On fixed point theorems for mappings defined on spheres in metric spaces

Abstract

Authors

Mira-Cristiana Anisiu
Institute of Mathematics, Cluj-Napoca, Romania

Keywords

?

Paper coordinates

M.-C. Anisiu, On fixed point theorems for mappings defined on spheres in metric spaces, Seminar on Mathematical Analysis, 1-6, Preprint, 91-7, Univ. Babeş-Bolyai Cluj-Napoca, 1991 (pdf file here)

PDF

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

[1] J. Lopez-Gomez, |A fixed point therem for discontinuous operators, Glasnik Mat. 23 (1988) , 115-118
[2] L. Nova, G., Fixed point theorems for some discontinuous operators, Pacific, J. Math. 123 (1983), 189-196.
[3] I.A. Rus, Metrical fixed point theorems, University of Cluj-Napoca, Department of Mathematics, 1979 (mineographed)

1991-Anisiu-On fixed point
"BABEŞ -- BOLYAI" UNIVERSITY
Faculty of Mathematics
Re search Seminars
Seminar on Mathematical Analysis
Preprint Nr.7, 1991, pp.95 - 100

ON FIXED POINT THEOREMS FOR MAPPINGS DEFINED ON BPHERES IN NETRIC SPACES

Mira-Cristina Anisiu

In the last years, the interest in metric fixed point theorems appeared again. New proofs were given [1, 2] for theorems of Hardy-Rogers, Ćirić - Reich - Rus.
In this note we study the case of mappings defined only on spheres, not on the entire metric space, following the well-known theorem:
THEOREM 1. Let ( X , d X , d X,d\mathrm{X}, \mathrm{d}X,d ) be a complete metric space, f : B ( 2 , r ) X f : B ¯ ( 2 , r ) X f: bar(B)(2,r)rarr X\mathrm{f}: \overline{\mathrm{B}}(2, \mathrm{r}) \rightarrow Xf:B(2,r)X a k k kkk-contraction, k [ 0 , 1 ) k [ 0 , 1 ) k in[0,1)k \in[0,1)k[0,1), i.e.
(1) d ( f x , f y ) k d ( x , y ) for all x , y in B ¯ ( z , r ) = = { x X : d ( x , z ) r } . (1) d ( f x , f y ) k d ( x , y )  for all  x , y  in  B ¯ ( z , r ) = = { x X : d ( x , z ) r } . {:[(1)d(fx","fy) <= kd(x","y)" for all "x","y" in " bar(B)(z","r)=],[={x in X:d(x","z) <= r}.]:}\begin{align*} & d(f x, f y) \leq k d(x, y) \text { for all } x, y \text { in } \bar{B}(z, r)= \tag{1}\\ & =\{x \in X: d(x, z) \leq r\} . \end{align*}(1)d(fx,fy)kd(x,y) for all x,y in B¯(z,r)=={xX:d(x,z)r}.
If
(2) d ( z , f z ) Γ ( 1 k ) , (2) d ( z , f z ) Γ ( 1 k ) , {:(2)d(z","fz) <= Gamma(1-k)",":}\begin{equation*} d(z, f z) \leq \Gamma(1-k), \tag{2} \end{equation*}(2)d(z,fz)Γ(1k),
then f f fff has a unique fixed point u B ¯ ( z , r ) u B ¯ ( z , r ) u in bar(B)(z,r)u \in \bar{B}(z, r)uB¯(z,r).
Proof. The condition on f z f z fzf zfz implies the fact that f ( B ¯ ( z , r ) ) = B ¯ ( z , r ) f ( B ¯ ( z , r ) ) = B ¯ ( z , r ) f( bar(B)(z,r))= bar(B)(z,r)f(\bar{B}(z, r)) =\bar{B}(z, r)f(B¯(z,r))=B¯(z,r). Indeed, let x B ¯ ( z , r ) x B ¯ ( z , r ) x in bar(B)(z,r)x \in \bar{B}(z, r)xB¯(z,r). We estimate d ( z , f x ) d ( z , f x ) d(z,fx)d(z, f x)d(z,fx) :
d ( z , f x ) d ( z , f z ) + d ( f z , f x ) r ( 1 k ) + k d ( z , x ˙ ) r . d ( z , f x ) d ( z , f z ) + d ( f z , f x ) r ( 1 k ) + k d ( z , x ˙ ) r . d(z,fx) <= d(z,fz)+d(fz,fx) <= r(1-k)+kd(z,x^(˙)) <= r.d(z, f x) \leq d(z, f z)+d(f z, f x) \leq r(1-k)+k d(z, \dot{x}) \leq r .d(z,fx)d(z,fz)+d(fz,fx)r(1k)+kd(z,x˙)r.
It follows that f ( B ¯ ( z , x ) ) B ¯ ( z , r ) f ( B ¯ ( z , x ) ) B ¯ ( z , r ) f( bar(B)(z,x))sube bar(B)(z,r)f(\bar{B}(z, x)) \subseteq \bar{B}(z, r)f(B¯(z,x))B¯(z,r) and Banach theorem applies in this complete metric space.
This theorem extends easily to Hardy - Rogers contractions.
THEOREM 2. Let ( X , d X , d X,dX, dX,d ) be a complete metric space, f : B ¯ ( z , r ) X f : B ¯ ( z , r ) X f: bar(B)(z,r)rarr X\mathbf{f}: \bar{B}(\mathbf{z}, \mathbf{r}) \rightarrow Xf:B¯(z,r)X a Hardy - Rogers contraction, i.e. there exists a i 0 a i 0 a_(i) >= 0a_{i} \geq 0ai0, i = 1 , 5 , A = i = 1 5 a i < 1 i = 1 , 5 ¯ , A = i = 1 5 a i < 1 i= bar(1,5),A=sum_(i=1)^(5)a_(i) < 1i=\overline{1,5}, A=\sum_{i=1}^{5} a_{i}<1i=1,5,A=i=15ai<1 such that
(3) d ( f x , f y ) a 1 d ( x , y ) + a 2 d ( x , f x ) + a 3 d ( y , f y ) + a 4 d ( x y , f y ) + + a 5 d ( y , f x ) d ( f x , f y ) a 1 d ( x , y ) + a 2 d ( x , f x ) + a 3 d ( y , f y ) + a 4 d x y , f y + + a 5 d ( y , f x ) d(fx,fy) <= a_(1)d(x,y)+a_(2)d(x,fx)+a_(3)d(y,fy)+a_(4)d(x_(y),fy)++a_(5)d(y,fx)d(f x, f y) \leq a_{1} d(x, y)+a_{2} d(x, f x)+a_{3} d(y, f y)+a_{4} d\left(x_{y}, f y\right)+ +a_{5} d(y, f x)d(fx,fy)a1d(x,y)+a2d(x,fx)+a3d(y,fy)+a4d(xy,fy)++a5d(y,fx) for all x , y x , y x,yx, yx,y in B ¯ ( z , r ) B ¯ ( z , r ) bar(B)(z,r)\bar{B}(z, r)B¯(z,r).
If
(4) d ( z , f z ) 2 ( 1 A ) 2 + A a 1 r d ( z , f z ) 2 ( 1 A ) 2 + A a 1 r d(z,fz) <= (2(1-A))/(2+A-a_(1))rd(z, f z) \leq \frac{2(1-A)}{2+A-a_{1}} rd(z,fz)2(1A)2+Aa1r,
then f f fff has a unique fixed point u B ¯ ( 2 , r ) u B ¯ ( 2 , r ) u in bar(B)(2,r)u \in \bar{B}(2, r)uB¯(2,r).
Proof. To prove that f ( B ¯ ( z , r ) ) B ¯ ( z , r ) f ( B ¯ ( z , r ) ) B ¯ ( z , r ) f( bar(B)(z,r))sub bar(B)(z,r)f(\bar{B}(z, r)) \subset \bar{B}(z, r)f(B¯(z,r))B¯(z,r), we use a symmetric form of (3) which is obtained evaluating also d ( f y , f x ) d ( f y , f x ) d(fy,fx)d(f y, f x)d(fy,fx) and adding,
(5) d ( f x , f y ) a 1 d ( x y ) + a 2 + a 3 2 [ d ( x , f x ) + d ( y , f y ) ] + d ( f x , f y ) a 1 d ( x y ) + a 2 + a 3 2 [ d ( x , f x ) + d ( y , f y ) ] + d(fx,fy) <= a_(1)d(xy)+(a_(2)+a_(3))/(2)[d(x,fx)+d(y,fy)]+d(f x, f y) \leq a_{1} d(x y)+\frac{a_{2}+a_{3}}{2}[d(x, f x)+d(y, f y)]+d(fx,fy)a1d(xy)+a2+a32[d(x,fx)+d(y,fy)]+
+ a 4 + a 5 2 [ d ( x , f y ) + d ( y , f x ) ] for each x , y in + a 4 + a 5 2 [ d ( x , f y ) + d ( y , f x ) ]  for each  x , y  in  +(a_(4)+a_(5))/(2)[d(x,fy)+d(y,fx)]" for each "x,y" in "+\frac{a_{4}+a_{5}}{2}[d(x, f y)+d(y, f x)] \text { for each } x, y \text { in }+a4+a52[d(x,fy)+d(y,fx)] for each x,y in 
B ¯ ( z , I ) B ¯ ( z , I ) bar(B)(z,I)\bar{B}(z, I)B¯(z,I).
Let x x xxx be in B ¯ ( z , r ) B ¯ ( z , r ) bar(B)(z,r)\bar{B}(z, r)B¯(z,r), hence d ( x , z ) r d ( x , z ) r d(x,z) <= rd(x, z) \leq rd(x,z)r. We estimate
d ( z , f x ) d ( z , f z ) + d ( f z , f x ) d ( z , f z ) + a 1 d ( z , x ) + a 2 + a 3 2 [ d ( z , f z ) + d ( x , z ) + + d ( z , f x ) ] + a 4 + a 5 2 [ d ( z , f x ) + d ( x , z ) + d ( z , f z ) ] = = ( 1 + a 2 + a 3 + a 4 + a 5 2 ) d ( z , f z ) + ( a 1 + a 2 + a 3 + a 4 + a 5 2 ) d ( x , z ) + a 2 + a 3 + a 4 + a 5 2 d ( z , f x ) = = ( 1 + A a 1 2 ) d ( z , f z ) + A + a 1 2 d ( x , z ) + A a 1 2 d ( z , f x ) d ( z , f x ) d ( z , f z ) + d ( f z , f x ) d ( z , f z ) + a 1 d ( z , x ) + a 2 + a 3 2 [ d ( z , f z ) + d ( x , z ) + + d ( z , f x ) ] + a 4 + a 5 2 [ d ( z , f x ) + d ( x , z ) + d ( z , f z ) ] = = 1 + a 2 + a 3 + a 4 + a 5 2 d ( z , f z ) + a 1 + a 2 + a 3 + a 4 + a 5 2 d ( x , z ) + a 2 + a 3 + a 4 + a 5 2 d ( z , f x ) = = 1 + A a 1 2 d ( z , f z ) + A + a 1 2 d ( x , z ) + A a 1 2 d ( z , f x ) {:[d(z","fx) <= d(z","fz)+d(fz","fx) <= ],[ <= d(z","fz)+a_(1)d(z","x)+(a_(2)+a_(3))/(2)[d(z","fz)+d(x","z)+],[+d(z","fx)]+(a_(4)+a_(5))/(2)[d(z","fx)+d(x","z)+d(z","fz)]=],[=(1+(a_(2)+a_(3)+a_(4)+a_(5))/(2))d(z","fz)+(a_(1)+(a_(2)+a_(3)+a_(4)+a_(5))/(2))],[*d(x","z)+(a_(2)+a_(3)+a_(4)+a_(5))/(2)d(z","fx)=],[=(1+(A-a_(1))/(2))d(z","fz)+(A+a_(1))/(2)d(x","z)+(A-a_(1))/(2)d(z","fx)]:}\begin{aligned} & d(z, f x) \leq d(z, f z)+d(f z, f x) \leq \\ & \leq d(z, f z)+a_{1} d(z, x)+\frac{a_{2}+a_{3}}{2}[d(z, f z)+d(x, z)+ \\ & +d(z, f x)]+\frac{a_{4}+a_{5}}{2}[d(z, f x)+d(x, z)+d(z, f z)]= \\ & =\left(1+\frac{a_{2}+a_{3}+a_{4}+a_{5}}{2}\right) d(z, f z)+\left(a_{1}+\frac{a_{2}+a_{3}+a_{4}+a_{5}}{2}\right) \\ & \cdot d(x, z)+\frac{a_{2}+a_{3}+a_{4}+a_{5}}{2} d(z, f x)= \\ & =\left(1+\frac{A-a_{1}}{2}\right) d(z, f z)+\frac{A+a_{1}}{2} d(x, z)+\frac{A-a_{1}}{2} d(z, f x) \end{aligned}d(z,fx)d(z,fz)+d(fz,fx)d(z,fz)+a1d(z,x)+a2+a32[d(z,fz)+d(x,z)++d(z,fx)]+a4+a52[d(z,fx)+d(x,z)+d(z,fz)]==(1+a2+a3+a4+a52)d(z,fz)+(a1+a2+a3+a4+a52)d(x,z)+a2+a3+a4+a52d(z,fx)==(1+Aa12)d(z,fz)+A+a12d(x,z)+Aa12d(z,fx)
It follows
( 1 A a 1 2 ) d ( z , f x ) ( 1 + A a 1 2 ) d ( z , f z ) + A + a 1 2 d ( x , z ) 1 A a 1 2 d ( z , f x ) 1 + A a 1 2 d ( z , f z ) + A + a 1 2 d ( x , z ) (1-(A-a_(1))/(2))d(z,fx) <= (1+(A-a_(1))/(2))d(z,fz)+(A+a_(1))/(2)d(x,z) <=\left(1-\frac{A-a_{1}}{2}\right) d(z, f x) \leq\left(1+\frac{A-a_{1}}{2}\right) d(z, f z)+\frac{A+a_{1}}{2} d(x, z) \leq(1Aa12)d(z,fx)(1+Aa12)d(z,fz)+A+a12d(x,z)
( 1 A ) r + A + a 1 2 r = ( 1 A a 1 2 ) r ( 1 A ) r + A + a 1 2 r = 1 A a 1 2 r <= (1-A)r+(A+a_(1))/(2)r=(1-(A-a_(1))/(2))r\leq(1-A) r+\frac{A+a_{1}}{2} r=\left(1-\frac{A-a_{1}}{2}\right) r(1A)r+A+a12r=(1Aa12)r.
Dividing by 1 A a 1 2 > 0 1 A a 1 2 > 0 1-(A-a_(1))/(2) > 01-\frac{A-a_{1}}{2}>01Aa12>0 we obtain d ( z , f x ) r d ( z , f x ) r d(z,fx) <= rd(z, f x) \leq rd(z,fx)r and Hardy
  • Rogers theorem applies and it assures the existence and uniqueness of the fixed point u u uuu.
Ramark 1. For the Ciric - Reich - Rus contractions ( a 1 = a 1 , a 2 = a 3 = b 1 , a 4 = a 5 = 0 , a + 2 b < 1 a 1 = a 1 , a 2 = a 3 = b 1 , a 4 = a 5 = 0 , a + 2 b < 1 a_(1)=a_(1),a_(2)^(')=a_(3)^(')=b_(1),a_(4)=a_(5)=0,a+2b < 1a_{1}=a_{1}, a_{2}^{\prime}=a_{3}^{\prime}=b_{1}, a_{4}=a_{5}=0, a+2 b<1a1=a1,a2=a3=b1,a4=a5=0,a+2b<1 ), condition (4) becomes:
d ( z , f z ) 1 a 2 b 1 + b r d ( z , f z ) 1 a 2 b 1 + b r d(z,fz) <= (1-a-2b)/(1+b)rd(z, f z) \leq \frac{1-a-2 b}{1+b} rd(z,fz)1a2b1+br
For the Kannan contractions ( a 1 = a 4 = a 5 = 0 , a 2 = a 3 = b < < 1 2 a 1 = a 4 = a 5 = 0 , a 2 = a 3 = b < < 1 2 (a_(1)=a_(4)=a_(5)=0,a_(2)=a_(3)=b < :} < (1)/(2)\left(a_{1}=a_{4}=a_{5}=0, a_{2}=a_{3}=b<\right. <\frac{1}{2}(a1=a4=a5=0,a2=a3=b<<12 ), condition (4) writes
d ( z , f z ) 1 2 b 1 + b r . d ( z , f z ) 1 2 b 1 + b r . d(z,fz) <= (1-2b)/(1+b)r.d(z, f z) \leq \frac{1-2 b}{1+b} r .d(z,fz)12b1+br.
For the Banach contractions ( a 1 = k , a i = 0 , i = 2 , 5 a 1 = k , a i = 0 , i = 2 , 5 ¯ a_(1)=k,a_(i)=0,i= bar(2,5)a_{1}=k, a_{i}=0, i=\overline{2,5}a1=k,ai=0,i=2,5 ),
condition (4) becomes (2).
Similar results hold for the more general contractions defined by Rus [3].
Let : R + 5 R + : R + 5 R + :R_(+)^(5)rarrR_(+): \mathbf{R}_{+}^{5} \rightarrow \mathbf{R}_{+}:R+5R+be a continuous function such that
(a) if r i s i , i = 1 , 5 r i s i , i = 1 , 5 ¯ r_(i) <= s_(i),i= bar(1,5)r_{i} \leq s_{i}, i=\overline{1,5}risi,i=1,5, then φ ( r ) φ ( s ) φ ( r ) φ ( s ) varphi(r) <= varphi(s)\varphi(r) \leq \varphi(s)φ(r)φ(s);
(b) ϕ ( r ) < r ϕ ( r ) < r phi(r) < r\phi(r)<rϕ(r)<r for each r > 0 r > 0 r > 0r>0r>0, where ϕ ( r ) = φ ( r , r , r , r , r ) ϕ ( r ) = φ ( r , r , r , r , r ) phi(r)=varphi(r,r,r,r,r)\phi(r)=\varphi(r, r, r, r, r)ϕ(r)=φ(r,r,r,r,r);
(c) r ϕ ( r ) r ϕ ( r ) r-phi(r)rarr oor-\phi(r) \rightarrow \inftyrϕ(r) for r r r rarr oor \rightarrow \inftyr.
For ( X , d X , d X,dX, dX,d ) a metric space, a function f : B ¯ ( z , r ) X f : B ¯ ( z , r ) X f: bar(B)(z,r)rarr Xf: \bar{B}(z, r) \rightarrow Xf:B¯(z,r)X is a p p ppp -
contraction if
(6) d ( f x , f y ) φ ( d ( x , y ) ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) ) d ( f x , f y ) φ ( d ( x , y ) ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) ) d(fx,fy) <= varphi(d(x,y)),d(x,fx),d(y,fy),d(x,fy),d(y,fx))d(f x, f y) \leq \varphi(d(x, y)), d(x, f x), d(y, f y), d(x, f y), d(y, f x))d(fx,fy)φ(d(x,y)),d(x,fx),d(y,fy),d(x,fy),d(y,fx)) for all x , y B ¯ ( z , r ) x , y B ¯ ( z , r ) x,y in bar(B)(z,r)x, y \in \bar{B}(z, r)x,yB¯(z,r).
Let r z r z r_(z)r_{z}rz be equal to sup { r R + : r ϕ ( r ) d ( z , f z ) } r R + : r ϕ ( r ) d ( z , f z ) {r inR_(+):r-phi(r) <= d(z,fz)}\left\{r \in R_{+}: r-\phi(r) \leq d(z, f z)\right\}{rR+:rϕ(r)d(z,fz)} which is finite because r = 0 r = 0 r=0r=0r=0 is in the considered set (which is hence nonvoid) and φ φ varphi\varphiφ is continuous. We obtain a generalization of the fixed point theorem of Rus [3] which is given for. contractions defined on the entire space X X XXX.
THEOREM 3. Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a complete metric space and f f fff : B ( Z , r ) X B ¯ ( Z , r ) X bar(B)(Z,r)rarrX\overline{\mathrm{B}}(\mathrm{Z}, \mathrm{r}) \rightarrow \mathrm{X}B(Z,r)X be a - contraction. If
(7) d ( z , f z ) r ϕ ( r z ) d ( z , f z ) r ϕ r z quad d(z,fz) <= r-phi(r_(z))\quad d(z, f z) \leq r-\phi\left(r_{z}\right)d(z,fz)rϕ(rz),
then f f fff has a unique fixed point u B ¯ ( z , x ) , u = lim n f n z u B ¯ ( z , x ) , u = lim n f n z u in bar(B)(z,x),u=lim_(n rarr oo)f^(n)zu \in \bar{B}(z, x), u=\lim _{n \rightarrow \infty} f^{n} zuB¯(z,x),u=limnfnz and d ( f n z , x ) ϕ n ( r z ) d f n z , x ϕ n r z d(f^(n)z,x) <= phi^(n)(r_(z))d\left(f^{n} z, x\right) \leq \phi^{n}\left(r_{z}\right)d(fnz,x)ϕn(rz).
Proof. If f z = z f z = z fz=zf z=zfz=z, the conclusion is obvious.
Let f z z f z z fz!=zf z \neq zfzz; one has then r z > 0 r z > 0 r_(z) > 0r_{z}>0rz>0. Let z 0 = z ; z 1 = f z z 0 = z ; z 1 = f z z_(0)=z;z_(1)=fzz_{0}=z ; z_{1}=f zz0=z;z1=fz satisfies
d ( z 0 , z 1 ) r ϕ ( r 2 ) r 1 d z 0 , z 1 r ϕ r 2 r 1 d(z_(0),z_(1)) <= r-phi(r_(2)) <= r_(1)d\left(z_{0}, z_{1}\right) \leq r-\phi\left(r_{2}\right) \leq r_{1}d(z0,z1)rϕ(r2)r1
hence z 1 B ¯ ( z , r ) z 1 B ¯ ( z , r ) z_(1)in bar(B)(z,r)z_{1} \in \bar{B}(z, r)z1B¯(z,r). Suppose z n = f n z B ¯ ( z , r ) z n = f n z B ¯ ( z , r ) z_(n)=f^(n)z in bar(B)(z,r)z_{n}=f^{n} z \in \bar{B}(z, r)zn=fnzB¯(z,r). Then
d ( z , z n + 1 ) d ( z , f z ) + d ( f z , f n + 1 z ) . d z , z n + 1 d ( z , f z ) + d f z , f n + 1 z . d(z,z_(n+1)) <= d(z,fz)+d(fz,f^(n+1)z) <= .d\left(z, z_{n+1}\right) \leq d(z, f z)+d\left(f z, f^{n+1} z\right) \leq .d(z,zn+1)d(z,fz)+d(fz,fn+1z).
d ( z , f z ) + φ ( d ( z , f n z ) , d ( z , f z ) , d ( f n z , f n + 1 z ) , d ¯ ( z , f n + 1 z ) , d ( f n z , f z ) ) ≤≤ d ( z , f z ) + ϕ ( diam O f ( z , n + 1 ) ) , O f ( z , n + 1 ) = { z , f z , , f n + 1 z } d ( z , f z ) + φ d z , f n z , d ( z , f z ) , d f n z , f n + 1 z , d ¯ z , f n + 1 z , d f n z , f z ≤≤ d ( z , f z ) + ϕ diam O f ( z , n + 1 ) , O f ( z , n + 1 ) = z , f z , , f n + 1 z <= d(z,fz)+varphi(d(z,f^(n)z),d(z,fz),d(f^(n)z,f^(n+1)z),( bar(d))(z,f^(n+1)z),d(f^(n)z,fz))≤≤d(z,fz)+phi(diamO_(f)(z,n+1)),O_(f)(z,n+1)={z,fz,dots,f^(n+1)z}\leq d(z, f z)+\varphi\left(d\left(z, f^{n} z\right), d(z, f z), d\left(f^{n} z, f^{n+1} z\right), \bar{d}\left(z, f^{n+1} z\right), d\left(f^{n} z, f z\right)\right) \leq \leq d(z, f z)+\phi\left(\operatorname{diam} O_{f}(z, n+1)\right), O_{f}(z, n+1)=\left\{z, f z, \ldots, f^{n+1} z\right\}d(z,fz)+φ(d(z,fnz),d(z,fz),d(fnz,fn+1z),d¯(z,fn+1z),d(fnz,fz))≤≤d(z,fz)+ϕ(diamOf(z,n+1)),Of(z,n+1)={z,fz,,fn+1z}.
Because of (6), diam o f ( z , n + 1 ) o f ( z , n + 1 ) o_(f)(z,n+1)o_{f}(z, n+1)of(z,n+1) is larger than d ( f i z , f j z ) d f i z , f j z d(f^(i)z,f^(j)z)d\left(f^{i} z, f^{j} z\right)d(fiz,fjz), i , j 1 i , j 1 i,j >= 1i, j \geq 1i,j1, so there exists p n + 1 p n + 1 p <= n+1p \leq n+1pn+1 such that diam O f ( z , n + 1 ) == d ( z , f P z ) O f ( z , n + 1 ) == d z , f P z O_(f)(z,n+1)==d(z,f^(P)z){O_{f}}(z, n+1)= =d\left(z, f^{P} z\right)Of(z,n+1)==d(z,fPz).
Then
diam O f ( z , n + 1 ) = d ( z , f P z ) d ( z , f z ) + d ( f z , f P z ) diam O f ( z , n + 1 ) = d z , f P z d ( z , f z ) + d f z , f P z diamO_(f)(z,n+1)=d(z,f^(P)z) <= d(z,fz)+d(fz,f^(P)z) <=\operatorname{diam} O_{f}(z, n+1)=d\left(z, f^{P} z\right) \leq d(z, f z)+d\left(f z, f^{P} z\right) \leqdiamOf(z,n+1)=d(z,fPz)d(z,fz)+d(fz,fPz)
d ( z , f z ) + ϕ ( dian ρ f ( z , n + 1 ) ) d ( z , f z ) + ϕ dian ρ f ( z , n + 1 ) <= d(z,fz)+phi(dianrho_(f)(z,n+1))quad\leq d(z, f z)+\phi\left(\operatorname{dian} \rho_{f}(z, n+1)\right) \quadd(z,fz)+ϕ(dianρf(z,n+1)) and
diam O f ( z , n + 1 ) ϕ ( diam O f ( z , n + 1 ) ) d ( z , f z ) diam O f ( z , n + 1 ) ϕ diam O f ( z , n + 1 ) d ( z , f z ) diamO_(f)(z,n+1)-phi(diamO_(f)(z,n+1)) <= d(z,fz)\operatorname{diam} O_{f}(z, n+1)-\phi\left(\operatorname{diam} O_{f}(z, n+1)\right) \leq d(z, f z)diamOf(z,n+1)ϕ(diamOf(z,n+1))d(z,fz),
hence diam ρ f ( z , n + 1 ) r z ρ f ( z , n + 1 ) r z rho_(f)(z,n+1) <= r_(z)\rho_{f}(z, n+1) \leq r_{z}ρf(z,n+1)rz.
It follows d ( z , z n + 1 ) d ( z , f z ) + ϕ ( x z ) r d z , z n + 1 d ( z , f z ) + ϕ x z r d(z,z_(n+1)) <= d(z,fz)+phi(x_(z)) <= rd\left(z, z_{n+1}\right) \leq d(z, f z)+\phi\left(x_{z}\right) \leq rd(z,zn+1)d(z,fz)+ϕ(xz)r.
The sequence { z n } n N z n n N {z_(n)}_(n in N)\left\{z_{n}\right\}_{n \in N}{zn}nN is well-defined for f : B ¯ ( z , r ) X f : B ¯ ( z , r ) X f: bar(B)(z,r)rarr Xf: \bar{B}(z, r) \rightarrow Xf:B¯(z,r)X.
We shall prove now that this sequence converges. Let n 1 n 1 n >= 1n \geq 1n1.
We estimate:
d ( z n , z n + p ) Φ ( d ( z n 1 , z n + p 1 ) , d ( z n 1 , z n ) , d ( z n + p 1 , z n + p ) d ( z n 1 , z n + p ) , d ( z n + p 1 , z n ) ) ϕ ( diam o f ( z n 1 , p + 1 ) ) ϕ 2 ( diam o f ( z n 2 , p + 2 ) ) ϕ n ( diam o f ( z , p + n ) ) ϕ n ( r z ) d z n , z n + p Φ d z n 1 , z n + p 1 , d z n 1 , z n , d z n + p 1 , z n + p d z n 1 , z n + p , d z n + p 1 , z n ϕ  diam  o f z n 1 , p + 1 ϕ 2  diam  o f z n 2 , p + 2 ϕ n  diam  o f ( z , p + n ) ϕ n r z {:[d(z_(n),z_(n+p)) <= Phi(d(z_(n-1),z_(n+p-1)),d(z_(n-1),z_(n)),d(z_(n+p-1),z_(n+p)):}],[{:d(z_(n-1),z_(n+p)),d(z_(n+p-1),z_(n))) <= phi(" diam "o_(f)(z_(n-1),p+1)) <= ],[ <= phi^(2)(" diam "o_(f)(z_(n-2),p+2)) <= dots <= phi^(n)(" diam "o_(f)(z,p+n)) <= phi^(n)(r_(z))]:}\begin{aligned} & d\left(z_{n}, z_{n+p}\right) \leq \Phi\left(d\left(z_{n-1}, z_{n+p-1}\right), d\left(z_{n-1}, z_{n}\right), d\left(z_{n+p-1}, z_{n+p}\right)\right. \\ & \left.d\left(z_{n-1}, z_{n+p}\right), d\left(z_{n+p-1}, z_{n}\right)\right) \leq \phi\left(\text { diam } o_{f}\left(z_{n-1}, p+1\right)\right) \leq \\ & \leq \phi^{2}\left(\text { diam } o_{f}\left(z_{n-2}, p+2\right)\right) \leq \ldots \leq \phi^{n}\left(\text { diam } o_{f}(z, p+n)\right) \leq \phi^{n}\left(r_{z}\right) \end{aligned}d(zn,zn+p)Φ(d(zn1,zn+p1),d(zn1,zn),d(zn+p1,zn+p)d(zn1,zn+p),d(zn+p1,zn))ϕ( diam of(zn1,p+1))ϕ2( diam of(zn2,p+2))ϕn( diam of(z,p+n))ϕn(rz)
But r z > 0 r z > 0 r_(z) > 0r_{z}>0rz>0, so ϕ n ( r z ) 0 ( n ) ϕ n r z 0 ( n ) phi^(n)(r_(z))rarr0(n rarr oo)\phi^{n}\left(r_{z}\right) \rightarrow 0(n \rightarrow \infty)ϕn(rz)0(n); indeed, the sequence is descreasing and bounded and if its limit were a * 0 , from the continuity of ϕ ϕ phi\phiϕ it would follow a = ϕ ( a ) a = ϕ ( a ) a=phi(a)a=\phi(a)a=ϕ(a), contradicting the property (b).
It follows that { z n } B ¯ ( z , r ) z n B ¯ ( z , r ) {z_(n)}⊏ bar(B)(z,r)\left\{z_{n}\right\} \sqsubset \bar{B}(z, r){zn}B¯(z,r) is a cauchy sequence, hence it converges to a limit u u uuu in B ¯ ( z , r ) B ¯ ( z , r ) bar(B)(z,r)\bar{B}(z, r)B¯(z,r), which is a fixed point for f. Indeed, suppose u u u**u *u fu. Then, for n N n N n in Nn \in NnN
d ( u , f u ) d ( u , f n z ) + d ( f n z , f u ) d ( u , f u ) d u , f n z + d f n z , f u d(u,fu) <= d(u,f^(n)z)+d(f^(n)z,fu) <=d(u, f u) \leq d\left(u, f^{n} z\right)+d\left(f^{n} z, f u\right) \leqd(u,fu)d(u,fnz)+d(fnz,fu)
d ( u , f n z ) + φ ( d ( f n 1 z , u ) , d ( f n 1 z , f n z ) , d ( u , f u ) , d ( f n 1 z , f u ) d u , f n z + φ d f n 1 z , u , d f n 1 z , f n z , d ( u , f u ) , d f n 1 z , f u <= d(u,f^(n)z)+varphi(d(f^(n-1)z,u),d(f^(n-1)z,f^(n)z),d(u,fu),d(f^(n-1)z,fu):}\leq d\left(u, f^{n} z\right)+\varphi\left(d\left(f^{n-1} z, u\right), d\left(f^{n-1} z, f^{n} z\right), d(u, f u), d\left(f^{n-1} z, f u\right)\right.d(u,fnz)+φ(d(fn1z,u),d(fn1z,fnz),d(u,fu),d(fn1z,fu), d ( u , f n z ) } d u , f n z {:d(u,f^(n)z)}\left.d\left(u, f^{n} z\right)\right\}d(u,fnz)}
and for n n n rarr oon \rightarrow \inftyn
d ( u , f u ) φ ( 0 , 0 , d ( u , f u ) , d ( u , f u ) , 0 ) ϕ ( d ( u , f u ) ) < d ( u , f u ) d ( u , f u ) φ ( 0 , 0 , d ( u , f u ) , d ( u , f u ) , 0 ) ϕ ( d ( u , f u ) ) < d ( u , f u ) d(u,fu) <= varphi(0,0,d(u,fu),d(u,fu),0) <= phi(d(u,fu)) < d(u,fu)d(u, f u) \leq \varphi(0,0, d(u, f u), d(u, f u), 0) \leq \phi(d(u, f u))<d(u, f u)d(u,fu)φ(0,0,d(u,fu),d(u,fu),0)ϕ(d(u,fu))<d(u,fu),
which im a contradiction.
The uniquaness of the fixed point can be aasily established
in a similar way.
mamark 2. Condition (3) in Theorem 2 corresponds to a φ φ varphi\varphiφ contraction with
φ ( x 1 , , x 5 ) = i = 1 5 a i x i , a i 0 , i 1 = 1 , 5 , λ = i = 1 5 a i < 1 . φ x 1 , , x 5 = i = 1 5 a i x i , a i 0 , i 1 = 1 , 5 ¯ , λ = i = 1 5 a i < 1 . varphi(x_(1),dots,x_(5))=sum_(i=1)^(5)a_(i)x_(i),quada_(i) >= 0,i bar(1=1,5),lambda=sum_(i=1)^(5)a_(i) < 1.\varphi\left(x_{1}, \ldots, x_{5}\right)=\sum_{i=1}^{5} a_{i} x_{i}, \quad a_{i} \geq 0, i \overline{1=1,5}, \lambda=\sum_{i=1}^{5} a_{i}<1 .φ(x1,,x5)=i=15aixi,ai0,i1=1,5,λ=i=15ai<1.
In this case r z = sup { r 0 ; r A r d ( z , f z ) } = 1 1 A d ( z , f z ) r z = sup { r 0 ; r A r d ( z , f z ) } = 1 1 A d ( z , f z ) r_(z)=s u p{r >= 0;r-Ar <= d(z,fz)}=(1)/(1-A)d(z,fz)r_{z}=\sup \{r \geq 0 ; r-A r \leq d(z, f z)\}=\frac{1}{1-A} d(z, f z)rz=sup{r0;rArd(z,fz)}=11Ad(z,fz) and condition (7) in Theorem 3 becomes
d ( z , f z ) r A 1 A d ( z , f z ) , i.e. d ( z , f z ) ( 1 A ) r . d ( z , f z ) r A 1 A d ( z , f z ) ,  i.e.  d ( z , f z ) ( 1 A ) r . {:[d(z","fz) <= r-(A)/(1-A)d(z","fz)","" i.e. "],[d(z","fz) <= (1-A)r.]:}\begin{aligned} & d(z, f z) \leq r-\frac{A}{1-A} d(z, f z), \text { i.e. } \\ & d(z, f z) \leq(1-A) r . \end{aligned}d(z,fz)rA1Ad(z,fz), i.e. d(z,fz)(1A)r.
This condition is less restrictive than (4), but when condition (4) is applicable the sequence of succesive approximations starting from each x x xxx in B ¯ ( z , r ) B ¯ ( z , r ) bar(B)(z,r)\bar{B}(z, r)B¯(z,r) converges to the fixed point u u uuu.

REFEREWCES

  1. J.Lopez - Gomez, A fixed point theorem for discontinuous operators, Glasnik Mat. 23 (1988), 115-118.
  2. L.Nova, G., Fixed point theorems for some discontinuous operators, Pacific J. Math. 123 (1986), 189-196.
  3. I.A.Rus, Metrical fixed point theorems, University of Cluj Napoca, Department of Mathematics, 1979 (mimeographed).
Institute of Mathematics
P.O. Box 68
3400 Cluf - Mapoca
Romania
This paper is in final form and no varaion of it is or will be submitted for publication elsewhere.
1991

Related Posts