On a maximum problem of Stieltjes

Abstract

Authors

Keywords

?

Paper coordinates

 T. Popoviciu, Sur un problème de maximum de Stieltjes, (French) C. R. Acad. Sci., Paris 202, 1645-1647 (1936).

PDF

About this paper

Journal

Comptes rendus de l’Académie des Sciences

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1936 c -Popoviciu- Reports - On a Stieltjes maximum problem
Original text
Rate this translation
Your feedback will be used to help improve Google Translate



Theory of functions. - On a problem of Sticlijes maximum. Note by Mr. Tibère Popoviciu.
  1. Assumptions made about the function f ( x ) . f ( x ) f ( x ) . f ( x ) f(x).-f(x)f(x) .-f(x)f(x).f(x)is a real, defined and uniform function on the set E formed by m m mmmfinite and closed intervals ( has i , b i has i , b i a_(i),b_(i)a_{i}, b_{i}hasi,bi) , has i < b i ( i = 1 , , m ) ; b i has i + 1 ( i = 1 , , m 1 ) has i < b i ( i = 1 , , m ) ; b i has i + 1 ( i = 1 , , m 1 ) a_(i) < b_(i)(i=1,dots,m);b_(i) <= a_(i+1)(i=1,dots,m-1)a_{i}<b_{i}(i=1, \ldots, m); b_{i} \leqq a_{i+1}(i=1, \ldots, m-1)hasi<bi(i=1,,m);bihasi+1(i=1,,m1)of the real axis. We will say that f ( x ) f ( x ) f(x)f(x)f(x)is a function (C) if, in each interval ( has i , b i ) : I has i , b i : I (a_(i),b_(i)):I^(@)\left(a_{i}, b_{i}\right): \mathrm{I}^{\circ}(hasi,bi):Iit is non-negative in the open interval, but there are points as close as one wants to has i has i a_(i)a_{i}hasiand of b i b i bi)bi}biwhere the function is positive; 2 2 2^(@)2^{\circ}2it is continuous in has i has i a_(i)a_{i}hasiand in b i ; 3 f ( has i ) = f ( b i ) = 0 ; 4 b i ; 3 f has i = f b i = 0 ; 4 b_(i);3^(@)f(a_(i))=f(b_(i))=0;4^(@)b_{i}; 3^{\circ} f\left(a_{i}\right)=f\left(b_{i}\right)=0 ; 4^{\circ}bi;3f(hasi)=f(bi)=0;4it is exponentially concave in the whole interval. This last property means
    that
f ( x 2 ) > f ( x 1 ) x 3 x 2 x 3 x 1 f ( x 3 ) x 2 x 1 x 3 x 1 ( has i x 1 < x 2 < x 3 b i ) f x 2 > f x 1 x 3 x 2 x 3 x 1 f x 3 x 2 x 1 x 3 x 1 has i x 1 < x 2 < x 3 b i f(x_(2)) > f(x_(1))^((x_(3)-x_(2))/(x_(3)-x_(1)))f(x_(3))^((x_(2)-x_(1))/(x_(3)-x_(1)))quad(a_(i) <= x_(1) < x_(2) < x_(3) <= b_(i))f\left(x_{2}\right)>f\left(x_{1}\right)^{\frac{x_{3}-x_{2}}{x_{3}-x_{1}}} f\left(x_{3}\right)^{\frac{x_{2}-x_{1}}{x_{3}-x_{1}}} \quad\left(a_{i} \leqq x_{1}<x_{2}<x_{3} \leqq b_{i}\right)f(x2)>f(x1)x3x2x3x1f(x3)x2x1x3x1(hasix1<x2<x3bi)
so that log f ( x ) log f ( x ) log f(x)\log f(x)logf(x)is concave.
2. Assumptions made on the points x i x i x_(i)x_{i}xi. - We will say that the n n nnnpoints x 1 x 1 x_(1)x_{1}x1, x 2 , , x n x 2 , , x n x_(2),dots,x_(n)x_{2}, \ldots, x_{n}x2,,xnof the real axis have a given distribution [ k 1 , k 2 , , k m ] if k 1 , k 2 , , k m if [k_(1),k_(2),dots,k_(m)]if\left[k_{1}, k_{2}, \ldots, k_{m}\right] \mathrm{si}[k1,k2,,km]if, among these points, there are k i k i k_(i)k_{i}kiin the meantime ( has i , b i ) ( i = 1 , , m ) has i , b i ( i = 1 , , m ) (a_(i),b_(i))(i=1,dots,m)\left(a_{i}, b_{i}\right)(i=1, \ldots, m)(hasi,bi)(i=1,,m). We have k i 0 , k 1 + k 2 + + k m = n k i 0 , k 1 + k 2 + + k m = n k_(i) >= 0,k_(1)+k_(2)+dots+k_(m)=nk_{i} \geqq 0, k_{1}+k_{2}+\ldots+k_{m}=nki0,k1+k2++km=n. We will say that two different distributions [ k 1 , k 2 , , k m ] k 1 , k 2 , , k m [k_(1),k_(2),dots,k_(m)]\left[k_{1}, k_{2}, \ldots, k_{m}\right][k1,k2,,km]And [ k 1 , k 2 , , k m ] k 1 , k 2 , , k m [k_(1)^('),k_(2)^('),dots,k_(m)^(')]\left[k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}\right][k1,k2,,km]of n n nnnpoints x 1 < x 2 < < x n x 1 < x 2 < < x n x_(1) < x_(2) < dots < x_(n)x_{1}<x_{2}<\ldots<x_{n}x1<x2<<xn(none of which coincide with a has i has i a_(i)a_{i}hasior a b i b i bi)bi}bi) And x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1)^('),x_(2)^('),dots,x_(n)^(')x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}x1,x2,,xnrespectively, are consecutive if we can choose the points x i x i x_(i)^(')x_{i}^{\prime}xiso that we have
x 1 < x 1 < x 2 < x 2 < < x n < x n x 1 < x 1 < x 2 < x 2 < < x n < x n x_(1) < x_(1)^(') < x_(2) < x_(2)^(') < dots < x_(n) < x_(n)^(')quadx_{1}<x_{1}^{\prime}<x_{2}<x_{2}^{\prime}<\ldots<x_{n}<x_{n}^{\prime} \quadx1<x1<x2<x2<<xn<xnOr x 1 < x 1 < x 2 < x 2 < < x n < x n x 1 < x 1 < x 2 < x 2 < < x n < x n quadx_(1)^(') < x_(1) < x_(2)^(') < x_(2) < dots < x_(n)^(') < x_(n)\quad x_{1}^{\prime}<x_{1}<x_{2}^{\prime}<x_{2}<\ldots<x_{n}^{\prime}<x_{n}x1<x1<x2<x2<<xn<xn.
We will also say that two distributions [ L 1 , L 2 , , L m ] L 1 , L 2 , , L m [l_(1),l_(2),dots,l_(m)]\left[l_{1}, l_{2}, \ldots, l_{m}\right][L1,L2,,Lm]And [ h 1 , h 2 , , h m ] h 1 , h 2 , , h m [h_(1),h_(2),dots,h_(m)]\left[h_{1}, h_{2}, \ldots, h_{m}\right][h1,h2,,hm]of n n nnnpoints x 1 < x 2 < < n n x 1 < x 2 < < n n x_(1) < x_(2) < dots < n_(n)x_{1}<x_{2}<\ldots<n_{n}x1<x2<<nnand of n 1 n 1 n-1n-1n1points y 1 , y 2 , , y n 1 y 1 , y 2 , , y n 1 y_(1),y_(2),dots,y_(n-1)y_{1}, y_{2}, \ldots, y_{n-1}y1,y2,,yn1respectively, are consecutive if we can choose the points y i y i y_(i)y_{i}yiso that we have x 1 < y 1 < x 2 < < y n 1 < x n x 1 < y 1 < x 2 < < y n 1 < x n x_(1) < y_(1) < x_(2) < dots < y_(n-1) < x_(n)x_{1}<y_{1}<x_{2}<\ldots<y_{n-1}<x_{n}x1<y1<x2<<yn1<xn.
3. Position of the problem. - The function f ( x ) f ( x ) f(x)f(x)f(x)being a function ( C ) and the points x i x i x_(i)x_{i}xihaving a given distribution, we studied the maximum of the expression
D ( x 1 , x 2 , , x n ; f ) = f ( x 1 ) , f ( x 2 ) , , f ( x n ) i > I 1 , 2 , , n ( x i x I ) 2 D x 1 , x 2 , , x n ; f = f x 1 , f x 2 , , f x n i > I 1 , 2 , , n x i x I 2 D(x_(1),x_(2),dots,x_(n);f)=f(x_(1)),f(x_(2)),dots,f(x_(n))prod_(i > j)^(1,2,dots,n)(x_(i)-x_(j))^(2)\mathrm{D}\left(x_{1}, x_{2}, \ldots, x_{n} ; f\right)=f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right) \prod_{i>j}^{1,2, \ldots, n}\left(x_{i}-x_{j}\right)^{2}D(x1,x2,,xn;f)=f(x1),f(x2),,f(xn)i>I1,2,,n(xixI)2
  1. Results. - Under these conditions, we found that:
    I. D ( x 1 , x 2 , , x n ; f ) D x 1 , x 2 , , x n ; f D(x_(1),x_(2),dots,x_(n);f)\mathrm{D}\left(x_{1}, x_{2}, \ldots, x_{n} ; f\right)D(x1,x2,,xn;f)has a maximum reached for at least one point system x i x i x_(i)x_{i}xi.
    II. This maximum is reached for a single system of n points, distinct and different from the points a i a i a_(i)a_{i}hasiAnd b i b i b_(i)b_{i}bi. We designate by ξ n , 1 < ξ n , 2 < < ξ n , n ξ n , 1 < ξ n , 2 < < ξ n , n xi_(n,1) < xi_(n,2) < dots < xi_(n,n)\xi_{n, 1}<\xi_{n, 2}<\ldots<\xi_{n, n}ξn,1<ξn,2<<ξn,nthe points for which the maximum is reached. We will say that this is the maximizing system of our problem.
    III. The correspondence between a function ( C ) and its maximizing system is continuous. Therefore, at any ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0, corresponds to a η > 0 η > 0 eta > 0\eta>0η>0such that if g ( x ) g ( x ) g(x)g(x)g(x)is another (C) function verifying | f g | < η | f g | < η |f-g| < eta|f-g|<\eta|fg|<ηon E, we have
| ξ n , i ξ n , i | < ε ( i = 1 , , n ) ξ n , i ξ n , i < ε ( i = 1 , , n ) |xi_(n,i)-xi_(n,i)^(')| < epsiquad(i=1,dots,n)\left|\xi_{n, i}-\xi_{n, i}^{\prime}\right|<\varepsilon \quad(i=1, \ldots, n)|ξn,iξn,i|<ε(i=1,,n)
ξ n , i ξ n , i xi_(n,i)^(')\xi_{n, i}^{\prime}ξn,ibeing the maximizing system of g ( x ) g ( x ) g(x)g(x)g(x)corresponding to the same problem.
IV. Maximizing systems ξ n , i , ξ n , i ξ n , i , ξ n , i xi_(n,i),xi_(n,i)^(')\xi_{n, i}, \xi_{n, i}^{\prime}ξn,i,ξn,icorresponding, for the same function f ( x ) f ( x ) f(x)f(x)f(x), to two consecutive distributions of n n nnnpoints, separate. We therefore have
ξ n , 1 < ξ n , 1 < ξ n , 2 < < ξ n , n < ξ n , n ξ n , 1 < ξ n , 1 < ξ n , 2 < < ξ n , n < ξ n , n xi_(n,1) < xi_(n,1)^(') < xi_(n,2) < dots < xi_(n,n) < xi_(n,n)^(')quad\xi_{n, 1}<\xi_{n, 1}^{\prime}<\xi_{n, 2}<\ldots<\xi_{n, n}<\xi_{n, n}^{\prime} \quadξn,1<ξn,1<ξn,2<<ξn,n<ξn,nOr ξ n , 1 < ξ n , 1 < ξ n , 2 < < ξ n , n < ξ n , n ξ n , 1 < ξ n , 1 < ξ n , 2 < < ξ n , n < ξ n , n quadxi_(n,1)^(') < xi_(n,1) < xi_(n,2)^(') < dots < xi_(n,n)^(') < xi_(n,n)\quad \xi_{n, 1}^{\prime}<\xi_{n, 1}<\xi_{n, 2}^{\prime}<\ldots<\xi_{n, n}^{\prime}<\xi_{n, n}ξn,1<ξn,1<ξn,2<<ξn,n<ξn,n.
V. Maximizing systems ξ n , i , ξ n 1 , i ξ n , i , ξ n 1 , i xi_(n,i),xi_(n-1,i)\xi_{n, i}, \xi_{n-1, i}ξn,i,ξn1,icorresponding, for the same function f ( x ) f ( x ) f(x)f(x)f(x), at two consecutive distributions of net of n-1 points, separate. We therefore have
ξ n , 1 < ξ n 1 , 1 < ξ n , 2 < < ξ n 1 , n 1 < ξ n , n . ξ n , 1 < ξ n 1 , 1 < ξ n , 2 < < ξ n 1 , n 1 < ξ n , n . xi_(n,1) < xi_(n-1,1) < xi_(n,2) < dots < xi_(n-1,n-1) < xi_(n,n).\xi_{n, 1}<\xi_{n-1,1}<\xi_{n, 2}<\ldots<\xi_{n-1, n-1}<\xi_{n, n} .ξn,1<ξn1,1<ξn,2<<ξn1,n1<ξn,n.
We can say that two maximizing systems of n n nnnpoints or else n n nnnAnd n 1 n 1 n-1n-1n1points always separate, unless this separation is visibly impossible.
5. The Stieltjes problem. - The special case
f ( x ) = i = 1 m | x a i | σ i | x b i | ρ i ( σ i , ρ i positifs ) f ( x ) = i = 1 m x a i σ i x b i ρ i σ i , ρ i  positifs  f(x)=prod_(i=1)^(m)|x-a_(i)|^(sigma_(i))|x-b_(i)|^(rho_(i))quad(sigma_(i),rho_(i)" positifs ")f(x)=\prod_{i=1}^{m}\left|x-a_{i}\right|^{\sigma_{i}}\left|x-b_{i}\right|^{\rho_{i}} \quad\left(\sigma_{i}, \rho_{i} \text { positifs }\right)f(x)=i=1m|xhasi|σi|xbi|ρi(σi,ρi positive )
was examined by Th. Stieltjes, who obtained properties I and II in another way ( 1 ) ( 1 ) ^((1)){ }^{(1)}(1)In this case, the polynomial P ( x ) = i = 1 n ( x ξ n , i ) P ( x ) = i = 1 n x ξ n , i P(x)=prod_(i=1)^(n)(x-xi_(n,i))\mathrm{P}(x)=\prod_{i=1}^{n}\left(x-\xi_{n, i}\right)P(x)=i=1n(xξn,i)verifies a linear differential equation of the form
y + ( i = 1 m σ i x a i + ρ i x b i ) y + ψ ( x ) ( x a 1 ) ( x b 1 ) ( x a m ) ( x b m ) y = 0 y + i = 1 m σ i x a i + ρ i x b i y + ψ ( x ) x a 1 x b 1 x a m x b m y = 0 y^('')+(sum_(i=1)^(m)(sigma_(i))/(x-a_(i))+(rho_(i))/(x-b_(i)))y^(')+(psi(x))/((x-a_(1))(x-b_(1))dots(x-a_(m))(x-b_(m)))y=0y^{\prime \prime}+\left(\sum_{i=1}^{m} \frac{\sigma_{i}}{x-a_{i}}+\frac{\rho_{i}}{x-b_{i}}\right) y^{\prime}+\frac{\psi(x)}{\left(x-a_{1}\right)\left(x-b_{1}\right) \ldots\left(x-a_{m}\right)\left(x-b_{m}\right)} y=0y+(i=1mσixhasi+ρixbi)y+ψ(x)(xhas1)(xb1)(xhasm)(xbm)y=0
ψ ( x ) ψ ( x ) psi(x)\psi(x)ψ(x)being a certain polynomial of degree 2 m 2 2 m 2 2m-22 m-22m2.
We obtained properties IV and V by showing that it is sufficient to demonstrate this for this particular case and even only for certain particular values ​​of the constants σ i σ i sigma_(i)\sigma_{i}σiAnd ρ i ρ i rho_(i)\rho_{i}ρi.
Property IV is a very broad generalization of some results of F. Klein ( 2 2 ^(2){ }^{2}2) and EB van Vleck ( 3 3 ^(3){ }^{3}3). Property V is related, for m = I m = I m=Im=\mathrm{I}m=I, to the theory of Jacobi polynomials ( 4 4 ^(4){ }^{4}4).

  1. ( 1 1 ^(1){ }^{1}1) Acta Mathematica, 6, 1885, p. 321.
    ( 2 2 ^(2){ }^{2}2) Mathematische Annalen, 18, 1881, p. 237.
    ( 3 3 ^(3){ }^{3}3) Bulletin of the Amer. Math. Soc., 2 e 2 e 2^(e)2^{\mathrm{e}}2eseries, 4, 1898, p. 426.
    ( 1 ) ( 1 ) ^((1)){ }^{(1)}(1)Th. J. Stieltjes, Reports, 100, 1885, p. 620.
1936

Related Posts