## Abstract

In this paper, we define and study a general class of convolution operators based on Landau operators. A property of these new operators is that they reproduce the affine functions, a feature less commonly encountered by integral type operators. Approximation properties in different function spaces are obtained, including quantitative Voronovskaya-type results.

## Authors

**Octavian Agratini
**Babeş-Bolyai University, Cluj-Napoca, Romania

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

**Sorin G. Gal
**University of Oradea, Romania

Academy of Romanian Scientists

## Keywords

Landau operator; modulus of continuity; weighted space; approximation process; upper estimates; quantitative Voronovskaya-type theorems

soon

## Cite this paper as:

O. Agratini, S.G. Gal, * On Landau-type approximation operators, *Mediterranean Journal of Mathematics, **18 **(2021) art. no. 64, https://doi.org/10.1007/s00009-021-01712-w

## About this paper

##### Journal

*Mediterranean Journal of Mathematics*

##### Publisher Name

Springer

##### Print ISSN

1660-5446

##### Online ISSN

1660-5454

##### Google Scholar Profile

[1] Altomare, F., *Korovkin-type theorems and approximation by positive linear operators*. Surv. Approx. Theory **5**, 92–164 (2010), MathSciNet MATH Google Scholar

[2] Binmore, K.G., *Mathematical Analysis: A Straightforward Approach*. Cambridge University Press, Cambridge (1977), MATH Google Scholar

[3] Chen, Z., Shih, T., *A new class of generalized Landau linear positive operator sequence and its properties of approximation*. Chin. Q. J. Math. **13**(1), 29–43 (1998), MathSciNet MATH Google Scholar

[4] Gal, S.G., Iancu, I., *Quantitative approximation by nonlinear convolution operators of Landau–Choquet type.* Carpathian J. Math. **37**(1) (2021) **(to appear)
**[5] Gao, J.B.,

*Approximation properties of a kind of generalized discrete Landau operator (Chinese)*. J. Huazhong Univ. Sci. Technol.

**12**(5), 1–4 (1984), Google Scholar

[6] Gonska, H.H., Piţul, P., Raşa, I.,

*On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators*. In: Agratini, O., Blaga, P. (eds.) Numerical Analysis and Approximation Theory. Proc. Int. Conf. Cluj-Napoca, pp. 55–80. Casa Cărţii de Ştiinţă, Cluj-Napoca (2006), Google Scholar

[7] Jackson, D.,

*A proof of Weierstrass’ theorem*. Am. Math. Mon.

**41**(5), 309–312 (1934), MathSciNet Article Google Scholar

[8] Landau, E.,

*Über die Approximation einer stetingen Funktion durch eine ganze rationale Funktion*. Rend. Circ. Mat. Palermo

**25**, 337–345 (1908), Article Google Scholar

[9] López-Moreno, A.-J.,

*Weighted simultaneous approximation with Baskakov type operators.*Acta Math. Hung.

**104**, 143–151 (2004), MathSciNet Article Google Scholar

[10] Mamedov, R.G.,

*Approximation of functions by generalized linear Landau operators*(Russian). Dokl. Akad. Nauk SSSR

**139**(1), 28–30 (1961), MathSciNet Google Scholar

[11] Mamedov, R.G.,

*On the order and on the asymptotic value of the approximation of functions by generalized linear Landau operators*(Russian). Akad. Nauk Azerbadzan SSR Trudy Inst. Mat. Meh.

**2**(10), 49–65 (1963), Google Scholar

[12] Mocica, Gh.,

*Problems of Special Functions*(Romanian). Didactical and Pedagogical Press, Bucharest (1988)

[13] Pendina, T.P.,

*Iterations of positive linear operators of exponential type and of Landau polynomials*(Russian). In: Geometric Problems of the Theory of Functions and Sets (Russian), pp. 105–111. Kalinin. Gos. Univ., Kalinin (1987)

[14] Shisha, O., Mond, B.,

*The degree of convergence of linear positive operators.*Proc. Natl. Acad. Sci. U.S.A.

**60**, 1196–1200 (1968), MathSciNet Article Google Scholar

[15] Sikkema, P.C.,

*Approximation formulae of Voronovskaya type for certain convolution operators*. J. Approx. Theory

**26**(1), 26–45 (1979), MathSciNet Article Google Scholar

[16] Veselinov, V.M.,

*Certain estimates of the approximation of functions by de la Vallée–Poussin and Landau operators*(Russian). An. Univ. Sofia Fac. Math.

**66**, 153–158 (1974), Google Scholar

[17] Yuksel, I., Ispir, N.,

*Weighted approximation by a certain family of summation integral-type operators*. Comput. Math. Appl.

**52**, 1463–1470 (2006), MathSciNet Article Google Scholar