On Certain Multiplicative Arithmetic Functions

Abstract

?

Authors

Tiberiu Popoviciu
(Institutul de Calcul)

Original title (in French)

Sur certaines fonctions arithmétiques multiplicatives

Keywords

?

Cite this paper as

T. Popoviciu, Sur certaines fonctions arithmétiques multiplicatives, Mathematica (Cluj), 13(36) (1971) no. 2, pp. 271-279 (in French)

PDF

About this paper

Journal

Mathematica (Cluj)

Publisher Name

Romanian Academy Publishing House

DOI

?

Print ISSN

not available

Online ISSN

not available

Google Scholar citations

to be inserted

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON CERTAIN MULTIPLICATIVE ARITHMETIC FUNCTIONS

TIBERIU POPOVICIU
in Cluj

I.

  1. 1.

    An arithmetic functionf(n)f(n)Therefore, a (real) function defined on the set of natural numbers is said to be multiplicative if we have
    (1)

f(hasb)=f(has)f(b)f(ab)=f(a)f(b)

regardless of the (natural) numbershas,ba,bfirst among themselves.
In the following we will designate by (has1,has2,,hasna_{1}, a_{2}, ..., a_{n}) the gcd and by[has1,has2,,hasn]\left[a_{1},a_{2},\ldots,a_{n}\right]the least common multiple (LCM) of (natural) numbershas1,has2,,hasna_{1}, a_{2}, ..., a_{n}The numbershas1,has2,,hasna_{1}, a_{2}, ..., a_{n}are relatively prime if and only if(has1,has2,,hasn)=1\left(a_{1},a_{2},\ldots,a_{n}\right)=1With these notations, the multiplicative property of the functionf(n)f(n)is written(has,b)=1f(hasb)=f(has)f(b)(a,b)=1\Rightarrow f(ab)=f(a)f(b)2.
In the well-known book by G. PÓlya and G. SZEGÓ [3, p. 126] an interesting property of multiplicative arithmetic functions is stated and proven. In a slightly modified form, we can state this property as follows:

THEOREM, 1. Iff(n)f(n)is a multiplicative arithmetic function andhas1,has2,,hasna_{1},a_{2},\ldots,a_{n}For any natural numbers, we have formulas
(2)f([has1,has2,,hasn])=k=1n((k)f((hasi1,hasi2,,hasik)))(1)k1\quad f\left(\left[a_{1},a_{2},\ldots,a_{n}\right]\right)=\prod_{k=1}^{n}\left(\prod_{(k)}f\left(\left(a_{i_{1}},a_{i_{2}},\ldots,a_{i_{k}}\right)\right)\right)^{(-1)^{k-1}}
(3)

f((has1,has2,,hasn))=k=1n((k)f([hasi1,hasi2,,hasik]))(1)k1f\left(\left(a_{1},a_{2},\ldots,a_{n}\right)\right)=\prod_{k=1}^{n}\left(\prod_{(k)}f\left(\left[a_{i_{1}},a_{i_{2}},\ldots,a_{i_{k}}\right]\right)\right)^{(-1)^{k-1}}

OrPi\Pirefers to a product extended to all(nk)\binom{n}{k}combinationskkhask,i1,i2k,i_{1},i_{2}..,iki_{k}clues1,2,,n1,2,\ldots,n.
Forn=2n=2the property reverts to the formula

f((has,b))f([has,b])=f(has)f(b)f((a,b))f([a,b])=f(a)f(b) (4)

Orf(n)f(n)is a multiplicative arithmetic function andhas,ba,bare any two natural numbers. This property is also given as an exercise in my higher algebra course (lithographed) [5, p. 190].

The proof of Theorem 1 in [3] and also only of the special casen=2n=2The proof in my cited course [5] is based on the well-known, unique prime factorization of a natural number. In what follows, we will provide a proof that does not rely on this factorization.
3. To begin, we will demonstrate the property in the particular casen=2n=2, therefore we will establish formula (4).

We will first demonstrate
Lemma 1.has,ba,bbeing two relatively prime numbers anddda third natural number, there exists a decompositiond=dd"d=d^{\prime}d^{\prime\prime}ofddin the product of two complementary divisorsd,d"d^{\prime},d^{\prime\prime}such as one might have

(d,d")=1,(d,has)=1,(d",b)=1.\left(d^{\prime},d^{\prime\prime}\right)=1,\left(d^{\prime},a\right)=1,\left(d^{\prime\prime},b\right)=1. (5)

We only consider positive divisors of numbers.
Let's move on to the proof of Lemma 1. There exist divisors ofddwho are first withhasaFor example, the number 1 is such a divisor. So thendd^{\prime}the largest of the divisors ofddwho is first withhasaand which exists since all the divisors ofdd, so in particular those that are prime withhasa, ared\leqq dSo thend"d^{\prime\prime}the complementary divisor ofdd^{\prime}It suffices to demonstrate the first and third formulas (5), the second being true by construction.

Eithere=(d,d")e=\left(d^{\prime},d^{\prime\prime}\right)and suppose thate>1e>1. We have|d"\geqslant\mid d^{\prime\prime}, henceed|ded^{\prime}\mid dNexte|de\mid d^{\prime}And(d,has)=1\left(d^{\prime},a\right)=1it follows that(ed,has)=1\left(ed^{\prime},a\right)=1Finally, we haved<edd^{\prime}<ed^{\prime}which contradicts the definition ofdd^{\prime}It follows thate=1e=1, SO(d,d")=1\left(d^{\prime},d^{\prime\prime}\right)=1.

Eitherf=(d",b)f=\left(d^{\prime\prime},b\right)and suppose thatf>1f>1We then havef|bf\mid b, hence(f,has)=1(f,a)=1Nextf|d"f\mid d^{\prime\prime}And(d,has)=1\left(d^{\prime},a\right)=1it follows thatfd|dfd^{\prime}\mid dtherefore also that(fd,has)=1\left(fd^{\prime},a\right)=1We finally haved<fdd^{\prime}<fd^{\prime}which is still in contradiction with the definition ofdd^{\prime}It follows thatf=1f=1, SO(d",b)=1\left(d^{\prime\prime},b\right)=1.

Lemma 1 is therefore proven.
Note 1. Every divisord1d_{1}ofddand who is first withhasais a divisor of the greatest divisordd^{\prime}ofddwho enjoys the same property. Indeed
, ofd1|d,d|d,(d1,has)=(d,has)=1d_{1}\left|d,d^{\prime}\right|d,\left(d_{1},a\right)=\left(d^{\prime},a\right)=1it follows that[d1,d]|d\left[d_{1},d^{\prime}\right]\mid dAnd([d1,d],has)==[(d1,has),(d,has)]=1\left(\left[d_{1},d^{\prime}\right],a\right)==\left[\left(d_{1},a\right),\left(d^{\prime},a\right)\right]=1, done([d1,d],has)=1\left(\left[d_{1},d^{\prime}\right],a\right)=1. Butd[d1,d]dd^{\prime}\leqq\left[d_{1},d^{\prime}\right]\leqq d^{\prime}, according to the definition ofdd^{\prime}It follows that[d1,d]=d\left[d_{1},d^{\prime}\right]=d^{\prime}, SOd1|dd_{1}\mid d^{\prime}.

Note 2. The divisor of has also been used in other problems by W. Sierpinski [6, p. 17].
4. Let us proceed to the proof of formula (4). Letd=(has,b)d=(a,b)Andhas=dhas,b=dba=da^{\prime},b=db^{\prime}. SO(has,b)=1\left(a^{\prime},b^{\prime}\right)=1Let's apply Lemma 1 to numbers.has,b,da^{\prime},b^{\prime},d. We havehas=dd"has,b=d"db,(has,b)=dd",[has,b]==dbd"hasa=d^{\prime}d^{\prime\prime}a^{\prime},\quad b=d^{\prime\prime}d^{\prime}b^{\prime},\quad(a,b)=d^{\prime}d^{\prime\prime},\quad[a,b]==d^{\prime}b^{\prime}d^{\prime\prime}a^{\prime}.

But, from(d,d")=(d,has)=1\left(d^{\prime},d^{\prime\prime}\right)=\left(d^{\prime},a^{\prime}\right)=1it follows that(d,d"has)=1\left(d^{\prime},d^{\prime\prime}a^{\prime}\right)=1Similarly, we have(d",db)=1\left(d^{\prime\prime},d^{\prime}b^{\prime}\right)=1From property (1) of multiplicativity, it follows that
(6)

f(has)=f(d)f(d"has),f(b)=f(d")f(db)f(a)=f\left(d^{\prime}\right)f\left(d^{\prime\prime}a^{\prime}\right),f(b)=f\left(d^{\prime\prime}\right)f\left(d^{\prime}b^{\prime}\right)

Similarly(d,d"has)=(b,d"has)=1\left(d^{\prime},d^{\prime\prime}a^{\prime}\right)=\left(b^{\prime},d^{\prime\prime}a^{\prime}\right)=1it follows that(d"has,db)=1\left(d^{\prime\prime}a^{\prime},d^{\prime}b^{\prime}\right)=1and we deduce from this

f((has,b))=f(d)f(d"),f([has,b])=f(d"has)f(db)f((a,b))=f\left(d^{\prime}\right)f\left(d^{\prime\prime}\right),f([a,b])=f\left(d^{\prime\prime}a^{\prime}\right)f\left(d^{\prime}b^{\prime}\right) (7)

By comparing formulas (6) and (7) we obtain the desired formula (4).
5. Let's prove Theorem 1. To prove formula (2) we will proceed by complete induction on the numbernnnumbershasia_{i}. Forn=2n=2The formula reduces to (4) and is therefore proven. Suppose the property is true forn1n-1numbers and let's demonstrate it fornnNumbershas1,has2,,hasn(n>2)a_{1},a_{2},\ldots,a_{n}(n>2)To simplify the notation, let's...Ek==(k)f((hasi1,hasi2,,hasik)),k=1,2,,nE_{k}==\prod_{(k)}f\left(\left(a_{i_{1}},a_{i_{2}},\ldots,a_{i_{k}}\right)\right),k=1,2,\ldots,nand let us designate byEk,k=1,2E_{k}^{\prime},k=1,2..
,n1n-1numbersEkE_{k}corresponding ton1n-1Numbershas1,has2,,hasn1a_{1},a_{2},\ldots,a_{n-1}and byEk*,k=1,2,,n1E_{k}^{*},k=1,2,\ldots,n-1the same numbers corresponding ton1n-1Numbers(has1,hasn),(has2,hasn),,(hasn1,hasn)\left(a_{1},a_{n}\right),\left(a_{2},a_{n}\right),\ldots,\left(a_{n-1},a_{n}\right)Taking into account (4) we have

f([[has1,has2,,hasn1],hasn])f(([has1,has2,,hasn1],hasn))=\displaystyle f\left(\left[\left[a_{1},a_{2},\ldots,a_{n-1}\right],a_{n}\right]\right)\cdot f\left(\left(\left[a_{1},a_{2},\ldots,a_{n-1}\right],a_{n}\right)\right)= (8)
=f([has1,has2,,hasn])f(hasn)\displaystyle=f\left(\left[a_{1},a_{2},\ldots,a_{n}\right]\right)f\left(a_{n}\right)

and it's easy to verify that

Ek=EkEk1*,k=1,2,,nE_{k}=E_{k}^{\prime}E_{k-1}^{*},\quad k=1,2,\ldots,n (9)

by askingEn=1,E0*=f(hasn)E_{n}^{\prime}=1,E_{0}^{*}=f\left(a_{n}\right)As a result of the distributive property of operations(has,b)(a,b)And[has,b][a,b], We have

([has1,has2,,hasn1],hasn)=[(has1,hasn),(has2,hasn),,(hasn1,hasn)]\left(\left[a_{1},a_{2},\ldots,a_{n-1}\right],a_{n}\right)=\left[\left(a_{1},a_{n}\right),\left(a_{2},a_{n}\right),\ldots,\left(a_{n-1},a_{n}\right)\right] (10)

7 - Mathematica Vol. 13 (36) – Fasc. 2/1971

By hypothesis we have

f([has1,has2,,hasn1])=k=1n1Ek(1)k1f\left(\left[a_{1},a_{2},\ldots,a_{n-1}\right]\right)=\prod_{k=1}^{n-1}E_{k}^{\prime(-1)^{k-1}} (11)

and by virtue of equality (10) we also have

f(([has1,has2,,hasn1],hasn))=k=1n1Ek*(1)k1f\left(\left(\left[a_{1},a_{2},\ldots,a_{n-1}\right],a_{n}\right)\right)=\prod_{k=1}^{n-1}E_{k}^{*}(-1)^{k-1} (12)

Considering (8), (9), (11), and (12), we deduce formula (2). Formula
(3) is proven in the same way.
Theorem 1 is therefore proven.
The arithmetic functionf(n):=nf(n):=nis indeed multiplicative and formula (4) becomes(has,b)[has,b]=hasb(a,b)[a,b]=abwhich can be demonstrated directly using the divisibility relation. The general formulas (2), (3) can easily be written in the case of the functionf(n)=nf(n)=n. For formula (2) this is done in the cited book by g. pólya and g. szigGó [3].

II.

  1. 6.

    Euler's arithmetic functionψ(n)\psi(n)(the indicator) is indeed multiplicative and we have

φ(hasb)=φ(has)φ(b)\varphi(ab)=\varphi(a)\varphi(b) (13)

if (and only if)(has,b)=1(a,b)=1
We know that φ(n)\varphi(n)is equal to the number of natural numbersn\leq nand first withnn.

If the condition(has,b)=1(a,b)=1If formula (13) is not verified, it is no longer true. In general, ifd=(has,b)d=(a,b)we have the formula

dφ(has)φ(b)=φ(d)φ(hasb)d\varphi(a)\varphi(b)=\varphi(d)\varphi(ab) (14)

This formula, although not explicitly stated, can be found in various treatises. It suffices to cite E. Lucas [2, p. 398] and Le Dickson [1, p. 13].

The proofs of formula (14) have always been based on the prime factorization of numbers. There is still an advantage to dispensing with this factorization. This is what we will do in what follows.
7. We will first prove the

Lemma 2. If a|b we have
( 15 )

φ(hasb)=hasφ(b)\varphi(ab)=a\varphi(b)

We will refer tohas|ba\mid bthe fact that the numberbbis divisible by the numberhasa, a notation that we have already used in the first part of this work.

We can give a proof of this lemma, analogous to the well-known proof of formula (13). This proof amounts to counting the terms of the sequence ofhasbabprime natural numbers that are coprime withhasbabThe key terms of this sequence are arranged, for clarity, in a rectangular table.

12bb+1b+22b\begin{array}[]{cclc}1&2&\ldots&b\\ b+1&b+2&\ldots&2b\end{array}
(has1)b+1(has1)b+2hasb(a-1)b+1\quad(a-1)b+2\ldots ab (16)

ofhasalines andbbcolumns so that the element of the(i+1)second line (i+1)^{-\text{eme ligne }}and thejj-a columnib+jib+jThis demonstration can be found in all treatises on number theory. It suffices to cite the excellent book byWW. CLERPINSKI [6, p. 229]. You can also consult my course already cited [5, p. 182].

To prove Lemma 2, let us consider again Table (16). We will show that, under the conditions of the lemma, we have

(ib+j,hasb)=1(j,b)=1(ib+j,ab)=1\Leftrightarrow(j,b)=1 (17)

In short, let's note that we generally have(α,βγ)=1(α,β)=(\alpha,\beta\gamma)=1\Leftrightarrow(\alpha,\beta)=:=:(α,γ)=1=:(\alpha,\gamma)=1And(α,β)=(α,β+γα)(\alpha,\beta)=(\alpha,\beta+\gamma\alpha), whenα,β,γ\alpha,\beta,\gammaare natural numbers. If now(ib+j,hasb)=1(ib+j,ab)=1It follows that(ib+j,b)=1(ib+j,b)=1, done also(j,b)=1(j,b)=1We have done

(ib+j,hasb)=1(j,b)=1(ib+j,ab)=1\Rightarrow(j,b)=1 (18)

Let us now suppose that(j,b)=1(j,b)=1It follows that(ib+j,b)=1(ib+j,b)=1SO(ib+j,has)=1(ib+j,a)=1since a is a divisor ofbbIt follows that(ib+j,hasb)=1(ib+j,ab)=1So we have

(j,b)=1(ib+j,hasb)=1(j,b)=1\Rightarrow(ib+j,ab)=1 (19)

From (18), (19) we get formula (17). From formula (17) we get that in each row of table (16) there is exactlyφ(b)\varphi(b)prime numbers withhasbabLemma 2 is therefore proven.

Moreover, the property expressed by Lemma 2 is equivalent to that expressed by the

Iremme 3. We have
(20)

φ(has2b)=hasφ(hasb)\varphi\left(a^{2}b\right)=a\varphi(ab)

To show that 1st 1st 3 results from 1st 2 i 1, it suffices to apply formula (15) to the numbershasa,hasbabThe second being clearly divisible by the first. To show that Lemma 2 follows from Lemma 3, eitherhas|ba\mid bWe then haveb=hasbb=ab^{\prime}and by virtue of Lemma 3 we haveφ(hasb)==φ(has2b)=hasφ(hasb)=hasφ(b)\varphi(ab)==\varphi\left(a^{2}b^{\prime}\right)=a\varphi\left(ab^{\prime}\right)=a\varphi(b)This results in formula (15).

An immediate consequence of (20) is formula
(21)

φ(hasmb)=hasm1φ(hasb)\varphi\left(a^{m}b\right)=a^{m-1}\varphi(ab)

whatever the natural numbershas,b,ma,b,m8. Let
us demonstrate formula (14). By settingd=(has,b)d=(a,b), We haved[has,b]=hasbd[a,b]=ab. Butd[[has,b]d[[a,b], SOφ(hasb)=dφ([has,b])\varphi(ab)=d\varphi([a,b])Taking into account formula (4), it follows thatφ(d)φ(hasb)=dφ[(has,b])φ(d)=dφ(has)φ(b)\varphi(d)\varphi(ab)=d\varphi[(a,b])\varphi(d)=d\varphi(a)\varphi(b), hence formula (14).
9. Formula (14) can be generalized and we can state the

THEOREM 2.has1,has2,,hasna_{1},a_{2},\ldots,a_{n}being natural numbers and settingd=(has1,has2,,hasn)d=\left(a_{1},a_{2},\ldots,a_{n}\right), We have

k=1n((k)φ(hasi1hasi2hasik))(1)k1=φ(d)d\prod_{k=1}^{n}\left(\prod_{(k)}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{k}}\right)\right)^{(-1)^{k-1}}=\frac{\varphi(d)}{d} (22)

OrPi\Pihas the same meaning as in Theorem 1.
(k)

We will perform a complete inductive demonstration on the numbernnnumbershasia_{i}. Forn=2n=2Formula (22) reduces to (14), which has already been proven. Now suppose that the property is true forn1n-1numbers and let's demonstrate - 1a fornnnumbers (n>2n>2).

Let's consider thennNumbershas1,has2,,hasna_{1},a_{2},\ldots,a_{n}and let's askd=(has1,has2,,hasn)d=\left(a_{1},a_{2},\ldots,a_{n}\right),d=(has1,has2,,hasn1)d^{\prime}=\left(a_{1},a_{2},\ldots,a_{n-1}\right)By designatingPi\Pi^{\prime}a product extended to all(n1k)\binom{n-1}{k}combinationsi1,i2,,ik,ki_{1},i_{2},\ldots,i_{k},khaskkclues1,2,,n11,2,\ldots,n-1, we have, by hypothesis,

φ(d)d=k=1n1((k)φ(hasi1hasi2hasik))(1)k1\frac{\varphi\left(d^{\prime}\right)}{d^{\prime}}=\prod_{k=1}^{n-1}\left(\prod_{(k)}^{\prime}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{k}}\right)\right)^{(-1)^{k-1}} (23)

Noting that(d,hasn)=d\left(d^{\prime},a_{n}\right)=dwe have, according to (14),

φ(d)φ(hasn)φ(hasnd)=φ(d)dhasndφ(hasnd)φ(hasn)hasn=φ(d)d.\frac{\varphi\left(d^{\prime}\right)\varphi\left(a_{n}\right)}{\varphi\left(a_{n}d^{\prime}\right)}=\frac{\varphi\left(d^{\prime}\right)}{d^{\prime}}\cdot\frac{a_{n}d^{\prime}}{\varphi\left(a_{n}d^{\prime}\right)}\cdot\frac{\varphi\left(a_{n}\right)}{a_{n}}=\frac{\varphi(d)}{d}. (24)

By applying the general formula ton1n-1Numbershas1hasn,has2hasn,a_{1}a_{n},a_{2}a_{n},\ldots,,hasn1hasn\ldots,a_{n-1}a_{n}whose greatest common divisor (GCD) is equal tohasnda_{n}d^{\prime}and taking into account formula (21), we have

hasndφ(hasnd)=k=2n(hasn(k2)(n1k1)(k1)φ(hasi1hasi2hasik1hasn))(1)k1\frac{a_{n}d^{\prime}}{\varphi\left(a_{n}d^{\prime}\right)}=\prod_{k=2}^{n}\left(a_{n}^{(k-2)\binom{n-1}{k-1}}\prod_{(k-1)}^{\prime}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{k-1}}a_{n}\right)\right)^{(-1)^{k-1}} (25)

Taking into account (23), (25) and

((1)φ(hasi1))φ(hasn)=(1)φ(hasi1)((k1)φ(hasi1hasi2hasik1hasn))((k)φ(hasi1hasi2hasik))==(k)φ(hasi1hasi2hasik),k=2,3,,n1(n1)φ(hasi1hasi2hasin1hasn)=(n)φ(hasi1hasi2hasin)k=2n(1)k1(k2)(n1k1)=1,\begin{gathered}\left(\prod_{(1)}^{\prime}\varphi\left(a_{i_{1}}\right)\right)\varphi\left(a_{n}\right)=\prod_{(1)}\varphi\left(a_{i_{1}}\right)\\ \left(\prod_{(k-1)}^{\prime}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{k-1}}a_{n}\right)\right)\left(\prod_{(k)}^{\prime}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{k}}\right)\right)=\\ =\prod_{(k)}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{k}}\right),k=2,3,\ldots,n-1\\ \prod_{(n-1)}^{\prime}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{n-1}}a_{n}\right)=\prod_{(n)}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{n}}\right)\\ \sum_{k=2}^{n}(-1)^{k-1}(k-2)\binom{n-1}{k-1}=1,\end{gathered}

From formula (24) we deduce formula (22). Theorem 2 is therefore proven.

I have also demonstrated equality (22) in another way in another work [3]. In that work I sought to establish the inequality

k1n((k)φ(hasi1hasi2hasik))(1)k11\prod_{k-1}^{n}\left(\prod_{(k)}\varphi\left(a_{i_{1}}a_{i_{2}}\ldots a_{i_{k}}\right)\right)^{(-1)^{k-1}}\leqq 1

the equality being true if and only if the numbershas1,has2,,hasna_{1},a_{2},\ldots,a_{n}are relatively prime.
10. Finally, let's return to Lemma 2, which we will generalize and complete with the

THEOREM 3. We have

φ(hasb)hasφ(b)\varphi(ab)\leqq a\varphi(b) (26)

the equality being true if and only if there exists a positive integer power

From the proof of Lemma 2 it follows that we have (18) without any restriction onhasaAndbbIt follows that in table (16) each row contains at mostφ(b)\varphi(b)primary terms withhasbabInequality (26) in continuation.

Let us examine the case of equality in (26).
First, note that ifhas|bma\mid b^{m}We do indeed have equality (26). In fact, according to Lemma 2 and formula (21), we have

φ(hasbm)=hasφ(bm),φ(hasbm)=bm1φ(hasb),φ(bm)=bm1φ(b)\varphi\left(ab^{m}\right)=a\varphi\left(b^{m}\right),\varphi\left(ab^{m}\right)=b^{m-1}\varphi(ab),\varphi\left(b^{m}\right)=b^{m-1}\varphi(b)

and equality (15) follows from this.
Now suppose that11^{\prime}we have

φ(hasb)=hasφ(b).\varphi(ab)=a\varphi(b). (27)

From the formula

(has,bm)=(has,bm1)(has(has,bm1),b)\left(a,b^{m}\right)=\left(a,b^{m-1}\right)\left(\frac{a}{\left(a,b^{m-1}\right)},b\right) (28)

We deduce that 1a continues((has,bm))m=1+\left(\left(a,b^{m}\right)\right)_{m=1}^{+\infty}is non-decreasing. But(has,bm))has,m=1,2,\left.\left(a,b^{m}\right)\right)\leftrightarrows\leq a,m=1,2,\ldotsIt follows that we can find a natural numbermmsuch as(has,bm)=(has,bm+1)=c\left(a,b^{m}\right)=\left(a,b^{m+1}\right)=cWe will demonstrate that for this numbermmwe havehas|bma\mid b^{m}Indeed, we havehas=chas,bm=cb,bm+1=cbba=ca^{\prime},b^{m}=cb^{\prime},b^{m+1}=cbb^{\prime}And(has,bb)==1\left(a^{\prime},b^{\prime}b\right)==1hence also(has,b)=1\left(a^{\prime},b\right)=1It follows that(has,bm)=1\left(a^{\prime},b^{m}\right)=1Taking into account (21), formula (27) gives usφ(hasbm)=hasφ(bm)\varphi\left(ab^{m}\right)=a\varphi\left(b^{m}\right), henceφ(hasf)φ(hasbm)===hasφ(bm)φ(has)=chasφ(hasbm)\varphi\left(a^{f}\right)\varphi\left(ab^{m}\right)===a\varphi\left(b^{m}\right)\varphi\left(a^{\prime}\right)=ca^{\prime}\varphi\left(a^{\prime}b^{m}\right). Buthasbmab^{m}Easthasφ(b)a\varphi(b), -(hasbm)=c(hasbm)\left(ab^{m}\right)=c\left(a^{\prime}b^{m}\right)We obtain divisible byc2c^{2}from which it follows thatφ(hasbφ(has)\varphi\left(ab-\varphi(a)\right.; 1 We have equalityφ(has)=has\varphi\left(a^{\prime}\right)=a^{\prime}which can only be true forhas=1a=1So we have(has,bm)=has\left(a,b^{m}\right)=a, hencehas|bma\mid b^{m}.

Theorem 3 is therefore proven.
11. The preceding proofs do not rely on the prime factorization of numbers, but only on the properties of the divisibility relation and the operations of gcd and lcm. These properties are the associativity, commutativity, and distributivity of the operations with respect to each other (has,ba,b),[has,b][a,b]the propertiesc(has,b)==(chas,cb),c[has,b]=[chas,cb],has|bchas|cbc(a,b)==(ca,cb),c[a,b]=[ca,cb],a|b\Rightarrow ca|cbetc. For the demonstration of all these properties, one can consult, for example, my course cited [5].

Note 3. If we use the unique prime factorization of natural numbers, the equality condition in formula (26) is equivalent to the following property:

Any prime factor of the number a divides the numberbb
Suppose that has|bma\mid b^{m}Ormmis a natural number. From formula (28) it follows that

(has,bm)=v=0m1(has(has,bv),b).\left(a,b^{m}\right)=\prod_{v=0}^{m-1}\left(\frac{a}{\left(a,b^{v}\right)},\mathrm{b}\right). (29)

So nowppa primary factor ofhasa. SOp|hasp\mid aand it follows thatp|bnp\mid b^{n}, therefore also thatp|(has,bm)p\mid\left(a,b^{m}\right)Formula (29) then shows us that there exists ak,0km1k,0\leqq k\leqq m-1teí quep|(has(has,bk),b)p\left\lvert\,\left(\frac{a}{\left(a,b^{k}\right)},b\right)\right.It follows thatp|bp\mid b.

Let us now suppose thatp|hasp|bp|a\Rightarrow p|bifppis prime. So thenhas=p1α1p2α2prαra=p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\ldots p_{r}^{\alpha_{r}}the decomposition ofhasain prime factors. We haveb=p1β1p2β2prβrcb=p_{1}^{\beta_{1}}p_{2}^{\beta_{2}}\ldots p_{r}^{\beta_{r}}c, Orβ1,β2,,βr,c\beta_{1},\beta_{2},\ldots,\beta_{r},care natural numbers. If we take a natural numbermmsuch asmmax(α1β1,α2β2,,αrβr)m\geq\max\left(\frac{\alpha_{1}}{\beta_{1}},\frac{\alpha_{2}}{\beta_{2}},\ldots,\frac{\alpha_{r}}{\beta_{r}}\right)We havehas|bma\mid b^{m}.

The equivalence of the two properties examined is therefore demonstrated.

BIBLIOGRAPHY

[1] Dickson LE, Modern Elemenlary Theory of Numbers, 1950.
[2] Lucas E., Theory of Numbers, 1891.
5] P. A ufgaben und Lehrsâtze aus der Analysis II, 1925.
[5] Popoviciu T., Asupra unor inegalită/i, Gazeta Matematică, 51, 81-85 (1945).
[6] Sierpinski W. Elemcary.

Received on 5.8. 1971.

1971

Related Posts