G. Dagan (2003), Flow and transport in highly heterogeneous formations: 2. Semianalytical results for isotropic media, Water Resour. Res., 39(9), 1269.
CrossRef (DOI)

[28] Hassan, A. H., J. H. Cushman, and J. W. Delleur (1998), A Monte Carlo assessment of Eulerian flow and transport perturbation models, Water Resour. Res., 34(5), 1143–1163.
CrossRef (DOI)

[29] Jaekel, U., and H. Vereecken (1997), Renormalization group analysis of macrodispersion in a directed random flow, Water Resour. Res., 33, 2287–2299.
CrossRef (DOI)

[30] Janković, I., A. Fiori, and G. Dagan (2003), Flow and transport in highly heterogeneous formations: 3. Numerical simulations and comparison with theoretical results, Water Resour. Res., 39(9), 1270.
CrossRef (DOI)

[31] Kabala, Z. J., and G. Sposito (1994), Statistical moments of reactive solute concentration in a heterogeneous aquifer, Water Resour. Res., 30, 759–768.
CrossRef (DOI)

[32] Kapoor, C., and L. W. Gelhar (1994), Transport in threedimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations, Water Resour. Res., 30(6), 1775–1788.
CrossRef (DOI)

[33] Kapoor, C., and P. K. Kitanidis (1998), Concentration fluctuation and dilution in aquifers, Water Resour. Res., 34, 1181–1193.
CrossRef (DOI)

[34] Kesten, H., and G. C. Papanicolaou (1979), A limit theorem for turbulent diffusion, Commun. Math. Phys., 65, 97–128.
CrossRef (DOI)

[35] Kitanidis, P. K. (1988), Prediction by the method of moments of transport in a heterogeneous formation, J. Hydrol., 102, 453–473.
CrossRef (DOI)

[36] Kraichnan, R. H. (1970), Diffusion by a random velocity field, Phys. Fluids, 13(1), 22–31.
CrossRef (DOI)

[37] Kurbanmuradov, O., K. Sabelfeld, O. F. Smidts, and H. Vereecken (2003), A Lagrangian stochastic model for the transport in statistically homogeneous porous media, Monte Carlo Methods Appl., 9(4), 341–366.
CrossRef (DOI)

[38] Labolle, E. M., and G. Fogg (2001), Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system, Transp. Porous Media, 42, 155–179.
CrossRef (DOI)

[39] Matheron, G., and G. de Marsily (1980), Is transport in porous media always diffusive? Water Resour. Res., 16, 901–917.
CrossRef (DOI)

[40] Moltyaner, G. L., M. H. Klukas, C. A. Willis, and R. W. D. Killey (1993), Numerical simulations of Twin Lake naturalgradient tracer tests: A comparison of methods, Water Resour. Res., 29(10), 3433–3452.
CrossRef (DOI)

[41] Naff, R. L., D. F. Haley, and E. A. Sudicky (1998a), Highresolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 1. Methodology and flow results, Water Resour. Res., 34(4), 663–677.
CrossRef (DOI)

[42] Naff, R. L., D. F. Haley, and E. A. Sudicky (1998b), Highresolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results, Water Resour. Res., 34(4), 679–697.
CrossRef (DOI)

[43] Pannone, M., and P. K. Kitanidis (1999), Large time behavior of concentration variance and dilution in heterogeneous formations, Water Resour. Res., 35(3), 623–634.
CrossRef (DOI)

[44] Rajaram, H., and L. W. Gelhar (1993a), Plume scaledependent dispersion in heterogeneous aquifers: 1. Lagrangian analysis in a stratified aquifer, Water Resour. Res., 29, 3249–3260.
CrossRef (DOI)

[45] Rajaram, H., and L. W. Gelhar (1993b), Plume scaledependent dispersion in heterogeneous aquifers: 2. Eulerian analysis and threedimensional aquifers, Water Resour. Res., 29, 3261–3276.
CrossRef (DOI)

[46] Roth, K., and K. Hammel (1996), Transport of conservative chemical through an unsaturated twodimensional Millersimilar medium with steady state flow, Water Resour. Res., 32, 1653–1663.
CrossRef (DOI)

[47] Salandin, P., and V. Fiorotto (1998), Solute transport in highly heterogeneous aquifers, Water Resour. Res., 34, 949–961.
CrossRef (DOI)

[48] Schwarze, H., U. Jaekel, and H. Vereecken (2001), Estimation of macrodispersivity by different approximation methods for flow and transport in randomly heterogeneous media, Transp. Porous Media, 43, 265–287.
CrossRef (DOI)

[49] Smith, L., and F. W. Schwartz (1980), Mass transport: 1. A stochastic analysis of macroscopic dispersion, Water Resour. Res., 16, 303–313.
CrossRef (DOI)

[50] Sposito, G. (1997), Ergodicity and the “scale effect”, Adv. Water Resour., 20, 309–316.
CrossRef (DOI)

[51] Sposito, G. (2001), Topological groundwater hydrodynamics, Adv. Water Resour., 24, 793–801.
CrossRef (DOI)

[52] Sposito, G., and G. Dagan (1994), Predicting solute plume evolution in heterogeneous porous formations, Water Resour. Res., 30(2), 585–589.
CrossRef (DOI)

[53] Sposito, G., W. A. Jury, and V. K. Gupta (1986), Fundamental problems in the stochastic convectiondispersion model of solute transport in aquifers and field soils, Water Resour. Res., 22, 77–88.
CrossRef (DOI)

[54] Suciu, N., C. Vamoş, H. Vereecken, and J. Vanderborght (2002), Numerical modeling of solute transport in heterogeneous aquifers and selfaveraging, in Proceedings of the first Workshop on Mathematical Modeling of Environmental Problems, edited by G. Marinovschi, and I. Stelian, pp. 111–140, Rom. Acad. Publ. House, Bucharest.

[55] Suciu, N., C. Vamoş, J. Vanderborght, H. Hardelauf, and H. Vereecken (2004), Numerical modeling of large scale transport of contaminant solutes using the global random walk algorithm, Monte Carlo Methods Appl., 10(2), 153–177.
CrossRef (DOI)

[56] Suciu, N., C. Vamoş, P. Knabner, and U. Rüde (2005), Biased global random walk, a cellular automaton for diffusion, in Simulationstechnique, 18th Symposium in Erlangen, September 2005, edited by F. Hülsemann, M. Kowarschik, and U. Rüde, pp. 562–567, SCS Publ. House, Erlangen, Germany.

[57] Sun, N.‐Z. (1996), Mathematical Modeling in Groundwater Pollution, Springer, New York.
CrossRef (DOI)

[58] Tatarinova, E. B., P. A. Kalugin, and A. V. Sokol (1991), What is the propagation rate of the passive component in turbulent flow limited by? Europhys. Lett., 14(8), 773–777.
CrossRef (DOI)

[59] Taylor, G. I. (1921), Diffusion by continuous movements, Proc. London Math. Soc., 2(20), 196–212.
CrossRef (DOI)

[60] Tompson, A. F. B., and L. W. Gelhar (1990), Numerical simulation of solute transport in threedimensional, randomly heterogeneous porous media, Water Resour. Res., 26(10), 2541–2562.
CrossRef (DOI)

[61] Trefry, M. G., F. P. Ruan, and D. McLaughlin (2003), Numerical simulations of preasymptotic transport in heterogeneous porous media: Departures from the Gaussian limit, Water Resour. Res., 39(3), 1063.
CrossRef (DOI)

[62] Vamoş, C., N. Suciu, and H. Vereecken (2003), Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comput. Phys., 186(2), 527–544.
CrossRef (DOI)

[63] Vanderborght, J., and H. Vereecken (2002), Estimation of local scale dispersion from local breackthrough curves during a tracer test in a heterogenaous aquifer: The Lagrangian approach, J. Contam. Hydol., 54, 141–171.
CrossRef (DOI)

[64] Winter, C. L., C. M. Newman, and S. P. Neuman (1984), A perturbation expansion for diffusion in random velocity field, SIAM J. Appl. Math., 44(2), 411–424.
CrossRef (DOI)

[65] Zhang, Y.‐K., and J. Lin (1998), Numerical simulations of transport of nonergodic solute plumes in heterogeneous aquifers, Stochastic Hydrol. Hydraul., 12(2), 117–139.
CrossRef (DOI)

[66] Zhang, Y.‐K., and B.‐M. Seo (2004), Stochastic analyses and Monte Carlo simulations of nonergodic solute transport in threedimensional heterogeneous statistically anisotropic aquifers, Water Resour. Res., 40, W05103.
CrossRef (DOI)

[67] Zhang, Y.‐K., and D. Zhang (1997), Timedependent dispersion of nonergodic plumes in twodimensional heterogeneous aquifers, J. Hydrol. Eng., 2(2), 91–94.
CrossRef (DOI)

[68] Zhang, Y.‐K., D. Zhang, and J. Lin (1996), Nonergodic solute transport in threedimensional heterogeneous isotropic aquifers, Water Resour. Res., 32(9), 2955–2963.
CrossRef (DOI)

soon

2006

Related Posts