Abstract
In the present paper we define a general class \(B_{n,\alpha},\alpha\) \(\geq1\), of Durrmeyer-Bezier type of linear positive operators. Our main aim is to estimate the rate of pointwise convergence for functions \(f\) at those points\(x\) at which the one-sided limits \(f\left(x+\right)\) and \(f\left(x-\right)\) exist. As regards these functions defined on an interval \(J\) certain conditions are required. We discuss two distinct cases: Int \(\left( J\right) =\left(0,\infty\right)\) and (\left( J\right)=0,1\).
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
Approximation process; function with bounded variation; Kantorovich-type operators; rate of convergence.
Paper coordinates
O. Agratini, On the rate of convergence of some integral operators for functions of bounded variation, Studia Scientiarum Mathematicarum Hungarica, 42 (2005) no. 2, pp. 235-252, https://doi.org/10.1556/sscmath.42.2005.2.8
About this paper
Journal
Studia Scientiarum Mathematica Hungarica
Publisher Name
?
Print ISSN
Online ISSN
google scholar link
[2] Aniol, G., On the Rate of Pointwise Convergence of the Kantorovich-type Operators, Fasciculi Mathematici 29 (1999), 5–15. MR 2000m:41022 MR1724461
[3] Bastien, G. and Rogalski, M., Convexité, complète monotonie et inégalités sur les fonctions zêta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques, Canadian J. Math. 54 (2002), 5, 916–944. MR 2003i:11121 MR1924708
[4] Bojanic, R. and Khan, M. K., Rate of Convergence of Some Operators of Functions with Derivatives of Bounded Variation, Atti. Sem. Mat. Fis. Univ. Modena, 39 (1991), 495–512. MR 93d:41021 MR1150794
[5] Bojanic, R. and Vuilleumier, M., On the Rate of Convergence of Fourier-Legendre Series of Functions of Bounded Variation, Journal of Approximation Theory, 31 (1981), 67–79. MR 82j:42018 MR0619808
[6] Cheng, F., On the Rate of Convergence of Bernstein Polynomials of Functions of Bounded Variation, Journal of Approximation Theory, 39 (1983), 259–274. MR 85g:41014 MR0720941
[7] Derriennic, M. M., Sur l’approximation des fonctions intégrables sur [0, 1] par des polynômes de Bernstein modifiés, Journal of Approximation Theory, 31 (1981), 325–343. MR 82m:41044 MR0628516
[8] Guo, S., On the Rate of Convergence of the Integrated Meyer—König and Zeller Operators for Functions of Bounded Variation, Journal of Approximation Theory, 56 (1989), 245–255. MR 90g:41031 MR0990339
[9] Gupta, V., A note on the rate of convergence of Durrmeyer type operators for functions of bounded variation, Soochow J. Math. 23 (1997), 1, 115–118. MR 97i:41033 MR1436428
[10] Gupta, V., Inequality Estimate on Durrmeyer Type Operators, Nonlinear Funct. Anal. & Appl. 7 (2002), No. 3, 481–494. MR 2003i:41026 MR1946477
[11] Gupta, V. and Abel, U., On the rate of convergence of Bézier variant of Szász—Durrmeyer operators, Analysis in Theory and Applications 19 (2003), 1, 81–88. MR 2004f:41025 MR1996355
[12] Gupta, V. and Arya, K. V., On the Rate of Pointwise Convergence of Modified Baskakov Type Operators for Functions of Bounded Variation, Kyungpook Math. J. 38 (1998), 283–291. MR 99m:41039 MR1665856
[13] Gupta, V. and Pant, R. P., Rate of Convergence for the Modified Szász-Mirakyan Operators on Functions of Bounded Variation, Journal of Mathematical Analysis and Applications 233 (1999), 476–483. MR 2000c:41030 MR1689649
[14] Heilmann, M. and Müller, M. W., On simultaneous approximation by the method of Baskakov Durrmeyer operators, Numerical Functional Analysis and Optimization 10 (1989), 127–138. MR 90f:41024 MR0978807
[15] Khan, M. K., On the Rate of Convergence of Bernstein Power Series for Functions of Bounded Variation, Journal of Approximation Theory 57 (1989), 90–103. MR 90d:41043 MR0990806
[16] Sahai, A. and Prasad, G., On the Rate of Convergence for Modified Szász-Mirakyan Operators on Functions of Bounded Variation, Publications de l’Institut Mathématique, Beograd 53(67) (1993), 73–80. MR 95m:41039 MR1319758
[17] Zeng, X. M., Bounds for Bernstein Basis Functions and Meyer—König Zeller Basis Functions, Journal of Mathematical Analysis and Applications 219 (1998), 364–376. MR 98m:41042 MR1606338
[18] Zeng, X. M. and Chen, W., On the Rate of Convergence of the Generalized Durrmeyer Type Operators for Functions of Bounded Variation, Journal of Approximation Theory 102 (2000), 1–12. MR 2001b:41002 MR1736042