Abstract
The present paper focuses on two approaches. Firstly, by using the contraction principle, we give a method for obtaining the limit of iterates of a class of linear positive operators. This general method is applied in studying three sequences of modified Bernstein type operators. Secondly, we define a generalization of Goodman-Sharma operators. We investigate the degree of approximation obtaining pointwise and global estimates in the framework of various function spaces.
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
linear positive operators; contraction principle; degree of approximation; modulus of smoothness.
Paper coordinates
O. Agratini, On some Bernstein type operators: iterates and generalizations, East Journal on Approximations, 9 (2003) no. 4, pp. 415-426.
About this paper
Journal
East Journal on Approximations
Publisher Name
DOI
Print ISSN
??
Online ISSN
google scholar link
[1] M. Campiti and G. Metafune, Approximation properties of recursively defined Bernstein-type operators, J. Approx. Theory 87 (1996), pp. 243-269.
[2] E.W. Cheney and A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma (2) 5 (1964), pp. 77-84.
[3] M.M. Derroemmoc, Sur l’approximation de fonctions integrables sur [0,1] par des polynomes de Bernstein modifies, J.Approx. Theory 31 (1981), pp.325-343.
[4] T.N.T. Goodman and A. Sharma, A Bernstein-type operator on the simplex, Math. Balkanica (N.S) 5 (1991), f.2, pp.129-145.
[5] R.P.Kelisky and T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math. 21 (1967(, pp. 511-520.
[6] I.A. Rus, Weakly Picard mappings, Commentationes Math. Univ. Carolinae 34, 4 (1993), pp. 769-773.
[7] D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983), f.2, pp.211-229.
[8] D.D. Stancu and C.Cismasiu, On an approximating linear positive operator of Cheney-Sharma, Revue d’Analyse Numerique et de Theorie de l’Approximation, 26 (1997), no.1-2, pp. 221-227.