On multivalued mappings satisfying the condition T(F_T)=F_T

Abstract

Authors

Mira-Cristiana Anisiu
Institutul de Matematica, Cluj-Napoca, Romania

Keywords

?

Paper coordinates

M.-C. Anisiu, On multivalued mappings satisfying the condition T(F_T)=F_T, Seminar on Fixed Point Theory, 1-8, Preprint, 85-3, Univ. Babeş-Bolyai, Cluj-Napoca, 1985 (pdf file here)

PDF

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

[1] Purdea, I., Pic, Gh., Treatise of modern algebra, vol.1, Ed. Acad. R.S.R., 1977 (in Romanian)
[2] Rus, I.A., Fixed and strict fixed points for multivalued  mappings, this Preprint

1985-Anisiu-OnMultivaluedMappings

"BABES-BOLYAI" UNIVERSITIT
FACULTY OF MATHEMATICS
RESEARGH SEMINARIRS
SEMINAR ON FIXED POINT THEORY
Preprint ar. 3, 1985, pp. A B A B A-BA-BAB

ON MULTIVALUED MAPPINGSSATISFYING THE CONDITION T ( F T ) = F T T F T = F T T(F_(T))=F_(T)T\left(F_{T}\right)=F_{T}T(FT)=FTMira-Cristiana Anisiu

Let X X XXX be a nonvold set and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a multivalued mapping. Let
F T = { x X : x T ( x ) } , respectively ( S F ) T = { x X : T ( x ) = { x } } F T = { x X : x T ( x ) } ,  respectively  ( S F ) T = { x X : T ( x ) = { x } } {:[F_(T)={x in X:x in T(x)}","" respectively "],[(SF)_(T)={x in X:T(x)={x}}]:}\begin{aligned} & F_{T}=\{x \in X: x \in T(x)\}, \text { respectively } \\ & (S F)_{T}=\{x \in X: T(x)=\{x\}\} \end{aligned}FT={xX:xT(x)}, respectively (SF)T={xX:T(x)={x}}
denote the fixed point set, respectively the strict fixed point set of T.
For the multivalued mapping T : X X T : X X T:X rarr XT: X \rightarrow XT:XX we consider the graph
G ( T ) = { ( x , y ) X : X : y T ( x ) } G ( T ) = { ( x , y ) X : X : y T ( x ) } G(T)={(x,y)in X:X:y in T(x)}G(T)=\{(x, y) \in X: X: y \in T(x)\}G(T)={(x,y)X:X:yT(x)}
which may be regarded as a relation on X X XXX. The properties of the relations are exposed, for example, in [1].
It is obvious that any function f : X X f : X X f:X rarr Xf: X \rightarrow Xf:XX satisfies the equality f ( F f ) = F f f F f = F f f(F_(f))=F_(f)f\left(F_{f}\right)=F_{f}f(Ff)=Ff. In the paper [2], I.A. Rus shows that there are multivalued mappings which have not this property, but any multivalued mapping having only strict fixed points ( F T = ( S F ) T F T = ( S F ) T F_(T)=(SF)_(T)\mathrm{F}_{T}=(S F)_{T}FT=(SF)T ) verifies the condition T ( F T ) = F T T F T = F T T(F_(T))=F_(T)T\left(F_{T}\right)=F_{T}T(FT)=FT ( Lemma 4.1). The Problem 4.1[2] asks what are the conditions under which the set F T F T F_(T)F_{T}FT is fixed for a multivalued mapping T.
In the sequel we give sufficient conditions for the equality T ( F T ) = F T T F T = F T T(F_(T))=F_(T)T\left(F_{T}\right)=F_{T}T(FT)=FT holds and then we study some properties of a multivalued mapping T ~ T ~ tilde(T)\tilde{T}T~ induced by the given T T TTT.
For the set X X X!=O/X \neq \varnothingX we denote
I X : X X , I X ( x ) = { x } for any x X I X : X X , I X ( x ) = { x }  for any  x X I_(X):X rarr X,I_(X)(x)={x}" for any "x in XI_{X}: X \rightarrow X, I_{X}(x)=\{x\} \text { for any } x \in XIX:XX,IX(x)={x} for any xX
Δ X = G ( I X ) = { ( x , x ) X × X : x X } Δ X = G I X = { ( x , x ) X × X : x X } Delta_(X)=G(I_(X))={(x,x)in X xx X:x in X}\Delta_{X}=G\left(I_{X}\right)=\{(x, x) \in X \times X: x \in X\}ΔX=G(IX)={(x,x)X×X:xX},
and for the multivalued mapping T : X X T : X X T:X rarr XT: X \rightarrow XT:XX
dom T = { x X : T ( x ) } dom T = { x X : T ( x ) } dom T={x in X:T(x)!=O/}\operatorname{dom} T=\{x \in X: T(x) \neq \varnothing\}domT={xX:T(x)}
Im T = { y X T = { y X T={y in XT=\{y \in XT={yX : there is x X x X x in Xx \in XxX such that y T ( x ) } y T ( x ) } y in T(x)}y \in T(x)\}yT(x)}
T 1 : X X , T 1 ( y ) = { x X : y T ( x ) } T 1 : X X , T 1 ( y ) = { x X : y T ( x ) } T^(-1):X rarr X,T^(-1)(y)={x in X:y in T(x)}T^{-1}: X \rightarrow X, T^{-1}(y)=\{x \in X: y \in T(x)\}T1:XX,T1(y)={xX:yT(x)}.
For a multivalued mapping T : X X T : X X T:X rarr XT: X \rightarrow XT:XX the following theorem holds.
THHOREM 1. Let the below conditions be given
(a) T ( F T ) F T T F T F T T(F_(T))subeF_(T)T\left(F_{T}\right) \subseteq F_{T}T(FT)FT
(a') T ( F T ) = F T T F T = F T T(F_(T))=F_(T)T\left(F_{T}\right)=F_{T}T(FT)=FT
(a") T ( dom ( I X T ) ) dom ( I X T ) T dom I X T dom I X T T(dom(I_(X)nn T))sube dom(I_(X)nn T)T\left(\operatorname{dom}\left(I_{X} \cap T\right)\right) \subseteq \operatorname{dom}\left(I_{X} \cap T\right)T(dom(IXT))dom(IXT)
(b) for any x F T T ( x ) y T ( x ) T ( y ) x F T T ( x ) y T ( x ) T ( y ) x inF_(T)T(x)subennn_(y in T(x))T(y)x \in \mathbb{F}_{T} T(x) \subseteq \bigcap_{y \in T(x)} T(y)xFTT(x)yT(x)T(y)
(b') for any x F T x F T x inF_(T)x \in F_{T}xFT and z T ( x ) z T ( x ) z in T(x)z \in T(x)zT(x), it follows T ( x ) T ( z ) T ( x ) T ( z ) T(x)sube T(z)T(x) \subseteq T(z)T(x)T(z)
(c) G ( T ) G ( T ) G(T)G(T)G(T) is a symmetrical and transitive relation
(d) G ( T ) G ( T ) G(T)G(T)G(T) is a reflexive relation
(e) F T = ( S F ) T F T = ( S F ) T F_(T)=(SF)_(T)F_{T}=(S F)_{T}FT=(SF)T
The following implications are true
( a ) ( a ) ( a ) ( a ) ( a ) ( a ) a a (a)=>(a)<=>(a^('))<=>(a^(''))(\mathrm{a}) \Rightarrow(\mathrm{a}) \Leftrightarrow\left(\mathrm{a}^{\prime}\right) \Leftrightarrow\left(\mathrm{a}^{\prime \prime}\right)(a)(a)(a)(a)
n ^ n ^ hat(n)\hat{n}n^
(e) ( b ) ( b ) ( b ) b =>(b)Longleftrightarrow(b^('))\Rightarrow(b) \Longleftrightarrow\left(b^{\prime}\right)(b)(b)
n ^ n ^ hat(n)\hat{n}n^
(c)
Proof. (a) ( a ) a =>(a^('))\Rightarrow\left(a^{\prime}\right)(a). It is obvious that ( a ) ( a ) a ( a ) (a^('))=>(a)\left(a^{\prime}\right) \Rightarrow(a)(a)(a); if ( a ) ( a ) (a)(a)(a) is true, we obtain ( a a a^(')a^{\prime}a ) because from x F T x F T x inF_(T)x \in F_{T}xFT we deduce x T ( x ) x T ( x ) x in T(x)x \in T(x)xT(x), so x ∈∈ T ( F T ) x ∈∈ T F T x∈∈T(F_(T))x \in \in T\left(F_{T}\right)x∈∈T(FT).
( a ) ( a ) dom ( I X T ) = { x X : I X ( x ) T ( x ) } == { x X : x T ( x ) } = F T ( a ) a dom I X T = x X : I X ( x ) T ( x ) == { x X : x T ( x ) } = F T (a)<=>(a^(''))*dom(I_(X)nn T)={x in X:I_(X)(x)nn T(x)!=O/}=={x in X:x in T(x)}=F_(T)(\mathrm{a}) \Leftrightarrow\left(\mathrm{a}^{\prime \prime}\right) \cdot \operatorname{dom}\left(I_{\mathrm{X}} \cap T\right)=\left\{x \in X: I_{\mathrm{X}}(x) \cap T(x) \neq \emptyset\right\}= =\{x \in X: x \in T(x)\}=F_{T}(a)(a)dom(IXT)={xX:IX(x)T(x)}=={xX:xT(x)}=FT and the equivalence holds.
(b) =>\Rightarrow (b'). Let x F T x F T x inF_(T)x \in F_{T}xFT and z T ( x ) z T ( x ) z in T(x)z \in T(x)zT(x). We prove that T ( x ) T ( z ) T ( x ) T ( z ) T(x)sube T(z)T(x) \subseteq T(z)T(x)T(z). For any y T ( x ) y T ( x ) y in T(x)y \in T(x)yT(x), we obtain y T ( x ) y T ( x ) T ( y ) TV 3 ( so T ( x ) y T ( x ) y T ( x ) T ( y ) TV 3 ( so T ( x ) y in T(x)subennn_(y in T(x))T(y)subeTV_(3)(!in so T(x)y \in T(x) \subseteq \bigcap_{y \in T(x)} T(y) \subseteq \operatorname{TV}_{3}(\notin \operatorname{so} T(x)yT(x)yT(x)T(y)TV3(soT(x)
T ( z ) T ( z ) sube T(z)\subseteq T(z)T(z).
(b') =>\Rightarrow (B). Let x F T x F T x inF_(T)x \in F_{T}xFT and z T ( x ) z T ( x ) z in T(x)z \in T(x)zT(x); by (b') we have T ( x ) T ( B ) T ( x ) T ( B ) T(x)sube T(B)T(x) \subseteq T(\mathbf{B})T(x)T(B), hence T ( x ) z T ( x ) T ( z ) T ( x ) z T ( x ) T ( z ) T(x)subennn_(z in T(x))T(z)T(x) \subseteq \bigcap_{z \in T(x)} T(z)T(x)zT(x)T(z).
(b) =>\Rightarrow (a). Let y T ( F T ) y T F T y in T(F_(T))y \in T\left(F_{T}\right)yT(FT), i.e. there exists x F T x F T x inF_(T)x \in F_{T}xFT such that y ∈∈ T ( x ) y ∈∈ T ( x ) y∈∈T(x)y \in \in T(x)y∈∈T(x). The condition (b) implies T ( x ) z T ( x ) T ( z ) T ( y ) T ( x ) z T ( x ) T ( z ) T ( y ) T(x)subennn_(z in T(x))T(z)sube T(y)T(x) \subseteq \bigcap_{z \in T(x)} T(z) \subseteq T(y)T(x)zT(x)T(z)T(y); but y ∈∈ T ( x ) y ∈∈ T ( x ) y∈∈T(x)y \in \in T(x)y∈∈T(x) and it follows y T ( y ) y T ( y ) y in T(y)y \in T(y)yT(y), hence y F T y F T y inF_(T)y \in F_{T}yFT.
(c) =>\Rightarrow (B). Let x F T x F T x inF_(T)x \in F_{T}xFT and z T ( x ) z T ( x ) z in T(x)z \in T(x)zT(x). We prove that for any y X y X y in Xy \in XyX such that y T ( x ) y T ( x ) y in T(x)y \in T(x)yT(x) we have y T ( z ) y T ( z ) y in T(z)y \in T(z)yT(z). The symmetry of G ( T ) G ( T ) G(T)G(T)G(T) implies x T ( y ) x T ( y ) x in T(y)x \in T(y)xT(y); but z T ( x ) z T ( x ) z in T(x)z \in T(x)zT(x) and from the transitivity of G ( T ) G ( T ) G(T)G(T)G(T) we obtain z f ( y ) z f ( y ) z in f(y)z \in \boldsymbol{f}(y)zf(y). Applying again the symmetry, we have y T ( z ) y T ( z ) y in T(z)y \in T(z)yT(z) and T ( x ) ⊆⊆ z T ( x ) T ( z ) T ( x ) ⊆⊆ z T ( x ) T ( z ) T(x)⊆⊆nnn_(z in T(x))T(z)T(x) \subseteq \subseteq \bigcap_{z \in T(x)} T(z)T(x)⊆⊆zT(x)T(z).
( e ) ( b ) ( e ) ( b ) (e)=>(b)(e) \Rightarrow(b)(e)(b). Let x F T = ( S F ) T x F T = ( S F ) T x inF_(T)=(SF)_(T)x \in F_{T}=(S F)_{T}xFT=(SF)T so T ( x ) = { x } = y T ( x ) T ( y ) T ( x ) = { x } = y T ( x ) T ( y ) T(x)={x}=nnn_(y in T(x))T(y)T(x)=\{x\}=\bigcap_{y \in T(x)} T(y)T(x)={x}=yT(x)T(y) and (b) holds.
( d ) ( a ) . G ( T ) ( d ) ( a ) . G ( T ) (d)=>(a).G(T)(d) \Rightarrow(a) . G(T)(d)(a).G(T) being reflexive, we have Δ X G ( T ) Δ X G ( T ) Delta_(X)sube G(T)\Delta_{X} \subseteq G(T)ΔXG(T) and it follows F T = X F T = X F_(T)=XF_{T}=XFT=X; it is obvious that T ( F T ) F T T F T F T T(F_(T))subeF_(T)T\left(F_{T}\right) \subseteq F_{T}T(FT)FT.
We mention now some connections between the classes of multivalued mappings satisfying the conditions in Theorem. 1.
THEOREM 2. If the graph of the multivalued mapping T T TTT satisfying (b) is a reflexive relation, it is also symmetrical and transitive.
Proof. G ( T ) G ( T ) G(T)G(T)G(T) being reflexive, the condition (b) is satisfied for any x X x X x in Xx \in XxX. Let x ¯ X x ¯ X bar(x)in X\bar{x} \in Xx¯X be arbitrary and y T ( x ) y T ( x ) y in T(x)y \in T(x)yT(x). Using ( b ) , x T ( x ) ( b ) , x T ( x ) (b),x in T(x)sube(b), x \in T(x) \subseteq(b),xT(x) T ( y ) T ( y ) sube T(y)\subseteq T(y)T(y), so x T ( y ) x T ( y ) x in T(y)x \in T(y)xT(y) and the symmetry is proved.
For the transitivity, we consider x X , y T ( x ) x X , y T ( x ) x in X,y in T(x)x \in X, y \in T(x)xX,yT(x) and z T ( y ) z T ( y ) z in T(y)z \in T(y)zT(y). It follows by (b) that x T ( x ) T ( y ) T ( z ) x T ( x ) T ( y ) T ( z ) x in T(x)sube T(y)sube T(z)x \in T(x) \subseteq T(y) \subseteq T(z)xT(x)T(y)T(z), so x T ( z ) x T ( z ) x in T(z)x \in T(z)xT(z). Applying the symmetry of G ( T ) G ( T ) G(T)G(T)G(T) we obtain z T ( x ) z T ( x ) z in T(x)z \in T(x)zT(x) and the proof is over.
REMARK 1. There is only one mailhytrod mapping which has only strict fixed points and a reflexive graph, namely I X I X I_(X)I_{X}IX, whose graph Δ X Δ X Delta_(X)\Delta_{X}ΔX is also symmetrical and transitive.
We are able now to present the relative position of the classes
of multivalued mappings involved in Theorem 1 using the diagram in Fig. 1; rectangles having the basas on the same line and the top vertexes marked with a letter stand for the classes denoted by that letter. All the regions marked by a number are nonvoid, as the following examples show.
a a aaa 1 b b bbb c c ccc
d d ddd c c ccc b 2 b 2 b^(2)b^{2}b2 8 c c ccc
2 e e eee 3
5 7 4
a 1 b c d c b^(2) 8 c 2 e 3 5 7 4 | $a$ | 1 | $b$ | | $c$ | | | :---: | :---: | :---: | :---: | :---: | :---: | | $d$ | | $c$ | $b^{2}$ | 8 | $c$ | | | 2 | $e$ | | 3 | | | | | 5 | 7 | 4 | |
Fig. 1
EXAMPLIES.
  1. I satisfies (a), but none of (b) and (d).
X = R , T ( x ) = { { 0 , x } , x [ 1 , 1 ] { 1 } , x R [ 1 , 1 ] X = R , T ( x ) = { 0 , x } , x [ 1 , 1 ] { 1 } , x R [ 1 , 1 ] X=R,T(x)={[{0","x}","x in[-1","1]],[{1}","x in R\\[-1","1]]:}X=R, T(x)=\left\{\begin{array}{l} \{0, x\}, x \in[-1,1] \\ \{1\}, x \in R \backslash[-1,1] \end{array}\right.X=R,T(x)={{0,x},x[1,1]{1},xR[1,1]
  1. T T TTT satisfies (d), but it does not satisfy (b).
X = R , T ( x ) = { { x } , x 0 { 0 , 1 } , x = 0 X = R , T ( x ) = { x } , x 0 { 0 , 1 } , x = 0 X=R,T(x)={[{x}",",x!=0],[{0","1}",",x=0]:}X=R, T(x)= \begin{cases}\{x\}, & x \neq 0 \\ \{0,1\}, & x=0\end{cases}X=R,T(x)={{x},x0{0,1},x=0
  1. I satisfies (b), but none of (c), (e) and (d).
X = R , T ( x ) = { { 2 } , x = 0 { x , x } , x [ 1 , 1 ] { 0 } { 0 } , x R [ 1 , 1 ] X = R , T ( x ) = { 2 } , x = 0 { x , x } , x [ 1 , 1 ] { 0 } { 0 } , x R [ 1 , 1 ] X=R,T(x)={[{2}",",x=0],[{-x","x}",",x in[-1","1]\\{0}],[{0}",",x in R\\[-1","1]]:}X=R, T(x)= \begin{cases}\{2\}, & x=0 \\ \{-x, x\}, & x \in[-1,1] \backslash\{0\} \\ \{0\}, & x \in R \backslash[-1,1]\end{cases}X=R,T(x)={{2},x=0{x,x},x[1,1]{0}{0},xR[1,1]
  1. T satisfies (e), but none of (c) and (d).
X = R , T ( x ) = { 0 , x } X = R , T ( x ) = { 0 , x } X=R,T(x)={0,-x}X=R, T(x)=\{0,-x\}X=R,T(x)={0,x}
  1. T satisfies (c), (d) and (e).
By Remark 1, the only multivalued mapping satisfying these conditions is I X I X I_(X)I_{X}IX.
6. I satisfies (c) and (d), but it does not satisfy (e).
X = R , T ( x ) = { { x } , x R { 1 , 2 } { 1 , 2 } , x { 1 , 2 } X = R , T ( x ) = { x } , x R { 1 , 2 } { 1 , 2 } , x { 1 , 2 } X=R,T(x)={[{x}",",x in R\\{1","2}],[{1","2}",",x in{1","2}]:}X=R, T(x)= \begin{cases}\{x\}, & x \in R \backslash\{1,2\} \\ \{1,2\}, & x \in\{1,2\}\end{cases}X=R,T(x)={{x},xR{1,2}{1,2},x{1,2}
  1. I satisfies (c) and (e), but it does not satisfy (d).
X = R U { } , I ( x ) = { { x } , x R ϕ ; x = X = R U { } , I ( x ) = { x } , x R ϕ ; x = X=RU{oo},I(x)={[{x}","x in R],[phi;x=oo]:}X=R U\{\infty\}, I(x)=\left\{\begin{array}{c} \{x\}, x \in R \\ \phi ; x=\infty \end{array}\right.X=RU{},I(x)={{x},xRϕ;x=
  1. T satisfies (c), but none of (d) and (e).
X = R { } , T ( x ) = { { x , x } , x R ϕ , x = X = R { } , T ( x ) = { x , x } , x R ϕ , x = X=R uu{oo},T(x)={[{-x","x}","x in R],[phi","x=oo]:}X=R \cup\{\infty\}, T(x)=\left\{\begin{array}{l} \{-x, x\}, x \in R \\ \phi, x=\infty \end{array}\right.X=R{},T(x)={{x,x},xRϕ,x=
REMARK 2. If we consider only multivalued mappings T : X X T : X X T:X rarr XT: X \rightarrow XT:XX such that X = dom T X = dom T X=dom TX=\operatorname{dom} TX=domT (all the values of T T TTT are nonvidid), the condition (c) implies (d.).
Indeed, for any x X x X x in Xx \in XxX we have T ( x ) ϕ T ( x ) ϕ T(x)!=phiT(x) \neq \phiT(x)ϕ and we can choose y T ( x ) y T ( x ) y in T(x)y \in T(x)yT(x); from the symmetry we obtain x T ( y ) x T ( y ) x in T(y)x \in T(y)xT(y) and the transitivity of G ( x ) G ( x ) G(x)G(x)G(x) imp plies x T ( x ) x T ( x ) x in T(x)x \in T(x)xT(x), i.e. G ( T ) G ( T ) G(T)G(T)G(T) is reflexive.
If this is the case, the regions denoted by 7 and 8 in Fig. 1 an are void and the diagram looks like this
[ a b a , b 1 a c c , d 3 2 6 e 5 4 a b a , b 1 a c c , d 3 2 6 e 5 4 [[a,,b,,a","b],[,1,,,],[a,,c,c","d,3],[,2,(6)/(e),,],[,,,5,4]:}\left[\begin{array}{cccc|c}a & & b & & a, b \\ & 1 & & & \\ \hline a & & c & c, d & 3 \\ & 2 & \frac{6}{e} & & \\ & & & 5 & 4\end{array}\right.[aba,b1acc,d326e54
Fig. 2
It follows that a multivalued mapping Ψ : X X Ψ : X X Psi:X rarr X\Psi: X \rightarrow XΨ:XX with X = dom X X = dom X X=dom XX=\operatorname{dom} XX=domX has a symmetrical and transitive graph ( satisfies the condition (c) ) if and only if T T TTT satisfies the condition (b) and G ( T ) G ( T ) G(T)G(T)G(T) is a reflexive relation.
The condition (b) leeds us to the definition of a multivalued mapping attached to T T TTT.
Let X X XXX be a nonvoid set and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a multivalued mapping. We define T ~ : X X T ~ : X X tilde(T):X rarr X\tilde{T}: X \rightarrow XT~:XX given by
T ~ ( x ) = { T ( x ) y , for x X dom T T ~ ( x ) = T ( x ) y ,  for  x X dom T tilde(T)(x)={[nnn in T(x)],[y","" for "x in X\\dom T]:}\tilde{T}(x)=\left\{\begin{array}{l} \bigcap \in T(x) \\ y, \text { for } x \in X \backslash \operatorname{dom} T \end{array}\right.T~(x)={T(x)y, for xXdomT
The the termes of T ~ T ~ tilde(T)\tilde{T}T~, the conditione (6) becomes T | F T T | F T T F T T F T T|_(F_(T))sube T|_(F_(T))\left.\left.T\right|_{F_{T}} \subseteq T\right|_{F_{T}}T|FTT|FT.
If we consider a new condition
(P) T T ~ T T ~ T sube tilde(T)T \subseteq \tilde{T}TT~
we obtain obviously that (f) implies (b).
If T = G : X X T = G : X X T=G:X rarr XT=G: X \rightarrow XT=G:XX is a function, we have g N ( x ) = ( g g ) ( x ) g N ( x ) = ( g g ) ( x ) g^(N)(x)=(g@g)(x)g^{N}(x)=(g \circ g)(x)gN(x)=(gg)(x) for any x X x X x in Xx \in XxX; the condition ( f ) ( f ) (f)(f)(f) is equivalent to g ( x ) = ( g g ) ( x ) g ( x ) = ( g g ) ( x ) g(x)=(g@g)(x)g(x)=(g \circ g)(x)g(x)=(gg)(x) for an any x X x X x in Xx \in XxX, i.e. to Im g = F g Im g = F g Im g=F_(g)\operatorname{Im} g=F_{g}Img=Fg.
RMARK 3. If T T TTT is a multivalued mapping, we have only T T T T T T T sube T@TT \subseteq T \circ TTTT on dom T T TTT, the inclusion being generally strict, as the following example shows. Let T : R R T : R R T:R rarr RT: R \rightarrow RT:RR be given by T ( x ) = { 0 , x } T ( x ) = { 0 , x } T(x)={0,x}T(x)=\{0, x\}T(x)={0,x}; then T T ( x ) == { 0 , x } T ~ ( x ) = { 0 } T T ( x ) == { 0 , x } T ~ ( x ) = { 0 } T*T(x)=={0,x}⇌ tilde(T)(x)={0}T \cdot T(x)= =\{0, x\} \rightleftharpoons \tilde{T}(x)=\{0\}TT(x)=={0,x}T~(x)={0}, for any x 0 x 0 x!=0x \neq 0x0.
THEOREM 3. If T : X X T : X X T:X rarr XT: X \rightarrow XT:XX satisfles the condition ( f ) ( f ) (f)(f)(f) we have Im T = F T T = F T T=F_(T)^(**)T=F_{T}{ }^{*}T=FT
Procif. We have obviously F T Im T F T Im T F_(T)sube Im TF_{T} \subseteq \operatorname{Im} TFTImT. Let y Im T y Im T y in Im Ty \in \operatorname{Im} TyImT and x X x X x in Xx \in XxX such that y T ( x ) y T ( x ) y in T(x)y \in T(x)yT(x). Applying ( f ) ( f ) (f)(f)(f), we get y T ( x ) T ~ ( x ) T ( y ) y T ( x ) T ~ ( x ) T ( y ) y in T(x)sube tilde(T)(x) <= T(y)y \in T(x) \subseteq \tilde{T}(x) \leq T(y)yT(x)T~(x)T(y) and y F T y F T y inF_(T)y \in F_{T}yFT. It follows that In T F T T F T T subeF_(T)T \subseteq \mathbb{F}_{T}TFT, so Im T = F T Im T = F T Im T=F_(T)\operatorname{Im} T=\mathbb{F}_{T}ImT=FT holds.
REMARK 4. The reverse implication is not true. For the multivalued mapping T T TTT from Example 1 we have Im T = F T = [ 1 , 1 ] Im T = F T = [ 1 , 1 ] Im T=F_(T)=[-1,1]\operatorname{Im} T=F_{T}=[-1,1]ImT=FT=[1,1], but T ( x ) = { { 0 } , x [ 1 , 1 ] { 0 , 1 } , x R [ 1 , 1 ] T ( x ) = { 0 } , x [ 1 , 1 ] { 0 , 1 } , x R [ 1 , 1 ] T(x)={[{0}","x in[-1","1]],[{0","1}","x in R\\[-1","1]]:}T(x)=\left\{\begin{array}{l}\{0\}, x \in[-1,1] \\ \{0,1\}, x \in R \backslash[-1,1]\end{array}\right.T(x)={{0},x[1,1]{0,1},xR[1,1], so T T ~ T T ~ T⊈ tilde(T)T \nsubseteq \tilde{T}TT~.
The next theorem gives a condition for a point x X x X xinX\mathbf{x} \in \mathbf{X}xX be a fixed point for T.
THEOREM 4. The element x X x X x in Xx \in XxX is a fixed point for T T TTT if and only if T ( x ) T 1 ( x ) T ( x ) T 1 ( x ) T(x)subeT^(-1)(x)T(x) \subseteq T^{-1}(x)T(x)T1(x).
Proof. Let x X x X x in Xx \in XxX be a fixed point for T ~ T ~ tilde(T)\tilde{T}T~; if x dom T x dom T x in dom Tx \in \operatorname{dom} TxdomT, we have T ( x ) = ϕ T 1 ( x ) T ( x ) = ϕ T 1 ( x ) T(x)=phi subeT^(-1)(x)T(x)=\phi \subseteq T^{-1}(x)T(x)=ϕT1(x). In the case that x x x inx \inx dom T , T ( x ) T , T ( x ) T,T(x)T, T(x)T,T(x) is a nonvoid set; let y T ( x ) y T ( x ) y in T(x)y \in T(x)yT(x). It follows that x T ~ ( x ) T ( y ) x T ~ ( x ) T ( y ) x in tilde(T)(x)sube T(y)x \in \tilde{T}(x) \subseteq T(y)xT~(x)T(y), i.e. y T 1 ( x ) y T 1 ( x ) y inT^(-1)(x)y \in T^{-1}(x)yT1(x) and we obtain again T ( x ) T 1 ( x ) T ( x ) T 1 ( x ) T(x)subeT^(-1)(x)T(x) \subseteq T^{-1}(x)T(x)T1(x).
Let now x X x X x in Xx \in XxX be a point such that T ( x ) T 1 ( x ) T ( x ) T 1 ( x ) T(x)subeT^(-1)(x)T(x) \subseteq T^{-1}(x)T(x)T1(x). If T ( x ) = T ( x ) = T(x)=O/T(x)=\emptysetT(x)=, we have T ( x ) = X T ( x ) = X T(x)=XT(x)=XT(x)=X and x x xxx is obviously a fixed point for T ~ T ~ tilde(T)\tilde{T}T~. But y y yyy was
arbitrary in T ( x ) T ( x ) T(x)T(x)T(x), so x y T ( x ) T ( y ) = T ( x ) x y T ( x ) T ( y ) = T ( x ) x innnn_(y in T(x))T(y)=T(x)x \in \underset{y \in T(x)}{\bigcap} T(y)=T(x)xyT(x)T(y)=T(x), hence x F T x F T x inF_(T)x \in F_{T}xFT.
COROILARY. The fixed point set for T ~ T ~ tilde(T)\tilde{T}T~ is the largest subset of X X XXX on which G ( T ) G ( T ) G(T)G(T)G(T) is symmetrical.
Propf. F T = { x X : T ( x ) T 1 ( x ) } F T = x X : T ( x ) T 1 ( x ) F_(T)={x in X:T(x)subeT^(-1)(x)}F_{T}=\left\{x \in X: T(x) \subseteq T^{-1}(x)\right\}FT={xX:T(x)T1(x)}.
REMARK 5. Any strict fixed point for T T TTT is also a strict fixed point for T ~ T ~ widetilde(T)\widetilde{T}T~. The reverse implication is not true. Indeed, for T : R R T : R R T:R rarr RT: R \rightarrow RT:RR given by
T ( x ) = { { 1 , 1 } , x = 0 { 0 , 2 } , x = 1 { 0 , 2 } , x = 1 { x } , x R { 0 , 1 , 1 } T ( x ) = { 1 , 1 } , x = 0 { 0 , 2 } , x = 1 { 0 , 2 } , x = 1 { x } , x R { 0 , 1 , 1 } T(x)={[{-1","1}","x=0],[{0","-2}","x=-1],[{0","2}","x=1],[{x}","x in R\\{0","-1","1}]:}T(x)=\left\{\begin{array}{l} \{-1,1\}, x=0 \\ \{0,-2\}, x=-1 \\ \{0,2\}, x=1 \\ \{x\}, x \in R \backslash\{0,-1,1\} \end{array}\right.T(x)={{1,1},x=0{0,2},x=1{0,2},x=1{x},xR{0,1,1}
we have T ~ ( 0 ) = T ( 1 ) T ( 1 ) = { 0 } T ~ ( 0 ) = T ( 1 ) T ( 1 ) = { 0 } tilde(T)(0)=T(-1)nn T(1)={0}\tilde{T}(0)=T(-1) \cap T(1)=\{0\}T~(0)=T(1)T(1)={0}, so 0 ( S F ) T ~ 0 ( S F ) T ~ 0in(SF)_( tilde(T))0 \in(S F)_{\tilde{T}}0(SF)T~, but 0 ( S F ) T 0 ( S F ) T 0!in(SF)_(T)0 \notin(S F)_{T}0(SF)T.

REFWRENOES

  1. Purdea, I., Pic,Gh., Treatise of modern algebra, Vol. I, ED. Acad. R.S.R. 1977 (in Romanian)
  2. Rus, I.A., Fixed and strict fixed points for multivalued mappings, this Preprint
1985

Related Posts