Abstract
In this paper we deal with a sequence of positive linear operators \(\ R_{n}^{\left[ \beta \right] }\) approximating functions on the unbounded interval \([0,1)\) which were firstly used by K. Balazs and J. Szabados. We give pointwise estimates in the framework of polynomial weighted function spaces. Also we establish a Voronovskaja type theoremin the same weighted spaces for \(K_{n}^{ \left[ \beta \right] }\) operators, representing the integral generalization in Kantorovich sense of the \(R_{n}^{\left[ \beta \right] }\).
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
weighted space; linear and positive operator; Kantorovich-type operator; Voronovskaja-type theorem.
Paper coordinates
O. Agratini, On approximation properties of Balázs-Szabados operators their Kantorovich extension, Korean Journal of Computational & Applied Mathematics, 9 (2002), 361-372
About this paper
Journal
Korean Journal of Computational & Applied Mathematics
Publisher Name
DOI
Print ISSN
1229-9502
Online ISSN
google scholar link
1. U. Abel, B. Della Vecchia, Asymptotic approximation by the operators of K. Balazs and Szabados, Acta Sci. Math. (Szeged), 66(2000), 137-145.
2. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55 Issued June, 1964.
3. O. Agratini, An approximation process of Kantorovich type, Mathematical Notes (Miskolc), 2(2001), 1, 3-10.
4. F. Altomare, I. Carbone, On a new sequence of positive linear operators on unbounded intervals, Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl., 40(1996), 23-36.
5. K. Balazs, Approximation by Bernstein type rational functions, Acta Math. Acad. Sci. Hungar., 26(1975), f.1-2, 123-134.
6. C. Balazs, J. Szabados, Approximation by Bernstein type rational functions. II, Acta Math. Acad. Sci. Hungar., 40(1982), 331-337.
7. M. Becker, Global approximation theorems for Sz´asz-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27(1978), n.1, 127-142.
8. I. Carbone, Approximation properties of some sequences of positive linear operators on weighted function spaces, Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl., 52(1998), 305-336.
9. B. Della Vecchia, On some preservation and asymptotic relations of a rational operator. Facta Universitatis (Ni˘s), 4(1989), 57-62.
10. P.C. Sikkema, On some linear positive operators, Indagationes Mathematicae, 32(1970), 4, 327-337.
11. V. Totik, Saturation for Bernstein type rational functions, Acta Math. Hung., 43(1984), f.3-4, 219-250.