On certain inequalities between the zeros, assumed to be all real, of a polynomial and those of its derivative

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur certaines inegalités entre les zeros, supposés tous réels, d’un polynôme et ceux de sa deriveé, Ann. Sci. Univ. Iassy, 30 (1944-1947 publ. 1948), pp. 191-218 (in French).

PDF

About this paper

Journal

Ann. Sci. Univ. Iassy

Publisher Name
DOI
Print ISSN
Online ISSN

[MR0027899, Zbl 0031.00303]

google scholar link

??

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON CERTAIN INEQUALITIES BETWEEN THE ZEROES, ALL ASSUMED TO BE REAL, OF A POLYNOMIAL AND THOSE OF ITS DERIVATIVE

Prof. TIBERIU POPOVICIU
  1. 1.
    • Consider a polynomialf(n)f(n)of degreexxhaving all its real zeros and let
      (1)

x1x2xnx_{1}\leqq x_{2}\leqq\cdots\leqq x_{n}

these zeros.
We know that the derivativef(x)f^{\prime}(x)also has all its real zeros. Let us denote by
(2)

y1y2<yn1y_{1}\leqq y_{2}<\cdots\leq y_{n-1}

the zeros off(x)f^{\prime}(x).
Between the zeros (1) and (2) we first have the fundamental equality

1ni=1nxi=1n1i=1n1yI\frac{1}{n}\sum_{i=1}^{n}x_{i}=\frac{1}{n-1}\sum_{i=1}^{n-1}y_{j}

expressing the equality of their respective arithmetic means. This equality is also true without the restriction of the reality of zeros.

There are also important inequality relations between the zeros (1) and (2). We have first

xiyixi+1,i=1.2,,n1,x_{i}\leqq y_{i}\leqq x_{i+1},\quad i=1,2,\ldots,n-1,

which are immediate consequences of Rolle's theorem. It should be noted that, as a result of the notations used, the
sign==is valid in both formulas (4) if and only ifx1=xi+1x_{1}=x_{i+1}.

LAGUERRE clarified the inequalities (4) by demonstrating that

(n1)x1+xi+1nyixi+(n1xi+1n\frac{(n-1)x_{1}+x_{i}+1}{n}\leqq y_{i}\leqq\frac{x_{i}+\left(n-1x_{i+1}\right.}{n} (5)

but, as Mr. J v. Sz. NAGY 1 has shown ), we also have the more precise inequalities

(ni)xi+xi+1ni+1xi+ixi+1i+1\frac{(n-i)x_{i}+x_{i}+1}{n-i+1}\leqq\cdots\leqq\frac{x_{i}+ix_{i}+1}{i+1} (6)
  1. 2.
    • We deduced property (6) from a general property of zerosyIy_{j}depending on the zerosxi2x_{i}{}^{2}). We will recall this property. The zerosxix_{i}can vary in any way on the real axis, but always respecting the convention (1) We can get an idea of ​​this variation by imagining that the zerosxix_{i}are impervious material points (which does not exclude the possibility that two or more of these points are in the same geometric point of the real axis). Then the zerosyiy_{i}are continuous functions of thexix_{i}. We can still reason in the following way. LetXXthe coordinate pointx1,x2,,xnx_{1},x_{2},\ldots,x_{n}in an ordinary spacenndimensions. Thexix_{i}being subject to restriction (1), the pointXXdescribes a certain region of this space. Or alsoYYthe coordinate pointy1,y2,,yn1y_{1},y_{2},\ldots,y_{n-1}in an ordinary spacen1n-1dimensions. So the pointYYis a continuous function of the pointXX.

Let us complete the preceding observations with a very simple remark. The following (2) ofyIy_{j}can be called the sequence derived from the sequence (1) ofxix_{i}. So if thekkfirst resp. thekklast pointsxix_{i}tend towards-\inftyresp. towards++\infty, THEkkfirst resp. thekklast pointsyIy_{j}also tend towards-\inftyresp. towards++\infty. In addition, the pointsyk+1,yk+2,,yn1y_{k+1},y_{k+2},\ldots,y_{n-1}

0 0 footnotetext: 1. Julius V. Sz. NAGY „Über algebraische Gleichangen mit lauter reillen Wurzeln" Jahresb. d. D. Math. Ver., 27, 37-43, (1918). See also, R, GODEAU „On algebraic equations with all real roots* Mathesis, 45, 245=252, (1931). 2. Tiberru Popoviciu. „On algebraic equations with all real roots". Mathematica 9, 129-145, (1945).

resp.y1,y2,,ynk1y_{1},y_{2},\ldots,y_{n-k-1}tend towards the points of the derived sequence ofxk+1,xk+2,,xnx_{k+1},x_{k+2},\ldots,x_{n}resp.x1,x2,,xnkx_{1},x_{2},\ldots,x_{n-k}.

Now let's return to the property mentioned above. It is the following:

Lemma 1. - ZerosyIy_{j}^{\prime}are non-decreasing functions of zerosxix_{i}.

To be complete and also to clarify the statement of the lemma we will give the proof. It is obviously sufficient to examine the variations of theyiy_{i}when one of the pointsxix_{i}varies very little. Let's take zeroyiy_{i}and suppose thatxkx_{k}take a small positive increasehh. This requiresxk<xk+1(xn+1=+)x_{k}<x_{k+1}\left(x_{n+1}=+\infty\right). Ifxi=xi+1x_{i}=x_{i+1}Andki+1,yik\neq i+1,y_{i}obviously does not vary. Ifxi=xi1x_{i}=x_{i-1}Andk=i+1,yik=i+1,y_{i}becomes larger according to the remark made above on inequalities (4). Now letxi<xi+1x_{i}<x_{i+1}and let's ask

f(x)=(xx1)(xx2)(xxn)==(xxk)φ(x)\displaystyle f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{n}\right)==\left(x-x_{k}\right)\varphi(x)
g(x)=(xxkh)φ(x)\displaystyle g(x)=\left(x-x_{k}-h\right)\varphi(x)

hhalways being a fairly small positive number. To show thatyiy_{i}, has become larger it is enough to demonstrate thatg(x)g^{\prime}(x)has a zero in the open interval (yi,xi+1y_{i},x_{i+1}.). In the left neighborhood ofxi+1x_{i+1}we have 3 )

sgg(x)=()ni1\operatorname{sg}g^{\prime}(x)=(-)^{n-i-1} (7)

We then have

g(yi)=φ(vi)+(yixkh)φ(yi)g^{\prime}\left(y_{i}\right)=\varphi\left(v_{i}\right)+\left(y_{i}-x_{k}-h\right)\varphi^{\prime}\left(y_{i}\right)

But

φ(yi)+(yixk)φ(yi=0,f(yi)=(yixk)φ(yi)\varphi\left(y_{i}\right)+\left(y_{i}-x_{k}\right)\varphi^{\prime}\left(y_{i}=0,\quad f\left(y_{i}\right)=\left(y_{i}-x_{k}\right)\varphi\left(y_{i}\right)\right.

SO

g(yi)=hf(yi)(yixk)2g^{\prime}\left(y_{i}\right)=\frac{hf\left(y_{i}\right)}{\left(y_{i}-x_{k}\right)^{2}}

hence
3) We pose, as usual

 sg z={1, if z>0,0, if z0,1, if z<0.\text{ sg }z=\left\{\begin{array}[]{r}1,\text{ si }z>0,\\ 0,\text{ si }z\geq 0,\\ -1,\text{ si }z<0.\end{array}\right.

(8)

sgg(yi)=sgf(yi)=(1)n1\operatorname{sg}g^{\prime}\left(y_{i}\right)=\operatorname{sg}f\left(y_{i}\right)=(-1)^{n-1}

Equalities (7) and (8) demonstrate the property.
Finally, if one or more zesosxix_{i}start to grow, all zeroyiy_{i}between twoxix_{i}different also begins to grow.
3. - Lemma 1 immediately allows us to delimit the sum

yi+yi+1++yi+I1,1ii+I1n1y_{i}+y_{i+1}+\cdots+y_{i+j-1},\quad 1\leqq i\leqq i+j-1\leqq n-1 (9)

To obtain a lower limit, it is sufficient to make the zeros decrease indefinitely.x1,x2,,xi1x_{1},x_{2},\ldots,x_{i-1}and to make it decrease untilxi+Ix_{i+j}the zetosxi+I+1;xi+I+2,,xnx_{i+j+1};x_{i+j+2},\ldots,x_{n}. From thêthè to obtain a higher limitation it is enough to indefinitely extend the zerosxi+i+1,xi+I+2,,xnx_{i+i+1},x_{i+j+2},\ldots,x_{n}and to increase the zerosx1,x2,,xi1x_{1},x_{2},\ldots,x_{i-1}. untilxix_{i}. The limitations sought are therefore given by the polynomials

(xxi)(xxi+1)(xxi+I1)(xxi+I)niI+1\left(x-x_{i}\right)\left(x-x_{i+1}\right)\ldots\left(x-x_{i+j-1}\right)\left(x-x_{i+j}\right)^{n-i-j+1} (10)
(xxi)y(xxi+1)(xxi+2)(xxi+I)\left(x-x_{i}\right)^{y}\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)\ldots\left(x-x_{i+j}\right) (11)

and to obtain them it is enough to write equality (3) for these polynomials.

We thus obtain the following property expressed by
THEOREM 1. - Between the zeros (1) and (2) we have the following inequalities
(12)yi+yi+1++yi+I1(ni)(xi+xi+1++xi+I1)+Ixi+Ini+1y_{i}+y_{i+1}+\cdots+y_{i+j-1}\geq\frac{(n-i)\left(x_{i}+x_{i+1}+\cdots+x_{i+j-1}\right)+jx_{i+j}}{n-i+1}
(13)yi+yi+1++yi+I1ixi+(i+I1)(xi+1+xi+2++xi+I)i+Iy_{i}+y_{i+1}+\cdots+y_{i+j-1}\leqq\frac{ix_{i}+(i+j-1)\left(x_{i+1}+x_{i+2}+\cdots+x_{i+j}\right)}{i+j}

I=1.2,,ni,i=1.2,,n1.j=1,2,\ldots,n-i,\quad i=1,2,\ldots,n-1.

The proof of Lemma 1 also tells us the cases where in (12) and (13) we have equality. First, ifxi=xi+Ix_{i}=x_{i+j}
we obviously had 10 worthy in (12) and in (13) since then

yi=yi+I1==yi+I1=xi=xi+1==xi+Iy_{i}=y_{i+j-1}=\cdots=y_{i+j-1}=x_{i}=x_{i+1}=\cdots=x_{i+j}

Ifxi<xi+I,i>1x_{i}<x_{i+j},i>1equality in (12) and ifxi<xi+I,i+I<nx_{i}<x_{i+j},i+j<nthe equality in (13) are impossible for a polynomialf(x)f(x)of effective degreenn. Ifi=1,x1<xI+1i=1,x_{1}<x_{j+1}the equality in (12) only holds for the polynomial (10) and ifi+I=n,xnI<xni+j=n,x_{n-j}<x_{n}the equality in (13) only holds for the polynomial (11).

Foriiwe find the inequalities (6). Fori=1i=1,I=n1j=n-1the two inequalities reduce to equality (3).

In particular, poturi=1i=1and fori=nii=n-i, we obtain the following property:

THEOREM 2. - The arithmetic mean of the first j zeros (2) is at most equal to the arithmetic mean of theI+1j+1or first zeros (1),

y1+y2++yIix1+x2++xI+1I+1.\frac{y_{1}+y_{2}+\cdots+y_{j}}{i}\leqq\frac{x_{1}+x_{2}+\cdots+x_{j+1}}{j+1}.

The arithmetic mean of theIjlast (2) is at least equal to the arithmetic mean ofI+1j+1last zeros (1),

ynI+ynI+1++yn1IxnI+xnI+1++xnI+1.\frac{y_{n-j}+y_{n-j+1}+\cdots+y_{n-1}}{j}\geq\frac{x_{n-j}+x_{n-j+1}+\cdots+x_{n}}{j+1}.

If we notice that by a linear transformationx=αx+βx=\alpha x^{\prime}+\betathe derived sequence transforms into the derived sequence of the transform of the primitive sequence, we see that the lower limitations of the sums (9) can be deduced from their upper limitations and vice versa.
4. - By combining inequalities (12) and (13) (among which is also equality (3)), we can deduce other interesting limitations for the sums (9) Let us write

yi+yi+1++yi+I1=r=1n1yrr=1i1yrr=i+In1yry_{i}+y_{i+1}+\cdots+y_{i+j-1}=\sum_{r=1}^{n-1}y_{r}-\sum_{r=1}^{i-1}y_{r}-\sum_{r=i+j}^{n-1}y_{r}

and let us take into account inequalities (12), (13) and equality (3).

By doing the calculations we find the following property THEOREM 3. - Between the zeros (1) and (2) we have the following inequalities

(ni)r=1ixr+i(n1)r=i+1i+I1xr+i(i+I1)xi+1ni\frac{(n-i)\sum_{r=1}^{i}x_{r}+i(n-1)\sum_{r=i+1}^{i+j-1}x_{r}+i(i+j-1)x_{i+1}}{ni}\leqq (14)
yi+yi+1++yi+I1\leqq y_{i}+y_{i+1}+\cdots+y_{i+j-1}\leqq
(niI+1)(ni)xi+(niI+1)(n1)r=i+1i+I1xr+(i+I1)ri+Inxr(n-i-j+1)(n-i)x_{i}+(n-i-j+1)(n-1)\sum_{r=i+1}^{i+j-1}x_{r}+(i+j-1)\sum_{r-i+j}^{n}x_{r}

(15)n(niI+1)(15)\leqq\quad n(n-i-j+1)

I=1.2,,ni,i=1.2,,n1j=1,2,\ldots,n-i,\quad i=1,2,\ldots,n-1

The equality in (14) is only possible for the polynomial

(x1ir=1ixr)i(xxi+1)(xxi+2)(xxi+I1)(xxi+I)niI+1\left(x-\frac{1}{i}\sum_{r=1}^{i}x_{r}\right)^{i}\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)\ldots\left(x-x_{i+j-1}\right)\left(x-x_{i+j}\right)^{n-i-j+1}

and in (15) is only possible for the polynomial

(xxi)i(xxi+1)(xxi+2)(xxi+I1)(x1niI+1r=i+Inxr)niI+1\left(x-x_{i}\right)^{i}\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)\ldots\left(x-x_{i+j-1}\right)\left(x-\frac{1}{n-i-j+1}\sum_{r=i+j}^{n}x_{r}\right)^{n-i-j+1}

It is easy to see that in these cases equality actually takes place. The cases of equality easily result from what we said in the previous No.

The two limitations (12) and (14) of the sum (9) are distinct, unlessi=1i=1when they are identical. It is enough to do successively

x1=1,x2=x3=xi+I=0,\displaystyle x_{1}=-1,x_{2}=x_{3}-\cdots=x_{i_{+j}}=0,
x1=x2==xi+I1=0,xi+I=1,\displaystyle x_{1}=x_{2}=\cdots=x_{i_{+j-1}}=0,\quad x_{i_{+j}}=1,

to see that these two limitations do not result from each other.

We see in the same way that the upper limitations (13) and (15) are independent in the same sense. unlessi=nIi=n-jwhen they are identical.

ForI=1j=1inequalities (14) and (15) become

(ni)r=1ixi+i2xi+1niyi(ni)2xi+ir=i+1nxin(ni)i=1.2,,n1\begin{gathered}\frac{(n-i)\sum_{r=1}^{i}x_{i}+i^{2}x_{i+1}}{ni}\leqq y_{i}\leqq\frac{(n-i)^{2}x_{i}+i\sum_{r=i+1}^{n}x_{i}}{n(n-i)}\\ i=1,2,\ldots,n-1\end{gathered}

which are also due to MJ v. Sz. NAGY 4 ).
We do not intend to study more fully the consequences of inequalities (12) and (13). In the following we will indicate another procedure for obtaining inequalities between the zeros (1) and (2).

§2\S 2.

  1. 5.
    • We will first supplement Lemma 1 with another general property of zeros (1) and (2). Suppose that we replace the zerosxk+1,xk+2,,xnx_{k+1},x_{k+2},\ldots,x_{n}by their average arterial

ξ=xk+1+xk+2+xnnk.\xi=\frac{x_{k+1}+x_{k+2}+\cdots x_{n}}{n-k}.

We then havexk+1ξxnx_{k+1}\leqq\xi\leqq x_{n}and equalities are impossible ifxk+1<xnx_{k+1}<x_{n}.

Let's ask

f(x)=(xxk+1)(xxk+2)(xxn)φ(x),\displaystyle f(x)=\left(x-x_{k+1}\right)\left(x-x_{k+2}\right)\ldots\left(x-x_{n}\right)\varphi(x),
g(x)=(xξ)nkφ(x).\displaystyle g(x)=(x-\xi)^{n-k}\varphi(x).

The derivativeg(x)g^{\prime}(x)has a single zero in each of the intervals(x1,x2),(x2,x3),(xk1,xk),(xk,ξ)\left(x_{1},x_{2}\right),\left(x_{2},x_{3}\right),\ldots\left(x_{k-1},x_{k}\right),\left(x_{k},\xi\right). We will demonstrate that the zero ofg(x)g^{\prime}(x)in the meantime(xi,xi+1)(ik)\left(x_{i},x_{i+1}\right)(i\leqq k)is greater thanyiy_{i}ifxi<xi+1x_{i}<x_{i+1}.

Indeed, in the right neighborhood ofxix_{i}We have

sg(x)=(1)ni\operatorname{sg}^{\prime}(x)=(-1)^{n-i} (16)

Noting thatξ>yi\xi>y_{i}, or find firstsgg(yi)=(1)nk1sg[(nk)φ(yi)+(yiξ)φ(yi)]\operatorname{sg}g^{\prime}\left(y_{i}\right)=(-1)^{n-k-1}\operatorname{sg}\left[(n-k)\varphi\left(y_{i}\right)+\left(y_{i}-\xi\right)\varphi^{\prime}\left(y_{i}\right)\right].

But

  1. 4.

    Loc. cit. 1).

sgφ(yi)=(1)ki,\operatorname{sg}\varphi\left(y_{i}\right)=(-1)^{k-i},

SO

sgg(yi)=(1)nisg[φ(yi)φ(yi)nkξyi].\operatorname{sg}g^{\prime}\left(y_{i}\right)=(-1)^{n-i}\operatorname{sg}\left[\frac{\varphi^{\prime}\left(y_{i}\right)}{\varphi\left(y_{i}\right)}-\frac{n-k}{\xi-y_{i}}\right].

We have

φ(yi)φ(yi)=1xk+1=yi+1xk+2=yi++1xn=yi\frac{\varphi^{\prime}\left(y_{i}\right)}{\varphi\left(y_{i}\right)}=\frac{1}{x_{k+1}=y_{i}}+\frac{1}{x_{k+2}=y_{i}}+\cdots+\frac{1}{x_{n}=y_{i}}

so, sincexk+1yi>0x_{k+1}-y_{i}>0,

φ(yi)φnk(yi)nyiξyi>0\frac{\varphi^{\prime}\left(y_{i}\right)}{\varphi}\frac{n-k}{\left(y_{i}\right)}-\frac{n-y_{i}}{\xi-y_{i}}>0

as a result of the classical inequality between the arithmetic mean and the harmonic mean.

It follows that
(17)

sgg(yi)=(1)ni\operatorname{sg}g^{\prime}\left(y_{i}\right)=(-1)^{n-i}

and relations (16) and (17) demonstrate the property.
Note that the property remains true also foryky_{k}even ifyk=xk+1y_{k}=x_{k+1}, provided, of course, that one hasxk+1<xnx_{k+1}<x_{n},

So we have
LEMMA 2. - If the zerosxk+1,xk+2,,xnx_{k+1},x_{k+2},\ldots,x_{n}are all replaced by their arithmetic mean and ifxk+1xnx_{k+1}\left\langle x_{n}\right., the zeroyky_{k}and all zerosy1,y2,,yk1y_{1},y_{2},\ldots,y_{k-1}which do not coincide with axix_{i}become bigger.

By the transformation ofxxinx11-x11also results in the following property

Lemma 3. - If the zerosx1,x2,,xkx_{1},x_{2},\ldots,x_{k}are replaced by their arithmetic mean andx1<xkx_{1}<x_{k}, the zeroyky_{k}and all zerosyk+1,yk+2,yn1y_{k+1},y_{k+2}\ldots,y_{n-1}which do not coincide with axix_{i}become smaller.

As an application we can find Theorem 3 by simultaneously applying Lemmas 1, 2 and 3.
6. - Before going further we will establish some limitations relating to the polynomial

f(x)=(xhas)λ1(xb)λ2(xc)λ3,hasbc.f(x)=(x-a)^{\lambda_{1}}(x-b)^{\lambda_{2}}(x-c)^{\lambda_{3}},a\leqq b\leqq c.

In this case a linear and homogeneous inequality between the zeros (1) and (2) is of the form

p1has+p2b+p3c+q1α+q2β0.p_{1}a+p_{2}b+p_{3}c+q_{1}\alpha+q_{2}\beta\geqq 0.

Orα,β\alpha,\betaare respectively the zeros betweenhasaAndbband betweenbbAndccoff(x)f^{\prime}(x)(the zerosyλ1y_{\lambda_{1}}Andyλ1+λ2y_{\lambda_{1}+\lambda_{2}}).

We must necessarily havep1+p2+p3+q1+q2=0p_{1}+p_{2}+p_{3}+q_{1}+q_{2}=0, as is easy to see. As a result of equality (3) and the homogeneity of the formula we can take any one of the coefficients equal to 0 and any one of the positive coefficients equal to 1 or any one of the negative coefficients equal to -1 5 ). We can therefore takeq1=0q_{1}=0Andq2=+1q_{2}=+1or -1 depending on what theng2>0g_{2}>0Or<0<0,

This being so, we first have
THEOREM 4.-If the numbersp1,p2,p3p_{1},p_{2},p_{3}check the conditions

p1+p2+p3=1,p10,p3(λ2+λ3)+λ20,p_{1}+p_{2}+p_{3}=-1,p_{1}\leqq 0,p_{3}\left(\lambda_{2}+\lambda_{3}\right)+\lambda_{2}\geqq 0,

we have inequality

p1has+p2b+p˙3c+β0,p_{1}a+p_{2}b+\dot{p}_{3}c+\beta\geqq 0, (19)

for any polynomial (18).
Indeed, according to inequality (6) we have

βλ3b+λ2cλ2+λ3\beta\geq\frac{\lambda_{3}b+\lambda_{2}c}{\lambda_{2}+\lambda_{3}}

and we can write
p1has+p2b+p3c+β=(βλ3b+λ1cλ2+λ3)+(p3+λ2λ2+λ3)(cb)p1(bhas)p_{1}a+p_{2}b+p_{3}c+\beta=\left(\beta-\frac{\lambda_{3}b+\lambda_{1}c}{\lambda_{2}+\lambda_{3}}\right)+\left(p_{3}+\frac{\lambda_{2}}{\lambda_{2}+\lambda_{3}}\right)(c-b)-p_{1}(b-a)
ef Theorem 4 results from this.
We see moreover that in (19), the equality only takes place in one of the following cases

has=b=c,b=c1p1=0.\begin{array}[]{r}a=b=c,\\ b=c_{1}p_{1}=0.\end{array}
0 0 footnotetext: 5. The trivial case p1=p2=p3=q1=q2=0p_{1}=p_{2}=p_{3}=q_{1}=q_{2}=0is obviously of no interest.

We also have
Theorem 5.-If the numbersp1,p2,p3p_{1},p_{2},p_{3}check the conditions

p1+p2+p3=1.2p1(λ1+λ2+λ30p3(λ1+λ2+λ3)+λ1+λ20\begin{gathered}p_{1}+p_{2}+p_{3}=-1,2p_{1}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\leqq 0\right.\\ p_{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+\lambda_{1}+\lambda_{2}\leqq 0\end{gathered}

we still have inequality (19) for any polynomial (18).
Indeed, according to lemma 3, we have

β2(λ1+λ2)c+λ3(has+b)2(λ1+λ2+λ3)\beta\geqq\frac{2\left(\lambda_{1}+\lambda_{2}\right)c+\lambda_{3}(a+b)}{2\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}

and we can write

p1has+p2b+p3c+β=[β2(λ1+λ2)c+λ3(has+b)2(λ1+λ2+λ3)]++(p3+λ1+λ2λ1+λ2+λ3)(cb)(p1+λ32(λ1+λ2+λ3))(bhas)\begin{gathered}p_{1}a+p_{2}b+p_{3}c+\beta=\left[\beta-\frac{2\left(\lambda_{1}+\lambda_{2}\right)c+\lambda_{3}(a+b)}{2\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}\right]+\\ +\left(p_{3}+\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}\right)(c-b)-\left(p_{1}+\frac{\lambda_{3}}{2\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}\right)(b-a)\end{gathered}

which proves Theorem 5.
In this case the equality in (19) only holds in one of the following cases

has=b=c,has=b,p3(λ1+λ2+λ3)+λ1+λ2=0.\begin{gathered}a=b=c,\\ a=b,p_{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+\lambda_{1}+\lambda_{2}=0.\end{gathered}

Finally, let us also demonstrate
Theorem 6. - For inequality
(20)

p1has+p2b+p3cβ0p_{1}a+p_{2}b+p_{3}c-\beta\geqq 0

is verified whatever the polynomial (18), it is necessary and sufficient that we have

p1+p2+p3=1,p10,p3(λ1+λ2+λ3)(λ1+λ2)0p_{1}+p_{2}+p_{3}=1,p_{1}\leqq 0,p_{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)-\left(\lambda_{1}+\lambda_{2}\right)\geqq 0

We first see that the conditions are necessary by doingb=c(b=c(SOb=c=β)b=c=\beta)Andhas=b(a=b\left(\right.and thenβ=λ3b+(λ1+λ2)cλ1+λ2+λ3)\left.\beta=\frac{\lambda_{3}b+\left(\lambda_{1}+\lambda_{2}\right)c}{\lambda_{1}+\lambda_{2}+\lambda_{3}}\right).

To see that the conditions are also sufficient, note that, according to inequality (6), we have

βλ3b+(λ1+λ2)cλ1+λ2+λ3.\beta\leqq\frac{\lambda_{3}b+\left(\lambda_{1}+\lambda_{2}\right)c}{\lambda_{1}+\lambda_{2}+\lambda_{3}}.

We can write

p1has+p2b+p3cβ=(λ3b+(λ1+λ2)cλ1+λ2+λ3β)+(p3λ1+λ2λ1+λ2+λ3)(cb)p1(bhas)\begin{gathered}p_{1}a+p_{2}b+p_{3}c-\beta=\left(\frac{\lambda_{3}b+\left(\lambda_{1}+\lambda_{2}\right)c}{\lambda_{1}+\lambda_{2}+\lambda_{3}}-\beta\right)+\left(p_{3}-\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}\right)(c-b)-\\ -p_{1}(b-a)\end{gathered}

from which it follows that the conditions are also sufficient.
7. - The reader has certainly noticed the essential difference between the theorems4.5\mathbf{4},\mathbf{5}on the one hand and the theorem𝟔\mathbf{6}on the other hand. While the first two express only sufficient conditions, the third gives conditions that are both necessary and sufficient.

So let us return to inequality (19). We find, as for inequality (20), the necessary conditions

p10,p3(λ1+λ2+λ3)+λ1+λ20.p_{1}\leqq 0,\quad p_{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+\lambda_{1}+\lambda_{2}\geqq 0. (21)

To completely solve the problem let us note that we can take

has=1,b=0,c=h0a=-1,\quad b=0,\quad c=h\geqq 0

Let us designate byE(h)E(h)the first member of (19) multiplied by the positive number2(λ1+λ1+λ3)λ1+λ2\frac{2\left(\lambda_{1}+\lambda_{1}+\lambda_{3}\right)}{\lambda_{1}+\lambda_{2}}. If we notice thatβ\betais the non-negative root of the equation

(λ1+λ2+λ3)x2[(λ1+λ2)hλ2λ3]xλ2h=0\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)x^{2}-\left[\left(\lambda_{1}+\lambda_{2}\right)h-\lambda_{2}-\lambda_{3}\right]x-\lambda_{2}h=0

and if we do the calculations we find

E(h)=V(h+HAS)2+B2ChD¯E(h)=V\overline{(h+A)^{2}+B^{2}-Ch-D}

where
(22){HAS=(λ1+λ2)(λ2+λ3)2λ1λ3(λ1+λ2)2,B=2λ1λ2λ3(λ1+λ2+λ3)(λ1+λ2)2C=2p2(λ1+λ2+λ3)λ1+λ21,D=2p1(λ1+λ2+λ3)λ1+λ2+λ2+λ3λ1+λ2.\left\{\begin{array}[]{l}A=\frac{\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{2}+\lambda_{3}\right)-2\lambda_{1}\lambda_{3}}{\left(\lambda_{1}+\lambda_{2}\right)^{2}},\quad B=\frac{2\sqrt{\lambda_{1}\lambda_{2}\lambda_{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}\\ C=-\frac{2p_{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}{\lambda_{1}+\lambda_{2}}-1,\quad D=\frac{2p_{1}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}{\lambda_{1}+\lambda_{2}}+\frac{\lambda_{2}+\lambda_{3}}{\lambda_{1}+\lambda_{2}}.\end{array}\right.

We must find the necessary and sufficient conditions so that we have

E(h)0E(h)\geqq 0 (23)

regardless ofh0h\geqq 0.

With the notations (22) the necessary options (21) become

HAS2+B2D0,1C\sqrt{A^{2}+B^{2}}-D\geqslant 0,\quad 1\geqq C

and express that the inequality (23) is indeed verified forh=0h=0and forhhinfinitely large, if

CHASHAS2+B2C\leqslant\frac{A}{\sqrt{A^{2}+B^{2}}}

we are in the conditions of thegreme 4.
It remains to examine the case
(24)1CHASHAS2+B2(1\geqq C\geqq\frac{A}{\sqrt{A^{2}+B^{2}}}\left(\right.Orλ2λ2+λ3>p3λ1+λ2λ1+λ2+λ3)\left.-\frac{\lambda_{2}}{\lambda_{2}+\lambda_{3}}>p_{3}\geqq-\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}\right).

We have

d3E(h)dh2=B3(V(h+HAS)2+B2)80\frac{d^{3}E(h)}{dh^{2}}=\frac{B^{3}}{\left(V(h+A)^{2}+B^{2}\right)^{8}}\geqslant 0

which shows us that the derivativedE(h)dh\frac{dE(h)}{dh}is always increasing.

dE(h)dh=h+HAS(h+HAS)2+B2C\frac{dE(h)}{dh}=\frac{h+A}{\sqrt{(h+A)^{2}+B^{2}}}-C

it follows that this derivative only becomes zero for

h=h1=HAS+CB1C2,h=h_{1}=-A+\frac{CB}{\sqrt{1-C^{2}}},

As a result of inequalities (24),h1h_{1}is indeed a positive number.

For inequality (23) to be satisfied it is necessary and sufficient thatE(h1)0E\left(h_{1}\right)\geqq 0. We have

E(h1)=HASC+B1C2DE\left(h_{1}\right)=AC+B\sqrt{1-C^{2}-D}

donc la condition cherchée est

AC+B1C2D0.AC+B\sqrt{1-C^{2}-D}\geqq 0.

Il est facile de voir que le résultat subsiste aussi pour C=1C=1, - lorsque h1h_{1} n’existe pas.

Finalement nous pouvons énoncer la propriété suivante.
THEORÈME. 7. - Pour que l’inégalité (19) ait lieg pour tout
polynome (18) il faut et il suffit que l’on ait p1+p2+p3=1p_{1}+p_{2}+p_{3}=-1 et, ou bien

p10,p3(λ2+λ3)+λ20.p_{1}\leqq 0,p_{3}\left(\lambda_{2}+\lambda_{3}\right)+\lambda_{2}\geqq 0.

qu bien

AC+BV1C2¯D0,p3(λ2+λ3)+λ2<0,\displaystyle AC+BV\overline{1-C^{2}}-D\geqq 0,p_{3}\left(\lambda_{2}+\lambda_{3}\right)+\lambda_{2}<0, (25)
p3(λ1+λ2+λ3)+λ1+λ2C.\displaystyle p_{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+\lambda_{1}+\lambda_{2}\geqq C.

A,B,C,DA,B,C,D étant définis par les formules (22).
Dans le szcond cas l’égalité n’a lieu que si
AC+B1C2D=0,1C2(cb)=(ba)(CBA1C2)AC+B\sqrt{1-C^{2}}-D=0,\sqrt{1-C^{2}}(c-b)=(b-a)\left(CB-A\sqrt{1-C^{2}}\right).
8. - On voit que les théorèmes 4 et 5 ne nous donnent pas des propriétés plus complètes que celles exprimées par les théorèmes 1 et 3 . Le théorème 6 précise un peu la propriété correspondante exprimée par le théorème 1.

En ce qui concerne la valeur du théorème 7, elle est toute autre. Ce théorème nous donne effectivement des inégalités qui ne sont pas toujours comprises dans les théorèmes 1 et 3. Soit, en effet, l’inégalité (19) où p1,p3p_{1},p_{3} vérifient les conditions (25). Par suite de l’inégalité

p3+λ2λ2+λ3<0,p_{3}+\frac{\lambda_{2}}{\lambda_{2}+\lambda_{3}}<0,

l’inégalité (19) considérée n’est pas une conséquence du théorème 1. Pour voir que notre inégalité peut ne pas être une conséquence du théorème 3, il suffit de montrer que les inégalités (25) sont compatibles avec l’inégalité

p1+λ32(λ1+λ2+λ3)>0.p_{1}+\frac{\lambda_{3}}{2\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}>0.

Pour celail faul et il suffit de montrer que les inégalités

λ2λ2+λ3<AC+B1C2,1C>AA2+B2\frac{\lambda_{2}}{\lambda_{2}+\lambda_{3}}<AC+B\sqrt{1-C^{2}},\quad 1\geqq C>\frac{A}{\sqrt{A^{2}+B^{2}}}

sont compatibles. Cette condition de compatibilité est

λ2λ1+λ2>A2+B2=λ2+λ3λ1+λ2\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}>\sqrt{A^{2}+B^{2}}=\frac{\lambda_{2}+\lambda_{3}}{\lambda_{1}+\lambda_{2}}

et elle est bien vérifiée
9. - Nous n’avons pas l’intention d’étudier toutes les conséquences des résultafs précédents dans le cas d’un polynome quelconque f(x)f(x). Nous allons seulement signaler quelques inégalités qui nous seront utiles dans le § suivant,

Soit donc f(x)f(x) un polynome quelconque à zéros tous réels et considérons une inégalité de la forme

r1v=1jxv+r2vj+1nxvs(y1+y2++yj1)syj0r_{1}\sum_{v=1}^{j}x_{v}+r_{2}\sum_{v-j+1}^{n}x_{v}-s\left(y_{1}+y_{2}+\cdots+y_{j-1}\right)-s^{\prime}y_{j}\geqq 0 (26)
ir1+(nj)r2=(j1)s+s,s>s>0ir_{1}+(n-j)r_{2}=(j-1)s+s^{\prime},s>s^{\prime}>0 (27)

En vertu du lemme 2, si l’inégalité (26) est vérifiée lorsqu’on remplace xj+1,xj+2,,xnx_{j+1},x_{j+2},\ldots,x_{n} par leur moyenne arithmétique, elle sera vérifiée pour tout polynome f(x)f(x). Il en résulte qu’il suffit de démontrer l’inégalité (26) pour xj+1=xj+2==xnx_{j+1}=x_{j+2}=\cdots=x_{n}.

Dans ce dernier cas elle s’écrit :

r1v1jxv+(njr2xj+1s(y1+y2++yj1)syj0.r_{1}\sum_{v_{-1}}^{j}x_{v}+\left(n-jr_{2}x_{j+1}-s\left(y_{1}+y_{2}+\cdots+y_{j-1}\right)-s^{\prime}y_{j}\geqq 0.\right.

Mais, l’égalité (3) nous donne

y1+y2++yj1=n1nv=1jxv+jnxj+1yjy_{1}+y_{2}+\cdots+y_{j-1}=\frac{n-1}{n}\sum_{v=1}^{j}x_{v}+\frac{j}{n}x_{j+1}-y_{j}

et notre inégalité devient
(28) [nr1s(n1)]v=1jxj+[n(nj)r2sj]xj+1+n(ss)yj0\left[nr_{1}-s(n-1)\right]\sum_{v=1}^{j}x_{j}+\left[n(n-j)r_{2}-sj\right]x_{j+1}+n\left(s-s^{\prime}\right)y_{j}\geqq 0.

En vertu du lemme 3, si l’inégalité (28) est vérifiée lorsque, de plus, on remplace x1,x2,,xjx_{1},x_{2},\ldots,x_{j} par leur moyenne arithmétique, elle sera toujours vérifiée. Il suffit donc de démontrer l’inégalité (28) si de plus, x1=x2==xjx_{1}=x_{2}=\cdots=x_{j}. L’inégalité devient alors
(29) [nr1s(n1)]jxj+[n(nj)r2sj]xj+1+n(ss)yj0\left[nr_{1}-s(n-1)\right]jx_{j}+\left[n(n-j)r_{2}-sj\right]x_{j+1}+n\left(s-s^{\prime}\right)y_{j}\geqq 0.

Mais, nous avos maintenant,

yj=(nj)xj+jxj+1ny_{j}=\frac{(n-j)x_{j}+jx_{j+1}}{n}

et l’inégalité ( 29 ) devient

[n(nj)r2js](xi+1rj)0\left[n(n-j)r_{2}-js^{\prime}\right]\left(x_{i+1}-r_{j}\right)\geqq 0

Nous en déduisons donc le
Théorème 8. - Pour que l’inégalité (26), sous les conditions (27), ait lieu pour tout polynome f(x)f(x), à zéros tous réels, il faut et il suffit que l’on ait

n(nj)r2js0n(n-j)r_{2}-js^{\prime}\geqq 0

Dans le cas j=1j=1, il faut prendre s=0s=0 dans les formules (26) et (27) et s>0s^{\prime}>0. Sous les conditions données, l’égalité dans (26) n’a lieu que pour x1=x2==xi,xi+1==xj+2==xnx_{1}=x_{2}=\cdots=x_{i},x_{i+1}==x_{j+2}=\cdots=x_{n} lorsque n(nj)r2is=0n(n-j)r_{2}-is^{\prime}=0 et seulement si x1=x2==xnx_{1}=x_{2}=\cdots=x_{n} lorsque n(ni)r2js>0n(n-i)r_{2}-js^{\prime}>0.
10. - Nous allons étudier maintenant des inégalités un peu plus générales. Considérons l’inégalité
(30) r1v=1j1xv+r2xj+r3v=j+1nxvs(11+y2++yj)+syj1+s′′yj0r_{1}\sum_{v=1}^{j-1}x_{v}+r_{2}x_{j}+r_{3}\sum_{v=j+1}^{n}x_{v}-s\left(1_{1}+y_{2}+\cdots+y_{j}\right)+s^{\prime}y_{j-1}+s^{\prime\prime}y_{j}\geqq 0, où

(j1)r1+r2+(nj)r3=jsss′′,ss′′>s0\displaystyle(j-1)r_{1}+r_{2}+(n-j)r_{3}=js-s^{\prime}-s^{\prime\prime},s\geqq s^{\prime\prime}>s^{\prime}\geqq 0 (31)
1<in1\displaystyle 1<i\leqq n-1

Comme plus haut, nous voyons que, en vertu du lemme 2, il suffit de dénontrer l’inégalité si xj+1=xj+2==xnx_{j+1}=x_{j+2}=\cdots=x_{n}. The inequality then becomes

(r1sn1n)v=1i1xv+(r2sn1n)xI+[(nI)r3sIn]xI+1+syI1+s"yI0\left(r_{1}-s\frac{n-1}{n}\right)_{v=1}^{i-1}x_{v}+\left(r_{2}-s\frac{n-1}{n}\right)x_{j}+\left[(n-j)r_{3}-s\frac{j}{n}\right]x_{j+1}+s^{\prime}y_{j-1}+s^{\prime\prime}y_{j}\geq 0

Similarly, by virtue of Lemma 3, it is sufficient to prove this inequality if, in addition, we havex1=x2==xI1x_{1}=x_{2}=\cdots=x_{j-1}. In this last case equality (3) still gives us

yI1=nI+1nxI1+n1nxI+InxI+1yIy_{j-1}=\frac{n-j+1}{n}x_{j-1}+\frac{n-1}{n}x_{j}+\frac{j}{n}x_{j+1}-y_{j}

and our inequality becomes
(32) where

p1xI1+p2xI+p3xI+1+yI0,p_{1}x_{j-1}+p_{2}x_{j}+p_{3}x_{j+1}+y_{j}\geqq 0,
 (33) {p1=1n(s"s)[n(I1)r1(n1)(I1)s+(nI+1)s]p2=1n(s"s)[nr2+(n1)(ss)]p3=1n(s"s)[n(nI)r3+I(ss)]\text{ (33) }\left\{\begin{array}[]{l}p_{1}=\frac{1}{n\left(s^{\prime\prime}-s^{\prime}\right)}\left[n(j-1)r_{1}-(n-1)(j-1)s+(n-j+1)s^{\prime}\right]\\ p_{2}=\frac{1}{n\left(s^{\prime\prime}-s^{\prime}\right)}\left[nr_{2}+(n-1)\left(s^{\prime}-s\right)\right]\\ p_{3}=\frac{1}{n\left(s^{\prime\prime}-s^{\prime}\right)}\left[n(n-j)r_{3}+j\left(s^{\prime}-s\right)\right]\end{array}\right.

Inequality (32) is of the form (19) corresponding to the polynomial (18) where
λ1=I1,λ2=1,λ3=nI,has=xI1,b=xI,c=xI+1\lambda_{1}=j-1,\quad\lambda_{2}=1,\quad\lambda_{3}=n-j,\quad a=x_{j-1},\quad b=x_{j},\quad c=x_{j+1}.
Finally we therefore deduce
THEOREM 9. - For inequality (30), under conditions (31), to hold for any polynomialf(x)f(x)with all real zeros, it is necessary and sufficient that we have either
(34)
or

p1=0,(nI+1)p3+10.p_{1}=0,(n-j+1)p_{3}+1\geqq 0.

(35)HASC+B1C2D=0,(nI+1)p31<0,np3+I0-AC+B\sqrt{1-C^{2}}-D=0,\quad(n-j+1)p_{3}-1<0,\quad np_{3}+j\geqq 0, Or

{HAS=n(I1)(nI)I2,B=2n(I1)(nI)I2C=2np3+1i,D=2np1+nI+1I\left\{\begin{array}[]{l}A=\frac{n-(j-1)(n-j)}{j^{2}},\quad B=\frac{2\sqrt{n(j-1)(n-j)}}{j^{2}}\\ C=-\frac{2np_{3}+1}{i},\quad D=\frac{2np_{1}+n-j+1}{j}\end{array}\right.

p1,p3p_{1},p_{3}given by formulas (33).
We can easily obtain the equality conditions in (30), but there is no need to insist on this point here. Note also that Theorem 5 shows us that the conditions

2np1+nI0,np3+I0,2np_{1}+n-j\leqq 0,\quad np_{3}+j\geqq 0,

are sufficient for inequality (30).

§ 3.

  1. 11.
    • Consider two sequences of real numbers

α1,α2,,αm,\displaystyle\alpha_{1},\alpha_{2},\ldots,\alpha_{m},
α1,α2,,αm.\displaystyle\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{m}^{\prime}.

We will say that the sequence (38) is an average sequence of the sequence (37) if we can findm2m^{2}non-negative numberspi,I,i,I=1.2,,mp_{i,j},i,j=1,2,\ldots,msuch that we have

I=1mp^i,I=I=1mpI,i=1,αi=I=1mpi,IαI,i=1.2,,m.\sum_{j=1}^{m}\hat{p}_{i,j}=\sum_{j=1}^{m}p_{j,i}=1,\alpha_{i}^{\prime}=\sum_{j=1}^{m}p_{i,j}\alpha_{j},i=1,2,\ldots,m.

This condition does not depend on the order of the terms of the sequences (37), (38). We can therefore assume that

α1α2αm,α1α2αm\alpha_{1}\leqq\alpha_{2}\leqq\cdots\leqq\alpha_{m},\alpha_{1}^{\prime}\leqq\alpha_{2}^{\prime}\leqq\cdots\leqq\alpha_{m}^{\prime} (39)

Messrs. G. H, HARDY, JE LITfLEWOOD and G. POLYA have demonstrated 6 ) the following property, expressed by the

LEMMA 4.-For the sequence (38) to be an average sequence of the sequence (37), it is necessary and sufficient that we have

α1+α2++αmα1+α2++αm\displaystyle\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\cdots+\alpha_{m}^{\prime}\equiv\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m} (40)
α1+α2++αIα1+α2++αI;I=1.2,,m1,\displaystyle\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\cdots+\alpha_{j}^{\prime}\geqq\alpha_{1}+\alpha_{2}+\cdots+\alpha_{j};j=1,2,\ldots,m-1,

assuming that the two lines are ordered in the manner (39). It is easy to see that if, instead of (39), we had

α1α2αm,α1α2αm\alpha_{1}\geqq\alpha_{2}\geqq\cdots\geqq\alpha_{m},\alpha_{1}^{\prime}\geqq\alpha_{2}^{\prime}\geqq\cdots\geqq\alpha_{m}^{\prime} (\prime)

we would have, instead of (41), the inequalities
(41')α1+α2++αIα1+α2++αI;I=1.2,,m1\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\cdots+\alpha_{j}^{\prime}\leq\alpha_{1}+\alpha_{2}+\cdots+\alpha_{j};j=1,2,\ldots,m-1.
12 - Let us take the sequence (1) and its derived sequence (2). Let us define the sequences (37), (38), by takingm=n(n1)m=n(n-1), in the following manner

αinni+2=αinni+3==αini=xi,i=1.2,,n;αInn+1=αInn+2==αIn=yy,I=1.2,,n1.\begin{gathered}\alpha_{in-n-i+2}=\alpha_{in-n-i+3}=\cdots=\alpha_{in-i}=x_{i},i=1,2,\ldots,n;\\ \alpha_{jn-n+1}^{\prime}=\alpha_{jn-n+2}^{\prime}=\cdots=\alpha_{jn}^{\prime}=y_{y},j=1,2,\ldots,n-1.\end{gathered}
  1. 6.

    GH HARDY, JE LittlafwOOD, G. POLYA „Inequalities" Cambridge Univ. Press, 1934, Chap. II.

Equality (40) is then verified and returns to (3). We have (39) and inequalities (41) are written 7 )

 (42) {n(y1+y2++yI1)+ryI(n1)(x1+x2++xI1)+(r+I1)xI,r=1.2,,ni,I=1.2,,n1,n(y1+y2++yI1)+ryI(n1)(x1+x2++xI)+(r+In)xI+1,r=nI+1,nI+2,,n,I=1.2,,n1,\text{ (42) }\left\{\begin{array}[]{c}n\left(y_{1}+y_{2}+\cdots+y_{j-1}\right)+ry_{j}\geqq(n-1)\left(x_{1}+x_{2}+\cdots+x_{j-1}\right)+(r+j-1)x_{j},\\ r=1,2,\ldots,n-i,j=1,2,\ldots,n-1,\\ n\left(y_{1}+y_{2}+\cdots+y_{j-1}\right)+ry_{j}\geqq(n-1)\left(x_{1}+x_{2}+\cdots+x_{j}\right)+(r+j-n)x_{j+1},\\ r=n-j+1,n-j+2,\ldots,n,j=1,2,\ldots,n-1,\end{array}\right.
 (except r=n,I=n1 ), \text{ (sauf }r=n,j=n-1\text{ ), }

Consider, in particular, the inequalities
(43)

n(y1+y2++yI)(n1)(x1+x2++xI)+IxI+1,I=1.2,,n2.\begin{gathered}n\left(y_{1}+y_{2}+\cdots+y_{j}\right)\geqq(n-1)\left(x_{1}+x_{2}+\cdots+x_{j}\right)+jx_{j+1},\\ j=1,2,\ldots,n-2.\end{gathered}

All other inequalities (42) are consequences of these and of inequalities (4).

But, the inequalities (43) are none other than the inequalities (12) fori=1i=1. We can therefore state the following property:

THEOREM 10. - The derived sequence (2), where each term is repeatednntimes, is an average sequence of the primitive sequence (1) in which each term is repeatedn1n-1times.

From this property it follows that we can findn(n1)n(n-1)non-negative numbersqr,s,r=1.2,,n1,s=1.2,,nq_{r,s},r=1,2,\ldots,n-1,s=1,2,\ldots,nso that we have

yI=r=1nqr,Ixr,r=1nqr,I=1,s=1n1qi,s=n1n,i=1.2,,n,I=1.2,,n1.\begin{gathered}y_{j}=\sum_{r=1}^{n}q_{r,j}x_{r},\sum_{r=1}^{n}q_{r,j}=1,\sum_{s=1}^{n-1}q_{i,s}=\frac{n-1}{n},\\ i=1,2,\ldots,n,j=1,2,\ldots,n-1.\end{gathered}

In a previous work 8 ) we established this property by noticing that

0 0 footnotetext: 7. When I=1j=1the sums such asx1+x2++xI1,y1+y2+++yI1x_{1}+x_{2}+\cdots+x_{j-1},y_{1}+y_{2}++\cdots+y_{j-1}are replaced by zero. 8i Tiberiu Popoviciu, „Notes on convex functions of higher order" (III) ", Mathematica, 16, 74-86 (1940).
yI=r=1nxr(yIxr)2r=1n1(yIxr)2,I=1.2,,n1y_{j}=\frac{\sum_{r=1}^{n}\frac{x_{r}}{\left(y_{j}-x_{r}\right)^{2}}}{\sum_{r=1}^{n}\frac{1}{\left(y_{j}-x_{r}\right)^{2}}},j=1,2,\ldots,n-1

and demonstrating that

s=1n11t=1nxi)21(ysxr)2=n1n,i=1.2,,n.\sum_{s=1}^{n-1}\frac{\frac{1}{\left.\sum_{t=1}^{n}-x_{i}\right)^{2}}}{\frac{1}{\left(y_{s}-x_{r}\right)^{2}}}=\frac{n-1}{n},\quad i=1,2,\ldots,n.

This is how we first obtained the inequalities(43)9)\left.(43)^{9}\right).
13. - Let us again consider the sequence (i) and its derived sequence
(2). Let us now set
(44){xi=x1+x2++xi1+xi+1++xnn1,i=1.2,,n.yI=y1+y2++yi1+yI+1++yn1n2,I=1.2,,n1,\left\{\begin{array}[]{l}x_{i}^{\prime}=\frac{x_{1}+x_{2}+\cdots+x_{i-1}+x_{i+1}+\cdots+x_{n}}{n-1},\quad i=1,2,\ldots,n.\\ y_{j}^{\prime}=\frac{y_{1}+y_{2}+\cdots+y_{i-1}+y_{j+1}+\cdots+y_{n-1}}{n-2},\quad j=1,2,\ldots,n-1,\end{array}\right.
assuming, of course,n>2n>2.
In this way we obtain the sequences

x1x2xn\displaystyle x_{1}^{\prime}\geqq x_{2}^{\prime}\geqq\cdots\geq x_{n}^{\prime} (45)
y1y2yn1\displaystyle y_{1}^{\prime}\geqq y_{2}^{\prime}\geqq\cdots\geqq y_{n-1}^{\prime} (46)

and equality

1ni=1nxi=1n1i=1n1yI\frac{1}{n}\sum_{i=1}^{n}x_{i}^{\prime}=\frac{1}{n-1}\sum_{i=1}^{n-1}y_{j}^{\prime} (47)

Theorem 2 shows us that
(48)

y1x1,xnyn1.y_{1}^{\prime}\geqq x_{1}^{\prime},x_{n}^{\prime}\geqq y_{n-1}^{\prime}.

Let us now define the sequences (37), (38) in the following way, again takingm=n(n1)m=n(n-1),

0 0 footnotetext: 9. See loc. cit. 8).
αinn+1=αinn+2==αin=yI,I=1.2,,n1\displaystyle\alpha_{in-n+1}=\alpha_{in-n+2}=\cdots=\alpha_{in}=y_{j}^{\prime},\quad j=2,\ldots,n-1
αinni+2=αinni+3==αini=xi,i=1.2,,n\displaystyle\alpha_{in-n-i+2}^{\prime}=\alpha_{in-n-i+3}^{\prime}=\cdots=\alpha_{in-i}^{\prime}=x_{i}^{\prime},\quad i=2,\ldots,n

and let us check whether the conditions of Lemma 4 are verified.
Equality (40) is satisfied by following (47).
This time we have (3939^{\prime}) and so we need to look at the inequalities (4141^{\prime}). These inequalities become 10 ).
(49)

{n(y1+y2++yI1)+ryI(n1)(x1+x2++xI1)+(r+I1)xIr=1.2,,nI,I=1.2,,n1n(y1+y2++yI1)+ryI(n1)(x1+x2++xI)+(r+In)xI+r=nI+1,nI+2,,n,I=1.2,,n1( except r=n,I=n1)\left\{\begin{array}[]{c}n\left(y_{1}^{\prime}+y_{2}^{\prime}+\cdots+y_{j-1}^{\prime}\right)+ry_{j}^{\prime}\geqq(n-1)\left(x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{j-1}^{\prime}\right)+(r+j-1)x_{j}^{\prime}\\ r=1,2,\ldots,n-j,\quad j=1,2,\ldots,n-1\\ n\left(y_{1}^{\prime}+y_{2}^{\prime}+\cdots+y_{j-1}^{\prime}\right)+ry_{j}^{\prime}\geqq(n-1)\left(x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{j}^{\prime}\right)+(r+j-n)x_{j+}^{\prime}\\ r=n-j+1,\quad n-j+2,\ldots,n,\quad j=1,2,\ldots,n-1\\ (\text{ sauf }r=n,\quad j=n-1)\end{array}\right.

From these inequalities let us choose the following
(50)n(y1+y2++yI1)+yI(n1)(x1+x2++xI1)+IxIn\left(y_{1}^{\prime}+y_{2}^{\prime}+\cdots+y_{j-1}^{\prime}\right)+y_{j}^{\prime}\geqq(n-1)\left(x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{j-1}^{\prime}\right)+jx_{j}^{\prime}

I=2.3,,n2,j=2,3,\ldots,n-2,

(51)n(y1+y2++yI1)+(nI)yI(n1)(x1+x2++xI)n\left(y_{1}^{\prime}+y_{2}^{\prime}+\cdots+y_{j-1}^{\prime}\right)+(n-j)y_{j}^{\prime}\geqq(n-1)\left(x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{j}^{\prime}\right)

I=2.3,,n2,j=2,3,\ldots,n-2,

(52)n(y1+y2++yI1)+(nI+1)yI(n1)(x1+x2++xI)+xI+1n\left(y_{1}^{\prime}+y_{2}^{\prime}+\cdots+y_{j-1}^{\prime}\right)+(n-j+1)y_{j}^{\prime}\geqq(n-1)\left(x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{j}^{\prime}\right)+x_{j+1}^{\prime}

I=2.3,,n2,j=2,3,\ldots,n-2,

(53)n(y1+y2++yI(n1)(x1+x2++xI)+IxI+1n\left(y_{1}^{\prime}+y_{2}^{\prime}+\cdots+y_{j}^{\prime}\geqq(n-1)\left(x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{j}^{\prime}\right)+jx_{j+1}^{\prime}\right.

I=2.3,,n2.j=2,3,\ldots,n-2.

All other inequalities (49) are consequences of these inequalities, of inequalities (45), (46), (48) and of equality (47). Let us note, in passing, that forn=3n=3inequalities (49) are demonstrated. It remains to demonstrate inequalities (50), (51), (52), and (53) forn>3n>3. First we will express these inequalities using the zeros (1) and (2), taking into account (44). Doing the calculations we find
10) ForI=1j=1the same covenants as above. See 7).
(54)

[n(I1)+1]i=1nxi+n(n1)(n2)(x1+x2++xI1)+n(n2)Ixi[n(j-1)+1]\sum_{i=1}^{n}x_{i}+n(n-1)(n-2)\left(x_{1}+x_{2}+\cdots+x_{j-1}\right)+n(n-2)jx_{i}-
I=2.3,,n2j=2,3,\ldots,n-2

(55)Ii=1nxI+n(n2)(x1+x2++xI)n2(y1+y2++yI)+InyI0j\sum_{i=1}^{n}x_{j}+n(n-2)\left(x_{1}+x_{2}+\cdots+x_{j}\right)-n^{2}\left(y_{1}+y_{2}+\cdots+y_{j}\right)+jny_{j}\geqq 0

I=2.3,,n2j=2,3,\ldots,n-2
[(I1)(n1)+1]i=1nxi+n(n1)(n2)(x1+x2++xI1)+[(j-1)(n-1)+1]\sum_{i=1}^{n}x_{i}+n(n-1)(n-2)\left(x_{1}+x_{2}+\cdots+x_{j-1}\right)+
+n(n2)xIn2(n1)(y1+y2++yI)+n(n1)(I2)yI1+\displaystyle+n(n-2)x_{j}-n^{2}(n-1)\left(y_{1}+y_{2}+\cdots+y_{j}\right)+n(n-1)(j-2)y_{j-1}+ (56)
+n2(n1)yI0\displaystyle+n^{2}(n-1)y_{j}\geqq 0
I=3.4,,n1\displaystyle j=3,4,\ldots,n-1

(57)

(I1)i=1nxi+(n1)(n2)(x1+x2++xI1)++(I1+1)(n2)xIn(n1)(y1+y2++yI)+n(n1)yI0,i=3.4,,n1.\begin{gathered}(j-1)\sum_{i=1}^{n}x_{i}+(n-1)(n-2)\left(x_{1}+x_{2}+\cdots+x_{j-1}\right)+\\ +(j-1+1)(n-2)x_{j}-n(n-1)\left(y_{1}+y_{2}+\cdots+y_{j}\right)+n(n-1)y_{j}\geqq 0,\\ i=3,4,\ldots,n-1.\end{gathered}

Before doing the calculations in (52) and (53) we changedIjinI1j-1.

It remains for us to demonstrate inequalities (54), (55), (56), (57).
14. - Let us first deal with inequality (55), which is the simplest.

Inequality (55) is of the form (26), where we have

r1=I+n(n2),r2=I,s=n2,s=n(nI)r_{1}=j+n(n-2),r_{2}=j,s=n^{2},s^{\prime}=n(n-j)

and conditions (27) are indeed verified.
We have

n(nI)r2Is=0n(n-j)r_{2}-js^{\prime}=0

and we can therefore apply Theorem 8.
Inequality (55) is therefore demonstrated.
15. - Inequalities (54), (56), (57) are of the form (30).
I. Inequality (54). We have
r1=n(I1)+1+n(n1)(n2),r2=n(I1)+1+n(n2)I=(n1)(nI1)r_{1}=n(j-1)+1+n(n-1)(n-2),r_{2}=n(j-1)+1+n(n-2)j=(n-1)(nj-1),

r3=n(I1)+1,s=n2(n1),s=0,s"=n(n1)2r_{3}=n(j-1)+1,s=n^{2}(n-1),s^{\prime}=0,s^{\prime\prime}=n(n-1)^{2}

Conditions (31) are indeed verified.
For numbers (33) we have

p1=(I1)(n2nI1)n(n1)2,p2=n(n1)+1nIn(n1)p3=nI2(2n1)n(n1)2\begin{gathered}p_{1}=-\frac{(j-1)\left(n^{2}-nj-1\right)}{n(n-1)^{2}},p_{2}=-\frac{n(n-1)+1-nj}{n(n-1)}\\ p_{3}=-\frac{nj^{2}-(2n-1)}{n(n-1)^{2}}\end{gathered}

We have

(nI+1)p3+1=(I1)[nI2(n2+2n1)I+2n(n1)]n(n1)2(n-j+1)p_{3}+1=\frac{(j-1)\left[nj^{2}-\left(n^{2}+2n-1\right)j+2n(n-1)\right]}{n(n-1)^{2}}

and it is easy to verify that for2In12\leqq j\leqq n-1This number is negative. The second condition (34) is therefore not verified.

We have

np3+I=n(I1)(n1)(nI1)>0.2In2np_{3}+j=\frac{n(j-1)}{(n-1)}(n-j-1)>0,2\leqq j\leqq n-2

and it remains for us to examine the first inequality (35).
Taking into account (36), we find

HASCD=4n(I1)(nI)(nI1)(n1)2IAC-D=-\frac{4n(j-1)(n-j)(n-j-1)}{(n-1)^{2}j^{\prime}}

1C2=2Inp3(np3+I)=2(n1)2n(I1)(nI1)[nI2(2n1)I+n(n1)]\sqrt{1-C^{2}}=\frac{2}{j}\sqrt{-np_{3}\left(np_{3}+j\right)}=\frac{2}{(n-1)^{2}}-\sqrt{n(j-1)(n-j-1)\left[nj^{2}-(2n-1)j+n(n-1)\right]}
and the first inequality (35) becomes, after simplifications,
or

nI2(2n1)I+n(n1)(nI)(ni1)\sqrt{nj^{2}-(2n-1)j+n(n-1)}\geqq\sqrt{(n-j)(n-i-1)}
(n1)I20(n-1)j^{2}\geqq 0

which is obviously verified.
We can therefore apply Theorem 9 and inequality (54) is demonstrated.
II. Inequality (56). We proceed exactly as for (54). We have

r1=(I1)(n1)+1+n(n1)(n2),r2=(I1)(n1)+1+n(n2)=(n1)(n+I2)r3=(I1)(n1)+1,s=n2(n1),s=n(n1)(I2),s"=n2(n1)\begin{gathered}r_{1}=(j-1)(n-1)+1+n(n-1)(n-2),r_{2}=(j-1)(n-1)+1+n(n-2)=(n-1)(n+j-2)\\ r_{3}=(j-1)(n-1)+1,s=n^{2}(n-1),s^{\prime}=n(n-1)(j-2),s^{\prime\prime}=n^{2}(n-1)\end{gathered}

We deduce

p1=nI(n1)(nI+2),p2=nInI+2,p3=n+I2(n1)(nI+2)(nI+1)p3+1=(nI)(I2)(n1)(nI+2)<0.3In1\begin{gathered}p_{1}=-\frac{n-j}{(n-1)(n-j+2)},p_{2}=-\frac{n-j}{n-j+2},p_{3}=-\frac{n+j-2}{(n-1)(n-j+2)}\\ (n-j+1)p_{3}+1=-\frac{(n-j)(j-2)}{(n-1)(n-j+2)}<0,3\leqq j\leqq n-1\end{gathered}

and the second inequality (34) is not verified.
We also have

np3+I=(nI)[(n1)I(n2)](n1)(nI+2)>0.3In1,HASCD=4n(n2)(I1)(nI)(n1)(nI+2)I,1C2=2(n1)(nI+2)In(nI)(n+I2)[(n1)I(n2)]\begin{gathered}np_{3}+j=\frac{(n-j)[(n-1)j-(n-2)]}{(n-1)(n-j+2)}>0,3\leqq j\leqq n-1,\\ AC-D=-\frac{4n(n-2)(j-1)(n-j)}{(n-1)(n-j+2)j},\\ \sqrt{1-C^{2}}=\frac{2}{(n-1)(n-j+2)j}\sqrt{n(n-j)(n+j-2)[(n-1)j-(n-2)]}\end{gathered}

and the first inequality (35) becomes, after simplifications,

(n+I2)[(n1)I(n2)](n2)I1\sqrt{(n+j-2)[(n-1)j-(n-2)]}\geqq(n-2)\sqrt{j-1}

Or

(n1)I20(n-1)j^{2}\geqq 0

By Theorem 9, inequality (56) is therefore proven.
III. Inequality (57). We have

r1=(I1)+(n1)(n2),r2=(I1)+(I1)(n2)=(n1)(I1)r3=I1,s=n(n1),s=0,s"=n(n1)\begin{gathered}r_{1}=(j-1)+(n-1)(n-2),r_{2}=(j-1)+(j-1)(n-2)=(n-1)(j-1)\\ r_{3}=j-1,s=n(n-1),s^{\prime}=0,s^{\prime\prime}=n(n-1)\end{gathered}

and we deduce

p1=(I1)(nI)n(n1),p2=nIn,p3=I22I+nn(n1)(ni+1)p3+1=(I1)(I2)(nI)n(n1)<0.3In1\begin{gathered}p_{1}=-\frac{(j-1)(n-j)}{n(n-1)},p_{2}=-\frac{n-j}{n},p_{3}=-\frac{j^{2}-2j+n}{n(n-1)}\\ (n-i+1)p_{3}+1=-\frac{(j-1)(j-2)(n-j)}{n(n-1)}<0,3\leqq j\leqq n-1\end{gathered}

The second inequality (34) is therefore not verified.
We also have

np3+I=(I1)(nI)n1>0.3In1HASCD=4(I1)(nI)2(n1)I31C2=2(n1)I(I1)(nI)(I22I+n)\begin{gathered}np_{3}+j=\frac{(j-1)(n-j)}{n-1}>0,3\leqq j\leqq n-1\\ AC-D=-\frac{4(j-1)(n-j)^{2}}{(n-1)j^{3}}\\ \sqrt{1-C^{2}}=\frac{2}{(n-1)j}\sqrt{(j-1)(n-j)\left(j^{2}-2j+n\right)}\end{gathered}

and the first inequality (35) becomes
or

n(I22I+n)nI\sqrt{n\left(j^{2}-2j+n\right)}\geqq n-j
(n1)I20(n-1)j^{2}\geqq 0

which is obviously verified.
Inequality (57) is therefore also demonstrated.
16. - Finally we obtained the following property, analogous to that expressed by Theorem 10.

Theorem 11. - The sequence (45) where each term is repeatedn1n-1times is an average sequence of the sequence (46) in which each term is repeatednntimes (n>2n>2).

As a result, we can findn(n1)n(n-1)non-negative numbersqr,s,r=1.2,,n,s=1.2,,n1q_{r,s}^{\prime},r=1,2,\ldots,n,s=1,2,\ldots,n-1, so that we have

xi=r=1n1qi,ryr,z=1n1qi,r=1,s=1nqs,I=nn1i=1.2,,n,I=1.2,,n1\begin{gathered}x_{i}^{\prime}=\sum_{r=1}^{n-1}q_{i,r}^{\prime}y_{r}^{\prime},\sum_{z=1}^{n-1}q_{i,r}^{\prime}=1,\sum_{s=1}^{n}q_{s,j}^{\prime}=-\frac{n}{n-1}\\ i=1,2,\ldots,n,j=1,2,\ldots,n-1\end{gathered}

§4\S 4.

  1. 17.
    • Messrs. GH Hardy, JL Littlewood and G. Polya introduced the notion of average sequence by studying certain inequalities verified by convex functions 11 ). This property, in a slightly more general form 12 ), is stated as follows.

  1. 11.

    GH Hardy, JE Littlewood, G. Polya „Some simple inequalities satisfied by convex functions Messenger of Math., 58, 145-152 (1928). 12) See loc. cit. 8).

Lemma 5.-For the inequality

i=1rHASiφ(xi)L=1sBiφ(yi),(r+s3),\sum_{i=1}^{r}A_{i}\varphi\left(x_{i}\right)\geqq\sum_{l=1}^{s}B_{i}\varphi\left(y_{i}\right),(r+s\geqq 3), (58)

Or

HASi>0,Bi>0,HAS1HAS2++HASr=B1+B2++Bs=1,A_{i}>0,B_{i}>0,A_{1}-A_{2}+\cdots+A_{r}=B_{1}+B_{2}+\cdots+B_{s}=1,

x1<x2<<xr,y1<y2<<ysx_{1}<x_{2}<\cdots<x_{r},y_{1}<y_{2}<\cdots<y_{s}, be verified for any functionφ(x)\varphi(x)non-concave (of order 1) in an interval containing the pointsxi,yix_{i},y_{i}, it is necessary and sufficient that we can find rs non-negative numberspi,Ip_{i,j}so that we have

v=1rpi,v=1,v=1rBvpv,I=HASI,yi=v=1rpi,vxv,i=1.2,,s,I=1.2,,r.\begin{gathered}\sum_{v=1}^{r}p_{i,v}=1,\sum_{v=1}^{r}B_{v}p_{v,j}=A_{j},y_{i}=\sum_{v=1}^{r}p_{i,v}x_{v},\\ i=1,2,\ldots,s,j=1,2,\ldots,r.\end{gathered}

Ifφ(x)\varphi(x)is convex, in (58) the sign>>is valid.
From this property we deduce
THEOREM 12. - Ifφ(x)\varphi(x)If a non-concave function in an interval containing (1) and if (2) is the derivative sequence of (1), we have the inequality

1ni=1nφ(xi)1n1I=1n=1φ(yI).\frac{1}{n}\sum_{i=1}^{n}\varphi\left(x_{i}\right)\geqslant\frac{1}{n-1}\sum_{j=1}^{n=1}\varphi\left(y_{j}\right).

If the functionφ(x)\varphi(x)is convex, equality only holds stx1=x2==xnx_{1}=x_{2}=\cdots=x_{n}.

This property is due to MK TodA 13 ).
We pointed out this inequality some time ago, and it was actually demonstrated by MH E BRAY 14 ), forφ(x)=xp,p\varphi(x)=xp,ppositive integer. Forppany inequality has been studied by MS KaKeya 15 ).
18. - Lemma 5 can also be applied to the sequences (45) and (46). In this way we obtain a new property which is given by the
13) Kiyoshi toda "On certain functional inequalities" Journal of the Hiroshima Univ., (A), 4, 27-40 (1934).
14) Hubert E. Bray "On the zeros of a polynomial and of its derivative" Amer. Journal of Math, 55, 864-872 (1931).
15) Soichi Kakeya. On an inequality between the roots of an equation and its derivative" Proc. Phys. - Math. Soc. Japan, (3), 15, 149-154 (1933).

THEOREM 13. - If the sequences (45) and (46) are obtained from (1) and (2) by the formulas (44) and ifφ(x)\varphi(x)is a nonconcave function in an interval containing the points (45) and (46), we have the inequality

1n1I=1n1φ(yI)1ni=1nφ(xi),(n>2)\frac{1}{n-1}\sum_{j=1}^{n-1}\varphi\left(y_{j}^{\prime}\right)\geqq\frac{1}{n}\sum_{i=1}^{n}\varphi\left(x_{i}^{\prime}\right),\quad(n>2) (59)

If the function is convex, equality only holds ifx1=x2===xnx_{1}=x_{2}==\cdots=x_{n}.

Indeed, from the study of Lemma 5 it results that equality cannot take place, ifφ(x)\varphi(x)is convex, that ify1=y2===yn1y_{1}^{\prime}=y_{2}^{\prime}==\cdots=y_{n-1}^{\prime}, which requiresx1=x2==xnx_{1}=x_{2}=\cdots=x_{n}.

In particular, we have the inequality

y1p+y2p++yn1pn1x1p+x2p++xnpn\frac{y_{1}^{\prime p}+y_{2}^{\prime p}+\cdots+y_{n-1}^{\prime p}}{n-1}\geqq\frac{x_{1}^{\prime p}+x_{2}^{\prime p}+\cdots+x_{n}^{\prime p}}{n} (60)

ifp>1p>1, equality taking place only ifx1=x2==xnx_{1}=x_{2}=\ldots=x_{n} ; assuming, of course, that all zeros (1), and therefore also the numbers (45), (46) are non-negative. This results from the fact that the functionxpx^{p}is convex ifp>1,x0p>1,x\geqq 0. The functionxpx^{p}being concave if0<p<1,x00<p<1,x\geqq 0, the opposite inequality is valid in this case. We also see, in the same way, that inequality (60) also remains whenp<0p<0, provided that the zeros (1), and therefore also the numbers (45), (46), are all positive.
19. - Let us make one last application of inequality (59). The functionlogx\log xis concave forx>0x>0. It follows that if the zeros (1) are positive we have the inequality
(61)x1x2xnny1y2yn1n1(n>2)\sqrt[n]{x_{1}^{\prime}x_{2}^{\prime}\ldots x_{n}^{\prime}}\geqq\sqrt[n-1]{y_{1}^{\prime}y_{2}^{\prime}\ldots y_{n-1}^{\prime}}\quad(n>2).

This inequality also holds when (1) are only non-negative. The hypothesisxn=0x_{n}^{\prime}=0requiredx1=x2==xn1=0x_{1}=x_{2}=\ldots=x_{n-1}=0SOy1=y2=yn=2=0y_{1}=y_{2}=\ldots y_{n=2}=0and consequentlyyn1=0y_{n-1}^{\prime}=0. It follows that in (61) equality only holds if either all the zeros (1) are equal or then1n-1first ones are zero.

Eitherf(x)f(x)a polynomial of degreen>2n>2with all real zeros andxs,1,xs,2,,xs,nsx_{s,1},x_{s,2},\ldots,x_{s,n-s}the zeros of thess.th derivativef(s)(x)f^{(s)}(x). Let us designate byxs,1,xs,2,,xs,nsx_{s,1}^{\prime},x_{s,2}^{\prime},\ldots,x_{s,n-s}^{\prime}the arithmetic means
of the zerosxs,rx_{s,r}takenns1n-s-1hasns1n-s-1. Inequality (61) gives us the sequence of inequalities

x0.1x0.2x0,nnx1.1x1.2x1,n1n1x2.1x2.2x2,n2xn2.1xn2.2\begin{gathered}\sqrt[n]{x_{0,1}^{\prime}x_{0,2}^{\prime}\ldots x_{0,n}^{\prime}}\geqq\sqrt[n-1]{x_{1,1}^{\prime}x_{1,2}^{\prime}\ldots x_{1,n-1}^{\prime}}\geqq\\ \geqq\sqrt{x_{2,1}^{\prime}x_{2,2}^{\prime}\ldots x_{2,n-2}^{\prime}}\geqq\cdots\geqq\sqrt{x_{n-2,1}^{\prime}x_{n-2,2}^{\prime}}\end{gathered}

assuming, of course, that the zeros off(x)f(x)are all non-negative.

It is easy to see that for all these inequalities the conditions of equality are the same as for (61).
20. - Finally, let us change the notations a little again. Let us denote byhas1,hasn,,hasna_{1},a_{n},\ldots,a_{n}the zeros off(x)f(x). We can easily see thatxn2.1xn2.2x_{n-2,1}^{\prime}x_{n-2,2}are the zeros off(n2)(x)f^{(n-2)}(x). But, the product of these zeros is equal to the arithmetic mean of the two-by-two products of the numbershasia_{i}. So we get the following property.

THEOREM 14. - Ifhas1,has2,,hasn(n>2)a_{1},a_{2},\ldots,a_{n}(n>2)are non-negative numbers and ifHAS1,HAS2,,HASnA_{1},A_{2},\ldots,A_{n}are the arithmetic means of these numbers takenn1n-1hasn1n-1, we have the inequality

HAS1HAS2HASnnhasihasI(n2)\sqrt[n]{A_{1}A_{2}\ldots A_{n}}\geqq\sqrt{\frac{\sum a_{i}a_{j}}{\binom{n}{2}}} (62)

equality taking place if and only if either all numbershasia_{i}are equal, orn1n-1of these numbers are zero.

Our inequality, forn=3n=3and forn=4n=4, can be written

(has+b)(b+c)(c+has)323hasb+bc+chas\sqrt[3]{(a+b)(b+c)(c+a)}\geq\frac{2}{\sqrt{3}}\sqrt{ab+bc+ca}

(has+b+c)(b+c+d)(c+d+has)(d+has+b)432hasb+hasc+hasd+bc+bd+cd\sqrt[4]{(a+b+c)(b+c+d)(c+d+a)(d+a+b)}\geq\frac{\sqrt{3}}{\sqrt{2}}\sqrt{ab+ac+ad+bc+bd+cd}
has,b,c,da,b,c,dbeing non-negative numbers.
The interest of inequality (62) consists in the fact that the first member is a superposition of arithmetic means and a geometric mean. IfHAS,GA,Gare the arithmetic and geometric means of the numbershas1,has2,,hasna_{1},a_{2},\ldots,a_{n}, we have

HASHAS1HAS2HASnnGA\geqq\sqrt[n]{A_{1}A_{2}\ldots A_{n}}\geqq G

On the other hand we also have

HAShasihasI(n2)GA\geq\sqrt{\frac{\sum a_{i}a_{j}}{\binom{n}{2}}}\geq G

and we see that (62) is an elegant precision of the first of these inequalities.

Iaşi, October 6, 1943.

  1. 1.
  2. 2.
  1. 5.
  1. 7.
  1. 9.
1948

Related Posts