Abstract
Authors
Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania
Keywords
?
Paper coordinates
C. Mustăţa, On a problem of B.A. Karpilovskaya, Rev. Anal. Numér. Théor. Approx. 29 (1999) no. 2, pp. 179-189.
About this paper
Journal
Revue d’Analyse Numer. Theor. Approx.
Publisher Name
Publishing Romanian Academy
Print ISSN
2457-6794
Online ISSN
2501-059X
google scholar link
[1] J.P. Aubin, A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Springer-Verlag, 1984.
[2] O Aramă, D. Ripianu, On the polylocal problem for differential equations with constant coefficients (I), (II) (romanian), Studii şi cercetări ştiinţifice – Acad. R.P.R., Filiala Cluj VIII (1957).
[3] O. Aramă, D. Ripianu, Quelques recherche actuelles concernant l’équation de Ch. de la Vallée-Poussin rélative au problem polylocal dans la théorie des équations différentielles, Mathematica (Cluj), 8 (31) I (1966), pp.19-28.
[4] M.Biernacki, Sur un probléme d’interpolation relatif aux équaitons différentielle linéaires. Ann. de Sociéte Polonaise de Mathematique 20 (1947).
[5] P. Blaga, G. Micula, Polynomial natural spline functions of even degree, Studia Univ.”Babeş-Bolyai”, Mathematica XXXVIII, 2 (1993), pp.3-40.
[6] Ch. de la Vallee Poussin, Sur l’équation differentielle du second ordre. Détermination d’une integrale par deux valeurs assignées. Extension aux équations d’order n. Journ. Math. Pures et Appl. (9) 8 (1929).
[7] B.E. Karpilovskaja, The convergence of a method of interpolation for differential equations (russian), U.M.N.t. VIII, 3 (1953), pp.111-118.
[8] G. Micula, P. Blaga, M. Micula, On even degree polynomial spline functions with applications to numerical solution of differential equations with retarded argument. Technische Hochschule Darmstadt, Preprint No.1771 (1995), Fachbereich Mathematik.
[9] R. Mustăţa, On p-derivative-interpolating spline functions, Revue d’Anal. Num. et de Th. de l’Approx. XXVI 1-2 (1997), pp.149-163,
[10] C. Mustăţa, A. Mureşan, R. Mustaţă, The approximation by spline functions lf the solution of a singular perturbed bilocal problem, Revue d’anal. Num. et. de Th. de l’Approx. 27 (1998), 2, pp.297-308,
111] I. Păvăloiu, Introduction in the theory of approximation of the equations solutions, Ed. Dacia, Cluj-Napoca.
[12] S.A. Pruess, Solving Linear Boundary Value Problems by Approximating the Coefficients. Math. of Computation 27 (123) (1973), pp. 551-561, https://doi.org/10.1090/s0025-5718-1973-0371100-1
[14] D. Ripianu, Intervalles d’interpolation pour des équations différentielles linéaires. Mathematica (Cluj) 14 (37 2(1972), pp. 363-368.
[15] D. Ripianu, Sur certaines classes d’équations différentielles interpolatoire dans un intervalle donnée, Revue d’anal. Numer. et de Theor. de l’Approx., 3 (1974), 2, pp. 215-223,