On a Volterra Integral Equation with Delay, via w-Distances

Abstract

The paper deals with a Volterra integral equation with delay. In order to apply the w-weak generalized contraction theorem for the study of existence and uniqueness of solutions, we rewrite the equation as a fixed point problem. The assumptions take into account the support of w-distance and the complexity of the delay equation. Gronwall-type theorem and comparison theorem are also discussed using a weak Picard operator technique. In the end, an example is provided to support our results.

Authors

Veronica Ilea
Department of Mathematics, Babes-Bolyai University, Romania

Diana Otrocol
Department of Mathematics, Technical University of Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Volterra integral equation with delay; w-distance; weakly Picard operator; abstract Gronwall lemma

References

PDF

Cite this paper as:

V. Ilea and D. Otrocol, On a Volterra integral equation with delay, via w-distances,Β Mathematics, 9 (2021), art. id. 2341. https://doi.org/10.3390/math9182341

About this paper

Journal

Mathematics

Publisher Name

MDPI

Print ISSN

Not available yet.

Online ISSN

2227-7390

Google Scholar Profile

[1] Burton, T.A., Volterra Integral and Differential Equations; Academic Press: New York, NY, USA, 1983.
[2] Corduneanu, C., Integral Equations and Stability of Feedback Systems; Academic Press: New York, NY, USA, 1973.
[3] Gripenberg, G., Londen, S.O., Staffans, O. Volterra Integral and Functional Equations; Encyclopedia of Mathematics and its Applications 34; Cambridge University Press: Cambridge, UK, 1990.
[4] Guo, D., Lakshmikantham, V., Liu X., Nonlinear Integral Equations in Abstract Spaces; Kuwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996.
[5] Sidorov, D. Integral Dynamical Models: Singularities, Signals and Control; World Scientific Publishing Company: Singapore, 2014.
[6] Olmstead, W.E., Roberts, C.A., Deng K., Coupled Volterra equations with blow-up solutions. J. Integral Equ. Appl. 1997, 7, 499–516. [CrossRef]
[7] Panin, A.A., On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation. Math. Notes 2015, 97, 892–908. [CrossRef]
[8] Sidorov, D.,Β  Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations. Diff. Equ. 2014, 50, 1217–1224. [CrossRef]
[9] Ilea, V.A.; Otrocol, D. An application of the Picard operator technique to functional integral equations. J. Nonlinear Convex Anal.
2017, 18, 405–413.
[10] Ilea, V.A.; Otrocol, D. On the Burton method of progressive contractions for Volterra integral equations. Fixed Point Theory 2020,
21, 585–594. [CrossRef]
[11] Serban, M.A., Data dependence for some functional-integral equations. J. Appl. Math. 2008, 1, 219–234.
[12] Dobritoiu, M., An integral equation with modified argument. Studia Univ. Babes-Bolyai Math. 2004, 49, 27–33.
[13] Ilea, V.A., Otrocol, D. Existence and uniqueness of the solution for an integral equation with supremum, via w-distances. Symmetry 2020, 12, 1554 [CrossRef]
[14] Marian, D., Ciplea, S., Lungu, N., Ulam-Hyers stability of Darboux-Ionescu problem. Carpathian J. Math. 2021, 37, 211–216.
[CrossRef]
[15] Aguirre Salazar, L., Reich, S. A remark on weakly contractive mappings. J. Nonlinear Conv. Anal. 2015, 16, 767–773.
[16] Dobritoiu, M., An application of the w-weak generalized contractions theorem. J. Fixed Point Theory Appl. 2019, 21, 93. [CrossRef]
[17] Kada, O., Suzuki, T., Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 1996, 44, 381–391.
[18]Β  Suzuki, T., Takahashi, W.,Β  Fixed points theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. J. Juliusz Schauder Cent. 1996, 8, 371–382. [CrossRef]
[19] Takahashi, W.,Β  Wong, N.C., Yao, J.C., Fixed point theorems for general contractive mappings with w-distances in metric spaces. J. Nonlinear Conv. Anal. 2013, 14, 637–648.
[20] Wongyat, T., Sintunavarat, W., The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fraction differential equations via w-distances. Adv. Diff. Equ. 2017, 2017, 211. [CrossRef]
[21] Wongyat, T.,Β  Sintunavarat, W., On new existence and uniqueness results concerning solutions to nonlinear Fredholm integral equations via w-distances and weak altering distance functions. J. Fixed Point Theory Appl. 2019 21, 7. [CrossRef]
[22] Rus, I.A., Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2001.
[23] Rus, I.A., Picard operators and applications. Sci. Math. Jpn. 2003, 58, 191–219.
[24] Rus, I.A., Fixed points, upper and lower fixed points: Abstract Gronwall lemmas. Carpathian J. Math. 2004, 20, 125–134.
[25] Marian, D.,Β  Ciplea, S., Lungu, N., On a Functional Integral Equation. Symmetry 2021, 13, 13–21. [CrossRef]
[26] Marian, D., Ciplea, S.A., Lungu, N., Optimal and Nonoptimal Gronwall Lemmas. Symmetry 2020, 12, 17–28. [CrossRef]
[27] Reich, S., Zaslavski, A.J., Almost all nonexpansive mappings are contractive. C. R. Math. Rep. Acad. Sci. Can. 2000, 22, 118–124.
[28] Reich, S., Zaslavski, A.J., The set of noncontractive mappings is sigma-porous in the space of all nonexpansive mappings. C. R. Acad. Sci. Paris Ser. I Math. 2001, 333, 539–544. [CrossRef].

On a Volterra Integral Equation with Delay, via ww-Distances

Veronica Ilea BabeΕŸβ€“Bolyai University, Department of Mathematics, 1 M. KogΔƒlniceanu Street, 400084 Cluj-Napoca, Romania vdarzu@math.ubbcluj.ro and Diana Otrocol Technical University of Cluj-Napoca, Department of Mathematics, 28 Memorandumului Street, 400114 Cluj-Napoca, Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110 Cluj-Napoca, Romania Diana.Otrocol@math.utcluj.ro
Abstract.

The paper deals with a Volterra integral equation with delay. In order to apply w-weak generalized contraction theorem for the study of existence and uniqueness of solutions, we rewrite the equation as a fixed point problem. The assumptions take into account the support of w-distance and the complexity of the delay equation. Gronwall-type theorem and comparison theorem are also discussed using weakly Picard operator technique. In the end an example is provided to support our results.

Keywords: Volterra integral equation with delay; ww-distance; weakly Picard operator; abstract Gronwall lemma

Mathematics Subject Classification: 47H10, 34K05.

1. Introduction

The study of Volterra integral equations is an interesting area of research because of their applications in physics, biology, control theory and in other fields of natural sciences. In the last decades, they have been extensively and intensively studied. Numerous results on existence and uniqueness, monotonicity, stability, as well as numerical solutions have been obtained. To name a few, we refer the reader to [2, 3, 6, 7, 23] and the references therein. On the other hand, the results regarding the blow-up of the solutions is among the most attractive topics in qualitative theory of Volterra integral equations due to their applications, especially in biology, economics and physics (see, e.g. [15, 16, 22, 23]). The theory of Volterra integral equations with delay have been studied by many authors (see, e.g. [2, 3, 9, 10, 25]). The most common approach in studying the existence of solutions for a Volterra integral equation with delay, is to rewrite (1.1) as a fixed point problem. Then, one can apply different fixed point principles to the above equation and establish the existence of solutions (see, e.g. [4, 9, 10, 11, 12]).

Very recently, many results related to mappings satisfying various contractive conditions and underlying distance spaces were obtained in [1, 5, 8, 9, 24, 26, 27, 28] and the references contained therein.

In this paper, we consider a Volterra integral equation with delay of the form

(1.1) y(x)=Ο†(x)+∫a1xF(x,s,y(g(s)))𝑑sy(x)=\varphi(x)+{\displaystyle\int\nolimits_{a_{1}}^{x}}F(x,s,y(g(s)))ds

where a0,a1,a2βˆˆβ„,a0<a1<a2,a_{0},a_{1},a_{2}\in\mathbb{R},\ a_{0}<a_{1}<a_{2}, and Ο†βˆˆC([a1,a2],ℝ),F∈C([a1,a2]Γ—[a1,a2]×ℝ,ℝ)\varphi\in C\left([a_{1},a_{2}],\mathbb{R}\right),F\in C\left([a_{1},a_{2}]\times[a_{1},a_{2}]\times\mathbb{R},\mathbb{R}\right) , g∈C([a1,a2],[a0,a2])g\in C([a_{1},a_{2}],[a_{0},a_{2}]) withg(x)≀x,y(x)=y~(x)\ g(x)\leq x,\ y(x)=\widetilde{y}(x) forx∈[a0,a1],\ x\in[a_{0},a_{1}], are given.

In this paper, the motivation of the work has been started from the results of T. Wongyat and W. Sintunavarat [27]. Using ww-weak generalized contractions theorem, we give some results in the case of Volterra integral equations with delay. In the end a Gronwall-type theorem and a comparison theorem are also obtained.

2. Preliminaries

For the convenience of the reader we recall here some definitions and preliminary results, for details, see [8, 27].

Let (𝒴,ρ)(\mathcal{Y},\rho) be a metric space. First we present the notion of ww-distance on 𝒴\mathcal{Y} and w0w^{0}-distance on 𝒴.\mathcal{Y}.

Definition 2.1.

([8]) Let (𝒴,ρ)(\mathcal{Y},\rho) be a metric space. A function d:𝒴×𝒴→[0,∞)d:\mathcal{Y}\times\mathcal{Y}\rightarrow[0,\infty) is called ww-distance on 𝒴,\mathcal{Y}, if the following conditions are satisfied:

  1. 1)

    d(y1,y2)≀d(y1,y3)+d(y3,y2),d(y_{1},y_{2})\leq d(y_{1},y_{3})+d(y_{3},y_{2}), βˆ€\forall y1,y2,y3βˆˆπ’΄;y_{1},y_{2},y_{3}\in\mathcal{Y};

  2. 2)

    d(y,β‹…):𝒴→[0,∞)d(y,\cdot):\mathcal{Y}\rightarrow[0,\infty) is lower semicontinuous, yβˆˆπ’΄;y\in\mathcal{Y};

  3. 3)

    for each Ξ΅>0,\varepsilon>0, there exists Ξ΄>0\delta>0 such that d(y1,y2)≀δd(y_{1},y_{2})\leq\delta and d(y1,y3)≀δd(y_{1},y_{3})\leq\delta imply ρ(y2,y3)≀Ρ,\rho(y_{2},y_{3})\leq\varepsilon, βˆ€\forall y1,y2,y3βˆˆπ’΄y_{1},y_{2},y_{3}\in\mathcal{Y}.

It is well known that each metric on a nonempty set 𝒴\mathcal{Y} is a ww-distance on 𝒴\mathcal{Y}.

Definition 2.2.

([27]) A function ψ:𝒴×𝒴→[0,∞)\psi:\mathcal{Y}\times\mathcal{Y}\rightarrow[0,\infty) is called w0w^{0}-distance on 𝒴,\mathcal{Y}, if it is a ww-distance on 𝒴\mathcal{Y} with d(y,y)=0d(y,y)=0 for all yβˆˆπ’΄.y\in\mathcal{Y}.

Next, we give the definitions of an altering distance function, ceiling distance of ρ\rho and ww-generalized weak contraction mapping used in the paper [27].

Definition 2.3.

([27]) A function ψ:[0,∞)β†’[0,+∞)\psi:[0,\infty)\rightarrow[0,+\infty) is called an altering distance function, if the following conditions are satisfied:

  1. 1)

    ψ\psi is a continuous and nondecreasing function;

  2. 2)

    ψ(x)=0\psi(x)=0 if and only if x=0x=0.

Definition 2.4.

([27]) A ww-distance qq on a metric space (𝒴,ρ)(\mathcal{Y},\rho) is called a ceiling distance of ρ\rho if and only if d(y1,y2)β‰₯ρ(y1,y2),d(y_{1},y_{2})\geq\rho(y_{1},y_{2}), βˆ€\forall y1,y2βˆˆπ’΄.y_{1},y_{2}\in\mathcal{Y}.

Definition 2.5.

([27]) Let dd be a ww-distance on a metric space (𝒴,ρ).(\mathcal{Y},\rho). An operator V:𝒴→𝒴V:\mathcal{Y}\rightarrow\mathcal{Y} is called a ww-generalized weak contraction mapping if

(2.1) ψ(d(V(y1),V(y2)))β‰€Οˆ(m(y1,y2))βˆ’Ο•(d(y1,y2)), βˆ€y1,y2βˆˆπ’΄,\psi\left(d(V(y_{1}),V(y_{2}))\right)\leq\psi\left(m(y_{1},y_{2})\right)-\phi\left(d(y_{1},y_{2})\right),\text{ }\forall y_{1},y_{2}\in\mathcal{Y},

where

(2.2) m(y1,y2):=max⁑{d(y1,y2),12[d(y1,V(y2))+d(V(y1),y2)]},m(y_{1},y_{2}):=\max\left\{d(y_{1},y_{2}),\frac{1}{2}\left[d\left(y_{1},V(y_{2})\right)+d\left(V(y_{1}),y_{2}\right)\right]\right\},

ψ:[0,∞)β†’[0,∞)\psi:[0,\infty)\rightarrow[0,\infty) is an altering distance function, and Ο•:[0,∞)β†’[0,∞)\phi:[0,\infty)\rightarrow[0,\infty) is a continuous function with Ο•(x)=0\phi(x)=0 if and only if x=0x=0. If d=ρ,d=\rho, then the mapping VV is called generalized weak contraction mapping.

Let (𝒴,ρ)(\mathcal{Y},\rho) be a complete metric space. We present below some results of fixed point of the operatorial equation V(y)=y,yβˆˆπ’΄V(y)=y,\ y\in\mathcal{Y} via ww-distances.

Theorem 2.1.

([27]) Let d:𝒴×𝒴→[0,∞)d:\mathcal{Y}\times\mathcal{Y}\rightarrow[0,\infty) be a w0w^{0}-distance on 𝒴\mathcal{Y} and a ceiling distance of ρ\rho. Suppose that V:𝒴→𝒴V:\mathcal{Y}\rightarrow\mathcal{Y} is a continuous ww-generalized weak contraction. Then, the operator VV has a unique fixed point in 𝒴\mathcal{Y}. Moreover, for each y0βˆˆπ’΄y_{0}\in\mathcal{Y}, the successive approximation sequence {yn}nβˆˆβ„•,\{y_{n}\}_{n\in\mathbb{N}}, defined by yn=Vn(y0),y_{n}=V^{n}(y_{0}), for all nβˆˆβ„•n\in\mathbb{N} converges to the unique fixed point of the operator VV.

Theorem 2.2.

([27]) Let d:𝒴×𝒴→[0,∞)d:\mathcal{Y}\times\mathcal{Y}\rightarrow[0,\infty) be a continuous w0w^{0}-distance on 𝒴\mathcal{Y} and a ceiling distance of ρ\rho. Suppose that V:𝒴→𝒴V:\mathcal{Y}\rightarrow\mathcal{Y} is a ww-generalized weak contraction. Then, the operator VV has a unique fixed point in 𝒴\mathcal{Y}. Moreover, for each y0βˆˆπ’΄y_{0}\in\mathcal{Y}, the successive approximation sequence {yn}nβˆˆβ„•,\{y_{n}\}_{n\in\mathbb{N}}, defined by yn=Vn(y0),y_{n}=V^{n}(y_{0}), for all nβˆˆβ„•n\in\mathbb{N} converges to the unique fixed point of the operator VV.

Theorem 2.3.

([27]) Let d:𝒴×𝒴→[0,∞)d:\mathcal{Y}\times\mathcal{Y}\rightarrow[0,\infty) be a continuous ww-distance on 𝒴\mathcal{Y} and a ceiling distance of ρ\rho. Suppose that V:𝒴→𝒴V:\mathcal{Y}\rightarrow\mathcal{Y} is a continuous operator such that, for all y1,y2βˆˆπ’΄y_{1},y_{2}\in\mathcal{Y}

(2.3) ψ(d(V(y1),V(y2)))β‰€Οˆ(m(y1,y2))βˆ’Ο•(d(y1,y2)),\psi\left(d\left(V(y_{1}),V(y_{2})\right)\right)\leq\psi\left(m(y_{1},y_{2})\right)-\phi\left(d\left(y_{1},y_{2}\right)\right),

where ψ:[0,∞)β†’[0,∞)\psi:[0,\infty)\rightarrow[0,\infty) is an altering distance function, and Ο•:[0,∞)β†’[0,∞)\phi:[0,\infty)\rightarrow[0,\infty) is a continuous function with Ο•(x)=0\phi(x)=0 if and only if x=0x=0. Then, the operator VV has a unique fixed point in 𝒴\mathcal{Y}. Moreover, for each y0βˆˆπ’΄y_{0}\in\mathcal{Y}, the successive approximation sequence {yn}nβˆˆβ„•,\{y_{n}\}_{n\in\mathbb{N}}, defined by yn=Vn(y0),y_{n}=V^{n}(y_{0}), for all nβˆˆβ„•n\in\mathbb{N} converges to the unique fixed point of the operator VV.

We now give some definitions and lemmas (see [19, 20, 21]), which are needed in advance.

Let (𝒴,ρ)(\mathcal{Y},\rho) be a metric space. Let us consider a given operator V:𝒴→𝒴V:\mathcal{Y}\rightarrow\mathcal{Y}. In this setting, VV is called weakly Picard operator (briefly WPO) if, for all yβˆˆπ’΄y\in\mathcal{Y}, the sequence of Picard iterations, {Vn(y)}nβˆˆβ„•\{V^{n}(y)\}_{n\in\mathbb{N}}, converges in (𝒴,ρ)(\mathcal{Y},\rho) and its limit (which generally depend on yy) is a fixed point of VV. We denote by FVF_{V} the fixed point set of VV, i.e. FV={y∈V:V(y)=y}F_{V}=\{y\in V:V(y)=y\}. If an operator VV is WPO with FV={yβˆ—}F_{V}=\{y^{*}\}, then, by definition, VV is called a Picard operator (briefly PO).

If V:𝒴→𝒴V:\mathcal{Y}\rightarrow\mathcal{Y} is a WPO, we can define the operator V∞:𝒴→FVV^{\infty}:\mathcal{Y}\rightarrow F_{V}, by V∞(y):=limnβ†’+∞V^{\infty}(y):=\underset{n\rightarrow+\infty}{\lim} Vn(y).V^{n}(y).

If 𝒴\mathcal{Y} is a nonempty set, then the triple (𝒴,ρ,≀)(\mathcal{Y},\rho,\leq) is an ordered metric space, where ≀\leq is a partial order relation on 𝒴.\mathcal{Y}.

In the setting of ordered metric spaces, we have some properties related to WPOs and POs.

Theorem 2.4.

(Rus [19, 20]) (Characterization theorem) Let (𝒴,ρ)(\mathcal{Y},\rho) be a metric space and V:𝒴→𝒴V:\mathcal{Y}\rightarrow\mathcal{Y} an operator. Then VV is WPO if and only if there exists a partition of 𝒴\mathcal{Y}, 𝒴=\mathcal{Y}= βˆͺΞ»βˆˆΞ›π’΄Ξ»\underset{\lambda\in\Lambda}{\cup}\mathcal{Y}_{\lambda}, such that

  • (i)

    π’΄Ξ»βˆˆI(V)\mathcal{Y}_{\lambda}\in I(V), for all Ξ»βˆˆΞ›;\lambda\in\Lambda;

  • (ii)

    V|𝒴λ:𝒴λ→𝒴λV|_{\mathcal{Y}_{\lambda}}:\mathcal{Y}_{\lambda}\rightarrow\mathcal{Y}_{\lambda} is PO, for all Ξ»βˆˆΞ›.\lambda\in\Lambda.

Theorem 2.5.

([20]) (Abstract Gronwall Lemma) Let (𝒴,ρ,≀)(\mathcal{Y},\rho,\leq) be an ordered metric space and V:𝒴→𝒴V:\mathcal{Y}\rightarrow\mathcal{Y} be an increasing WPO. Then we have the following:

  • j)

    for yβˆˆπ’΄,y≀V(y)β‡’y≀V∞(y);y\in\mathcal{Y},y\leq V(y)\Rightarrow y\leq V^{\infty}(y);

  • (jj)

    for yβˆˆπ’΄,yβ‰₯V(y)β‡’yβ‰₯V∞(y).y\in\mathcal{Y},y\geq V(y)\Rightarrow y\geq V^{\infty}(y).

Theorem 2.6.

([20]) (Abstract Comparison Lemma) Let (𝒴,ρ,≀)(\mathcal{Y},\rho,\leq) be an ordered metric space and V1,V2,V3:𝒴→𝒴V_{1},V_{2},V_{3}:\mathcal{Y}\rightarrow\mathcal{Y} be such that:

  • h)

    V1≀V2≀V3;V_{1}\leq V_{2}\leq V_{3};

  • hh)

    the operators V1,V2,V3V_{1},V_{2},V_{3} are WPO;

  • hhh)

    the operator V2V_{2} is increasing.

Then, for y1,y2,y3βˆˆπ’΄,y1≀y2≀y3β‡’V1∞(y1)≀V2∞(y2)≀V3∞(y3)y_{1},y_{2},y_{3}\in\mathcal{Y},y_{1}\leq y_{2}\leq y_{3}\Rightarrow V_{1}^{\infty}(y_{1})\leq V_{2}^{\infty}(y_{2})\leq V_{3}^{\infty}(y_{3}).

For the theory of weakly Picard operators, its generalization and applications, see [4, 9, 12, 13, 14, 17, 18, 19, 20, 21, 25].

3. Main result

Throughout this paper it will be assumed that:

  1. (C1)

    y(x)=y~(x),x∈[a0,a1];y(x)=\widetilde{y}(x),\ x\in[a_{0},a_{1}];

  2. (C2)

    y~(a1)=Ο†(a1);\widetilde{y}(a_{1})=\varphi(a_{1});

  3. (C3)

    supx∈[a0,a2]y(x)=supx∈[a1,a2]y(x).\underset{x\in[a_{0},a_{2}]}{sup}y(x)=\underset{x\in[a_{1},a_{2}]}{sup}y(x).

With respect to the equation (1.1) we consider the equation (in Ξ±βˆˆβ„\alpha\in\mathbb{R})

(3.1) Ξ±=Ο†(a1).\alpha=\varphi(a_{1}).

Let SφS_{\varphi} be the solution set of the equation (3.1).

Now we consider the operator V:C([a0,a2],ℝ)β†’C([a0,a2],ℝ)V:C([a_{0},a_{2}],\mathbb{R})\rightarrow C([a_{0},a_{2}],\mathbb{R}) defined by

(3.2) V(y)(x):=Ο†(x)+∫a1xF(x,s,y(g(s)))𝑑sV(y)(x):=\varphi(x)+{\displaystyle\int\nolimits_{a_{1}}^{x}}F(x,s,y(g(s)))ds

for all y∈C([a0,a2],ℝ)y\in C([a_{0},a_{2}],\mathbb{R}) and x∈[a1,a2].x\in[a_{1},a_{2}].

Let 𝒴:=C([a0,a2],ℝ)\mathcal{Y}:=C([a_{0},a_{2}],\mathbb{R}) and 𝒴y~:={yβˆˆπ’΄|y|[a0,a1]=y~}\mathcal{Y}_{\widetilde{y}}:=\{y\in\mathcal{Y}|\ \left.y\right|_{[a_{0},a_{1}]}=\widetilde{y}\}. Then

𝒴=βˆͺy~∈C[a0,a1]𝒴y~\mathcal{Y}=\underset{\widetilde{y}\in C[a_{0},a_{1}]}{\cup}\mathcal{Y}_{\widetilde{y}}

is a partition of 𝒴\mathcal{Y}.

Lemma 3.1.

We suppose that the conditions (C1), (C2) and (C3) are satisfied. Then it is obvious that V(𝒴)βŠ‚π’΄y~V(\mathcal{Y})\subset\mathcal{Y}_{\widetilde{y}} and V(𝒴y~)βŠ‚π’΄y~V(\mathcal{Y}_{\widetilde{y}})\subset\mathcal{Y}_{\widetilde{y}}.

The main purpose of this section is to prove a new result of the existence, uniqueness and approximation of the solution for nonlinear Volterra integral equation with delay by using Theorem 2.3.

Theorem 3.2.

We consider the integral equation (1.1) where a0,a1,a2βˆˆβ„,a0<a1<a2,a_{0},a_{1},a_{2}\in\mathbb{R},\ a_{0}<a_{1}<a_{2}, and Ο†βˆˆC([a1,a2],ℝ),F∈C([a1,a2]Γ—[a1,a2]×ℝ,ℝ),g∈C([a1,a2],[a0,a2])\varphi\in C\left([a_{1},a_{2}],\mathbb{R}\right),\ F\in C\left([a_{1},a_{2}]\times[a_{1},a_{2}]\times\mathbb{R},\mathbb{R}\right),\ g\in C([a_{1},a_{2}],[a_{0},a_{2}]) withg(x)≀x,\ g(x)\leq x, are given functions. We suppose the following:

  • (i)

    the mapping V:C([a0,a2],ℝ)β†’C([a0,a2],ℝ)V:C([a_{0},a_{2}],\mathbb{R})\rightarrow C([a_{0},a_{2}],\mathbb{R}) defined by (3.2) is continuous;

  • (ii)

    the altering distance function ψ:[0,∞)β†’[0,∞)\psi:[0,\infty)\rightarrow[0,\infty) satisfies ψ(x)<x,\psi(x)<x, for all x>0,x>0, and the continuous function Ο•:[0,∞)β†’[0,∞)\phi:[0,\infty)\rightarrow[0,\infty) satisfies Ο•(x)=0,\phi(x)=0, if and only if x=0;x=0;

  • (iii)
    |F(x,s,y1(g(s)))|+|F(x,s,y2(g(s)))|≀\displaystyle\left|F(x,s,y_{1}(g(s)))\right|+\left|F(x,s,y_{2}(g(s)))\right|\leq
    ≀1a2βˆ’a1[ψ(|y1(g(s))|+|y2(g(s))|)βˆ’Ο•(supt∈[a0,a2]|y1(g(t))|+supt∈[a0,a2]|y2(g(t))|)βˆ’2|Ο†(x)|],\displaystyle\leq\frac{1}{a_{2}-a_{1}}\left[\psi\Big(\left|y_{1}(g(s))\right|+\left|y_{2}(g(s))\right|\Big)-\phi\Big(\underset{t\in[a_{0},a_{2}]}{\sup}\left|y_{1}(g(t))\right|+\underset{t\in[a_{0},a_{2}]}{\sup}\left|y_{2}(g(t))\right|\Big)-2\left|\varphi(x)\right|\right],

    for ally1,y2∈C([a0,a2],ℝ),x,s∈[a1,a2].\ y_{1},y_{2}\in C([a_{0},a_{2}],\mathbb{R}),x,s\in[a_{1},a_{2}].

Then the integral equation (1.1) has a unique solution;

Moreover, for each y0∈C([a0,a2],ℝ),y_{0}\in C([a_{0},a_{2}],\mathbb{R}), the sequence of Picard iterations {yn}nβˆˆβ„•\{y_{n}\}_{n\in\mathbb{N}}, defined by yn=Vn(y0),y_{n}=V^{n}(y_{0}), for all nβˆˆβ„•n\in\mathbb{N}, converges to the unique solution of the integral equation (1.1).

Proof.

Let 𝒴=C([a0,a2],ℝ)\mathcal{Y}=C([a_{0},a_{2}],\mathbb{R}) and we consider the metric ρ:𝒴×𝒴→[0,∞)\rho:\mathcal{Y}\times\mathcal{Y}\rightarrow[0,\infty) given by ρ(y1,y2):=supx∈[a1,b]|y1(x)βˆ’y2(x)|\rho(y_{1},y_{2}):=\underset{x\in[a_{1},b]}{\sup}\left|y_{1}(x)-y_{2}(x)\right|, for all y1,y2∈C([a0,a2],ℝ).y_{1},y_{2}\in C([a_{0},a_{2}],\mathbb{R}). It is clear that (𝒴,ρ)(\mathcal{Y},\rho) is a complete metric space. Now, we define the function d:C([a0,a2],ℝ)Γ—C([a0,a2],ℝ)β†’[0,∞)d:C([a_{0},a_{2}],\mathbb{R})\times C([a_{0},a_{2}],\mathbb{R})\rightarrow[0,\infty) by the relation:

(3.3) d(y1,y2):=supx∈[a0,a2]|y1(x)|+supx∈[a0,a2]|y2(x)|,for ally1,y2∈C([a0,a2],ℝ)d(y_{1},y_{2}):=\underset{x\in[a_{0},a_{2}]}{\sup}\left|y_{1}(x)\right|+\underset{x\in[a_{0},a_{2}]}{\sup}\left|y_{2}(x)\right|,\ \text{for all}\ y_{1},y_{2}\in C([a_{0},a_{2}],\mathbb{R})

and it is easy to see that dd is a ww-distance on C([a0,a2],ℝ)C([a_{0},a_{2}],\mathbb{R}) and a ceiling distance of ρ\rho.

We intend to show that the operator VV satisfies the condition (2.3). We have

|V(y1)(x)|+|V(y2)(x)|=\displaystyle\left|V(y_{1})(x)\right|+\left|V(y_{2})(x)\right|=
=|Ο†(x)+∫a1xF(x,s,y1(g(s)))𝑑s|+|Ο†(x)+∫a1xF(x,s,y2(g(s)))𝑑s|\displaystyle=\left|\varphi(x)+{\displaystyle\int\nolimits_{a_{1}}^{x}}F(x,s,y_{1}(g(s)))ds\right|+\left|\varphi(x)+{\displaystyle\int\nolimits_{a_{1}}^{x}}F(x,s,y_{2}(g(s)))ds\right|
≀|Ο†(x)|+|∫a1xF(x,s,y1(g(s)))𝑑s|+|Ο†(x)|+\displaystyle\leq\left|\varphi(x)\right|+\left|{\displaystyle\int\nolimits_{a_{1}}^{x}}F(x,s,y_{1}(g(s)))ds\right|+\left|\varphi(x)\right|+
+|∫a1xF(x,s,y2(g(s)))𝑑s|\displaystyle\quad+\left|{\displaystyle\int\nolimits_{a_{1}}^{x}}F(x,s,y_{2}(g(s)))ds\right|
≀2|Ο†(x)|+∫a1x(|F(x,s,y1(g(s)))|+|F(x,s,y2(g(s)))|)𝑑s\displaystyle\leq 2\left|\varphi(x)\right|+{\displaystyle\int\nolimits_{a_{1}}^{x}}\left(\left|F(x,s,y_{1}(g(s)))\right|+\left|F(x,s,y_{2}(g(s)))\right|\right)ds
≀2|Ο†(x)|+1a2βˆ’a1∫a1x[ψ(|y1(g(s))|+|y2(g(s))|)βˆ’\displaystyle\leq 2\left|\varphi(x)\right|+\frac{1}{a_{2}-a_{1}}{\displaystyle\int\nolimits_{a_{1}}^{x}}\left[\psi\left(\left|y_{1}(g(s))\right|+\left|y_{2}(g(s))\right|\right)-\right.
βˆ’Ο•(supt∈[a0,a2]|y1(g(t))|+supt∈[a0,a2]|y2(g(t))|)βˆ’2|Ο†(x)|]ds\displaystyle\quad\left.-\phi\left(\underset{t\in[a_{0},a_{2}]}{\sup}\left|y_{1}(g(t))\right|+\underset{t\in[a_{0},a_{2}]}{\sup}\left|y_{2}(g(t))\right|\right)-2\left|\varphi(x)\right|\right]ds
β‰€Οˆ(d(y1,y2))βˆ’Ο•(d(y1,y2)).\displaystyle\leq\psi\left(d(y_{1},y_{2})\right)-\phi\left(d(y_{1},y_{2})\right).

This implies that

supx∈[a0,a2]|Vy1(x)|+supx∈[a0,a2]|Vy2(x)|β‰€Οˆ(d(y1,y2))βˆ’Ο•(d(y1,y2)).\underset{x\in[a_{0},a_{2}]}{\sup}\left|Vy_{1}(x)\right|+\underset{x\in[a_{0},a_{2}]}{\sup}\left|Vy_{2}(x)\right|\leq\psi\left(d(y_{1},y_{2})\right)-\phi\left(d(y_{1},y_{2})\right).

This leads to

d(Vy1,Vy2)β‰€Οˆ(m(y1,y2))βˆ’Ο•(d(y1,y2)), for all y1,y2βˆˆπ’΄.d(Vy_{1},Vy_{2})\leq\psi\left(m(y_{1},y_{2})\right)-\phi\left(d(y_{1},y_{2})\right),\text{ for all }y_{1},y_{2}\in\mathcal{Y}.

Furthermore, we have

ψ(d(Vy1,Vy2))≀d(Vy1,Vy2)β‰€Οˆ(d(y1,y2))βˆ’Ο•(d(y1,y2)), for all y1,y2βˆˆπ’΄.\psi\left(d(Vy_{1},Vy_{2})\right)\leq d(Vy_{1},Vy_{2})\leq\psi(d(y_{1},y_{2}))-\phi(d(y_{1},y_{2})),\text{ for all }y_{1},y_{2}\in\mathcal{Y}.

We obtain that VV satisfies the condition (2.3) and thus VV is a Picard operator. This implies that there exists a unique solution of the integral equation (1.1). ∎

Since the operator VV defined in (3.2) is a PO, we can establish the following Gronwall-type lemma for the equation (1.1).

Theorem 3.3.

We consider the integral equation (1.1) where a1,a2βˆˆβ„,a1<a2,a_{1},a_{2}\in\mathbb{R},\ a_{1}<a_{2}, and the functions Ο†βˆˆC([a1,a2],ℝ),F∈C([a1,a2]Γ—[a1,a2]×ℝ,ℝ),g∈C([a1,a2],[a0,a2])\varphi\in C\left([a_{1},a_{2}],\mathbb{R}\right),\ F\in C\left([a_{1},a_{2}]\times[a_{1},a_{2}]\times\mathbb{R},\mathbb{R}\right),\ g\in C([a_{1},a_{2}],[a_{0},a_{2}]) withg(x)≀x\ g(x)\leq x, are given. We assume that the conditions (i)-(iii) from Theorem 3.2 hold. Furthermore, we suppose that

  • (iv)

    F(x,s,β‹…):ℝ→ℝF(x,s,\cdot):\mathbb{R}\rightarrow\mathbb{R} is an increasing function with respect to the last argument, for all x,s∈[a1,a2].x,s\in[a_{1},a_{2}].

Let yβˆ—βˆˆC([a0,a2],ℝ)y^{\ast}\in C([a_{0},a_{2}],\mathbb{R}) be the unique solution of the system. Then, the following implications hold:

  1. 1)

    for all y∈C([a0,a2],ℝ)y\in C([a_{0},a_{2}],\mathbb{R}) with

    y(x)≀φ(x)+∫a1xF(x,s,y(g(s)))𝑑s,y(x)\leq\varphi(x)+{\displaystyle\int\nolimits_{a_{1}}^{x}}F(x,s,y(g(s)))ds,

    for all y∈[a1,a2]y\in[a_{1},a_{2}], we have y≀yβˆ—;y\leq y^{\ast};

  2. 2)

    for all y∈C([a0,a2],ℝ)y\in C([a_{0},a_{2}],\mathbb{R}) with

    y(x)β‰₯Ο†(x)+∫a1xF(x,s,y(g(s)))𝑑s,y(x)\geq\varphi(x)+{\displaystyle\int\nolimits_{a_{1}}^{x}}F(x,s,y(g(s)))ds,

    for all x∈[a1,a2]x\in[a_{1},a_{2}], we have yβ‰₯yβˆ—.y\geq y^{\ast}.

Proof.

From (iv), we have that the operator VV defined in (3.2) is increasing with respect to the partial order.

By the proof of Theorem 3.2, it follows that VV is a Picard operator. The conclusion of the theorem follows from Theorem 2.5. ∎

In a similar way, a comparison theorem for equation (1.1) can be obtained, using the abstract comparison theorem given in Section 2 of this paper.

Theorem 3.4.

We consider the integral equation (1.1) where a1,a2βˆˆβ„,a1<a2,a_{1},a_{2}\in\mathbb{R},\ a_{1}<a_{2}, and the functions Ο†i∈C([a1,a2],ℝ),Fi∈C([a1,a2]Γ—[a1,a2]×ℝ,ℝ)\varphi_{i}\in C\left([a_{1},a_{2}],\mathbb{R}\right),\ F_{i}\in C\left([a_{1},a_{2}]\times[a_{1},a_{2}]\times\mathbb{R},\mathbb{R}\right) and gi∈C([a1,a2],[a0,a2]),i=1,2,3g_{i}\in C([a_{1},a_{2}],[a_{0},a_{2}]),\ i=1,2,3 are given. We assume that the conditions (i)-(iii) from Theorem 3.2 hold. Furthermore, we suppose that

  • (i)

    Ο†1≀φ2≀φ3,F1≀F2≀F3,g1≀g2≀g3\varphi_{1}\leq\varphi_{2}\leq\varphi_{3},\ F_{1}\leq F_{2}\leq F_{3},\ g_{1}\leq g_{2}\leq g_{3};

  • (ii)

    Ο†2,F2,g2\varphi_{2},\ F_{2},\ g_{2} are increasing;

  • (iii)

    Sφ1=Sφ2=Sφ3.S_{\varphi_{1}}=S_{\varphi_{2}}=S_{\varphi_{3}}.

Let yi∈C([a1,b],ℝ)y_{i}\in C([a_{1},b],\mathbb{R}) be a solution of the equation

yi(x)=Ο†i(x)+∫a1xFi(x,s,y(gi(s)))𝑑s,x∈[a,b],i=1,2,3.y_{i}(x)=\varphi_{i}(x)+{\displaystyle\int\nolimits_{a_{1}}^{x}}F_{i}(x,s,y(g_{i}(s)))ds,\ x\in[a,b],\ i=1,2,3.

If y1(x)≀y2(x)≀y3(x)y_{1}(x)\leq y_{2}(x)\leq y_{3}(x), x∈[a1,a]x\in[a_{1},a] then y1(x)≀y2(x)≀y3(x),x∈[a1,a2].y_{1}(x)\leq y_{2}(x)\leq y_{3}(x),\ x\in[a_{1},a_{2}].

Proof.

The proof follows from the Theorem 2.6. ∎

Next we study the existence and uniqueness of solutions of the following integral equation using Theorem 3.2.

Example
We consider the integral equation

(3.4) y(x)=x4+∫0xxs2y(Ξ»s)𝑑s,y(x)=\frac{x}{4}+{\displaystyle\int\nolimits_{0}^{x}}xs^{2}y(\lambda s)ds,

where x∈[0,1],λ∈[0,1]x\in[0,1],\ \lambda\in[0,1], and the following condition

|xs2y1(Ξ»x)|+|xs2y2(Ξ»x)|\displaystyle\left|xs^{2}y_{1}(\lambda x)\right|+\left|xs^{2}y_{2}(\lambda x)\right| ≀12(|y1(Ξ»x)|+|y2(Ξ»x)|)βˆ’12x.\displaystyle\leq\frac{1}{2}\left(\left|y_{1}(\lambda x)\right|+\left|y_{2}(\lambda x)\right|\right)-\frac{1}{2}x.

Now let 𝒴=C[0,1]\mathcal{Y}=C[0,1] with the metric ρ:XΓ—Xβ†’[0,∞)\rho:X\times X\rightarrow[0,\infty) given by

ρ(y1,y2)=supx∈[0,1]|y1(x)βˆ’y2(x)|,\rho(y_{1},y_{2})=\underset{x\in[0,1]}{\sup}\left|y_{1}(x)-y_{2}(x)\right|,

for all y1,y2βˆˆπ’΄y_{1},y_{2}\in\mathcal{Y}.

It is clear that (𝒴,ρ)(\mathcal{Y},\rho) is a complete metric space. For all y1,y2βˆˆπ’΄,y_{1},y_{2}\in\mathcal{Y}, the function

d(y1,y2)=supx∈[0,1]|y1(x)|+supx∈[0,1]|y2(x)|d(y_{1},y_{2})=\underset{x\in[0,1]}{\sup}\left|y_{1}(x)\right|+\underset{x\in[0,1]}{\sup}\left|y_{2}(x)\right|

is a ww-distance on 𝒴\mathcal{Y} and a ceiling distance of ρ\rho. Next, we define the operator V:𝒴→𝒴V:\mathcal{Y\rightarrow Y}, defined by

V(y)(x)=x4+∫0xxs2y(Ξ»s)𝑑s, for all yβˆˆπ’΄.V(y)(x)=\frac{x}{4}+{\displaystyle\int\nolimits_{0}^{x}}xs^{2}y(\lambda s)ds,\text{ for all }y\in\mathcal{Y}\text{.}

The functions ψ\psi,Ο•:[0,∞)β†’[0,∞)\phi:[0,\infty)\rightarrow[0,\infty) defined by ψ(x)=x2\psi(x)=\dfrac{x}{2} and Ο•(x)=x4\phi(x)=\dfrac{x}{4} verify that ψ(x)<x\psi(x)<x for all x>0x>0 and Ο•(x)<ψ(x),\phi(x)<\psi(x), for all x>0.x>0.

Thus

|V(y1)(x)|+|V(y2)(x)|\displaystyle\left|V(y_{1})(x)\right|+\left|V(y_{2})(x)\right| =|x4+∫0xxs2y1(Ξ»s)𝑑s|+|x4+∫0xxs2y2(Ξ»s)𝑑s|\displaystyle=\left|\frac{x}{4}+{\displaystyle\int\nolimits_{0}^{x}}xs^{2}y_{1}(\lambda s)ds\right|+\left|\frac{x}{4}+{\displaystyle\int\nolimits_{0}^{x}}xs^{2}y_{2}(\lambda s)ds\right|
≀x2+∫0x|xs2|[|y1(Ξ»s)|+|y2(Ξ»s)|]𝑑s\displaystyle\leq\frac{x}{2}+{\displaystyle\int\nolimits_{0}^{x}}\left|xs^{2}\right|\left[\left|y_{1}(\lambda s)\right|+\left|y_{2}(\lambda s)\right|\right]ds
≀x2+12(|y1(Ξ»x)|+|y2(Ξ»x)|)βˆ’x2\displaystyle\leq\frac{x}{2}+\frac{1}{2}\left(\left|y_{1}(\lambda x)\right|+\left|y_{2}(\lambda x)\right|\right)-\frac{x}{2}
β‰€Οˆ(d(y1,y2))βˆ’Ο•(d(y1,y2)).\displaystyle\leq\psi(d(y_{1},y_{2}))-\phi(d(y_{1},y_{2})).

From this we get

supx∈[0,1]|V(y1)(x)|+supx∈[0,1]|V(y2)(x)|β‰€Οˆ(d(y1,y2))βˆ’Ο•(d(y1,y2)).\underset{x\in[0,1]}{\sup}\left|V(y_{1})(x)\right|+\underset{x\in[0,1]}{\sup}\left|V(y_{2})(x)\right|\leq\psi(d(y_{1},y_{2}))-\phi(d(y_{1},y_{2})).

We obtain that

d(V(y1),V(y2))β‰€Οˆ(d(y1,y2))βˆ’Ο•(d(y1,y2)),for all y1,y2βˆˆπ’΄.d(V(y_{1}),V(y_{2}))\leq\psi(d(y_{1},y_{2}))-\phi(d(y_{1},y_{2})),\ \text{for all\ }y_{1},y_{2}\in\mathcal{Y}.

Finally,

ψ(d(V(y1),V(y2)))≀d(V(y1),V(y2))β‰€Οˆ(d(y1,y2))βˆ’Ο•(d(y1,y2)),for all y1,y2βˆˆπ’΄.\psi(d(V(y_{1}),V(y_{2})))\leq d(V(y_{1}),V(y_{2}))\leq\psi(d(y_{1},y_{2}))-\phi(d(y_{1},y_{2})),\ \text{for all\ }y_{1},y_{2}\in\mathcal{Y}.

Hence, by Theorem 3.2, VV has a unique fixed point and we conclude that equation (3.4) has a unique solution.

4. Conclusions

In this paper, we have investigated a Volterra integral equation with delay. Using w-weak generalized contractions theorem and the assumptions (C1)-(C3), we obtain an existence and uniqueness result, a Gronwall-type theorem and a comparison theorem for equation (1). We employed the Picard operator method, fixed point theorems and abstract Gronwall lemma, to obtain our results. In the end, an example is presented. The theorems obtained in this paper are also applicable to systems of integral equations with delay. As for a future study, several numerical examples can be taken and a comparative study with previously published results or theory can be done.

References

  • [1] Aguirre Salazar, L.; Reich, S. A remark on weakly contractive mappings. J. Nonlinear Conv. Anal. 2015, 16, 767–773.
  • [2] Burton, T.A. Volterra Integral and Differential Equations, Academic Press, New York, 1983.
  • [3] Corduneanu, C. Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
  • [4] DobriΕ£oiu, M. An integral equation with modified argument. Studia Univ. β€œBabes-Bolyai”, Mathematica 2004, 49, No. 3, 27–33
  • [5] DobriΕ£oiu, M. An application of the ww-weak generalized contractions theorem. J. Fixed Point Theory Appl. 2019, 21:93.
  • [6] Gripenberg, G., Londen, S.O., Staffans, O. Volterra Integral and Functional Equations, Encyclopedia of Mathematics and its Applications 34, Cambridge University Press 1990.
  • [7] Guo, D.; Lakshmikantham, V.; Liu X. Nonlinear Integral Equations in Abstract Spaces Kuwer Academic Publishers, Dordrecht, Boston, London, 1996.
  • [8] Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 1996, 44, 381–391.
  • [9] Ilea, V.A.; Otrocol, D. An application of the Picard operator technique to functional integral equations. J. Nonlinear Convex Anal. 2017, 18, No. 3, 405–413.
  • [10] Ilea, V.A.; Otrocol, D. On the Burton method of progressive contractions for Volterra integral equations. Fixed Point Theory, 2020, 21, No. 2, 585–594.
  • [11] Ilea, V.A.; Otrocol, D. Existence and uniqueness of the solution for an integral equation with supremum, via w-distances. Symmetry, 2020, 12, 1554
  • [12] Marian, D.; Ciplea, S.; Lungu, N. Ulam-Hyers stability of Darboux-Ionescu problem. Carpathian J. Math. 2021, 37, No. 2, 211–216.
  • [13] Marian, D.; Ciplea, S.; Lungu, N. On a Functional Integral Equation. Symmetry 2021, 13(8), 13–21.
  • [14] Marian, D.; Ciplea, S. A.; Lungu, N. Optimal and Nonoptimal Gronwall Lemmas. Symmetry 2020, 12(10), 17–28.
  • [15] Olmstead, W.E.; Roberts, C.A.; Deng K. Coupled Volterra equations with blow-up solutions, J. Integral Equations Appl. 1997, 7, 499–516.
  • [16] Panin, A.A.; On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation. Math. Notes. 2015, 97, 892–908.
  • [17] Reich, S.; Zaslavski, A.J. Almost all nonexpansive mappings are contractive. C. R. Math. Rep. Acad. Sci. Canada 2000, 22 , 118–124.
  • [18] Reich, S.; Zaslavski, A.J. The set of noncontractive mappings is sigma-porous in the space of all nonexpansive mappings. C. R. Acad. Sci. Paris Ser. I Math. 2001, 333, 539–544.
  • [19] Rus, I.A. Generalized contractions and applications. Cluj University Press, 2001.
  • [20] Rus, I.A. Picard operators and applications. Scientiae Mathematicae Japonicae 2003, 58, No. 1, 191–219.
  • [21] Rus, I.A. Fixed points, upper and lower fixed points: abstract Gronwall lemmas. Carpathian J Math., 2004, 20(1), 125–134.
  • [22] Sidorov, D. Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations. Diff. Equat. 2014, 50, 1217–1224.
  • [23] Sidorov, D.; Integral Dynamical Models: Singularities, Signals and Control. World Scientific Publishing Company, 2014.
  • [24] Suzuki, T.; Takahashi, W. Fixed points theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. J. Juliusz Schauder Cent. 1996, 8, 371–382.
  • [25] Şerban, M.A. Data dependence for some functional-integral equations. J. Applied Math. 2008, 1, No. 1, 219–234.
  • [26] Takahashi, W.; Wong, N.C.; Yao, J.C. Fixed point theorems for general contractive mappings with ww-distances in metric spaces. J. Nonlinear Conv. Anal. 2013, 14, 637–648.
  • [27] Wongyat, T.; Sintunavarat, W. The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fraction differential equations via ww-distances. Adv. Diff. Equ. 2017, 2017:211.
  • [28] Wongyat, T.; Sintunavarat, W. On new existence and uniqueness results concerning solutions to nonlinear Fredholm integral equations via w-distances and weak altering distance functions. J. Fixed Point Theory Appl. 2019 21:7.
2021

Related Posts