On some inequalities between convex functions (II)

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur quelques inegalités entre les fonctions convexes (II), Comptes Rendus de l’Instit. de Sci. de Roum., 2 (1938), pp. 454-458 (in French)

PDF

About this paper

Journal

Comptes Rendus de l’Instit. de Sci. de Roum.

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1938 d -Popoviciu- Reports of the meetings of the Romanian Academy of Sciences - On some inequalities
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

113. On SOME INEQUALITIES BETWEEN CONVEX FUNCTIONS

(SECOND NOTE)
By tiberiu popoviciu, Mc. ASR
(Session of March 4, 1938)
I. We have demonstrated in the first Note that the maximum of HAS φ ( f ) HAS φ ( f ) A_(varphi)(f)\mathrm{A}_{\varphi}(f)HASφ(f)In ( E has b ) n E has b n (E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}(Ehasb)n, when HAS ( f ) HAS ( f ) A(f)\mathrm{A}(f)HAS(f)is given, can only be reached by an elementary function of degree n n nnnat most i vertex. More precisely, there always exists an elementary function h ( x ) h ( x ) h(x)h(x)h(x)of ( E has b ) n E has b n (E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}(Ehasb)n, having at most I vertex, such that HAS ( h ) = HAS ( f ) , HAS φ ( h ) > HAS φ ( f ) HAS ( h ) = HAS ( f ) , HAS φ ( h ) > HAS φ ( f ) A(h)=A(f),A_(varphi)(h) > A_(varphi)(f)\mathrm{A}(h)=\mathrm{A}(f), \mathrm{A}_{\varphi}(h)>\mathrm{A}_{\varphi}(f)HAS(h)=HAS(f),HASφ(h)>HASφ(f), equality not being possible if f f fffis not an elementary function at o or I vertex.
In particular, for n = 1 n = 1 n=1n=1n=1, the maximum problem is completely solved since the value of the integral HAS ( f ) HAS ( f ) A(f)\mathrm{A}(f)HAS(f)completely determines the function h h hhh.
We now propose to examine the case n > 1 n > 1 n > 1n>1n>1. It is then necessary to choose among the elementary functions at o or I vertex, the one (or ones) which gives the maximum of HAS φ ( f ) HAS φ ( f ) A_(varphi)(f)A_{\varphi}(f)HASφ(f).
We will use an auxiliary property, which we have already used in the previous note, and which we now state in the following form:
Either φ φ varphi\varphiφa function of the form indicated in the first note. Let then f , f f , f f,f^(**)f, f^{*}f,ftwo continuous, differentiable and increasing functions in the closed interval ( o , I o , I o,I\mathrm{o}, \mathrm{I}o,I). In addition, the functions f , f f , f f,f^(**)f, f^{*}f,fcheck the properties:
I 0 . f ( o ) = f ( o ) = has o , f ( I ) = f ( I ) = b I , has b I 0 . f ( o ) = f ( o ) = has o , f ( I ) = f ( I ) = b I , has b I^(0).f(o)=f^(**)(o)=a >= o,f(I)=f^(**)(I)=b <= I,a >= b\mathrm{I}^{0} . f(\mathrm{o})=f^{*}(\mathrm{o})=a \geq \mathrm{o}, f(\mathrm{I})=f^{*}(\mathrm{I})=b \leqq \mathrm{I}, a \geq bI0.f(o)=f(o)=haso,f(I)=f(I)=bI,hasb.
2 0 2 0 2^(0)2^{0}20. We have HAS ( f ) = HAS ( f ) HAS f = HAS ( f ) A(f^(**))=A(f)\mathrm{A}\left(f^{*}\right)=\mathrm{A}(f)HAS(f)=HAS(f).
3. There is a number x 0 , 0 < x 0 < 1 x 0 , 0 < x 0 < 1 x_(0),0 < x_(0) < 1x_{0}, 0<x_{0}<1x0,0<x0<1, such that we have f ( x ) f ( x ) f ( x ) f ( x ) f^(**)(x)⋚f(x)f^{*}(x) \lesseqgtr f(x)f(x)f(x), depending on whether x x 0 , 0 < x < 1 x x 0 , 0 < x < 1 x⋚x_(0),0 < x < 1x \lesseqgtr x_{0}, 0<x<1xx0,0<x<1.
More generally we can assume that f* is first constantly equal to a and then is increasing.
We then have the inequality HAS φ ( f ) > HAS φ ( f ) 1 HAS φ f > HAS φ ( f ) 1 A_(varphi)(f^(**)) > A_(varphi)(f)^(1)\mathrm{A}_{\varphi}\left(f^{*}\right)>\mathrm{A}_{\varphi}(f){ }^{1}HASφ(f)>HASφ(f)1).
The demonstration is simple. According to the representation of φ φ varphi\varphiφby a Stieltjes integral, it suffices to demonstrate the property for the functions φ Λ . 2 φ Λ . 2 varphi_(Lambda).^(2)\varphi_{\Lambda} .{ }^{2}φΛ.2). This amounts to demonstrating that
G ( λ ) = i 1 f d x t 1 f d x + λ ( t t ) > 0 , has < λ < b G ( λ ) = i 1 f d x t 1 f d x + λ t t > 0 , has < λ < b G(lambda)=int_(i^(**))^(1)f^(**)dx-int_(t)^(1)fdx+lambda(t^(**)-t) > 0,quad a < lambda < b\mathrm{G}(\lambda)=\int_{i^{*}}^{1} f^{*} d x-\int_{t}^{1} f d x+\lambda\left(t^{*}-t\right)>0, \quad a<\lambda<bG(λ)=i1fdxt1fdx+λ(tt)>0,has<λ<b
Or λ = f ( l ) = f ( t ) λ = f ( l ) = f t lambda=f(l)=f^(**)(t^(**))\lambda=f(l)=f^{*}\left(t^{*}\right)λ=f(L)=f(t). Gold, t , t t , t t,t^(**)t, t^{*}t,tand the first member of this inequality are functions derivable from λ λ lambda\lambdaλ. We have
d G d λ = f ( t ) d t d λ + f ( t ) d t d λ + λ ( d t d λ d t d λ ) + ( t t ) = t t d G d λ = f t d t d λ + f ( t ) d t d λ + λ d t d λ d t d λ + t t = t t (dG)/(d lambda)=-f^(**)(t^(**))(dt^(**))/(d lambda)+f(t)(dt)/(d lambda)+lambda((dt^(**))/(d lambda)-(dt)/(d lambda))+(t^(**)-t)=t^(**)-t\frac{d \mathrm{G}}{d \lambda}=-f^{*}\left(t^{*}\right) \frac{d t^{*}}{d \lambda}+f(t) \frac{d t}{d \lambda}+\lambda\left(\frac{d t^{*}}{d \lambda}-\frac{d t}{d \lambda}\right)+\left(t^{*}-t\right)=t^{*}-tdGdλ=f(t)dtdλ+f(t)dtdλ+λ(dtdλdtdλ)+(tt)=tt
Ownership follows immediately from the fact that t t t t t^(**)⋛tt^{*} \gtreqless tttfollowing that λ f ( x 0 ) λ f x 0 lambda⋚f(x_(0))\lambda \lesseqgtr f\left(x_{0}\right)λf(x0).
2. Now consider the function of ( E n b ) n E n b n (E_(n)^(b))_(n)\left(\mathrm{E}_{n}^{b}\right)_{n}(Enb)n,
h ( x ) = a + a 1 x + a 2 x 2 + a k x k + ( b a i = 1 k a i ) [ x μ + | x μ | 2 ( I μ ) ] n h ( x ) = a + a 1 x + a 2 x 2 + a k x k + b a i = 1 k a i x μ + | x μ | 2 ( I μ ) n h(x)=a+a_(1)x+a_(2)x^(2)+dotsa_(k)x^(k)+(b-a-sum_(i=1)^(k)a_(i))[(x-mu+|x-mu|)/(2(I-mu))]^(n)h(x)=a+a_{1} x+a_{2} x^{2}+\ldots a_{k} x^{k}+\left(b-a-\sum_{i=1}^{k} a_{i}\right)\left[\frac{x-\mu+|x-\mu|}{2(\mathrm{I}-\mu)}\right]^{n}h(x)=has+has1x+has2x2+haskxk+(bhasi=1khasi)[xμ+|xμ|2(Iμ)]n
Or, 0 < μ < I , a i 0 , i = 1 , 2 , , k I , a k > 0 , k n I , b a i = 1 k a i > 0 0 < μ < I , a i 0 , i = 1 , 2 , , k I , a k > 0 , k n I , b a i = 1 k a i > 0 0 < mu < I,a_(i) >= 0,quad i=1,2,dots,k-I,quada_(k) > 0,k <= n-I,b-a-sum_(i=1)^(k)a_(i) > 00<\mu<\mathrm{I}, a_{i} \geqq 0, \quad i=1,2, \ldots, k-\mathrm{I}, \quad a_{k}>0, k \leqq n-\mathrm{I}, b-a-\sum_{i=1}^{k} a_{i}>00<μ<I,hasi0,i=1,2,,kI,hask>0,knI,bhasi=1khasi>0.
  1. This is only a special case of an inequality which, for the finite case, has been given by Messrs. GH 'Hardy, JE Littlewood, G. Pólya, yoir: ,,Some simple inequalities satisfied by convex /unctions" Messenger of. math. 58 (1929) p. 145-152. See also J. Karamata ,On an inequality relating to convex functions', Publ. Math. Univ. Belgrade t. i (1932) p. 145-148. We will return to this inequality in another work.
  2. I ask the reader to refer to the first note for the assumptions made on the functions and for the notations.
We have
A ( h ) = a + a 1 2 + a 2 3 + + a k k + 1 + ( b a i = 1 k a l ) ( 1 μ ) n + 1 . A ( h ) = a + a 1 2 + a 2 3 + + a k k + 1 + b a i = 1 k a l ( 1 μ ) n + 1 . A(h)=a+(a_(1))/(2)+(a_(2))/(3)+dots+(a_(k))/(k+1)+((b-a-sum_(i=1)^(k)a_(l))(1-mu))/(n+1).\mathrm{A}(h)=a+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\ldots+\frac{a_{k}}{k+1}+\frac{\left(b-a-\sum_{i=1}^{k} a_{l}\right)(1-\mu)}{n+1} .HAS(h)=has+has12+has23++haskk+1+(bhasi=1khasL)(1μ)n+1.
Now let the function
h ( x ) = a + a 1 x + a 2 x 2 + + a k 1 x k 1 + ( a k ε ) x k + + ( b a i = 1 k a i + ε ) [ x μ + | x μ | 2 ( 1 μ ) ] n h ( x ) = a + a 1 x + a 2 x 2 + + a k 1 x k 1 + a k ε x k + + b a i = 1 k a i + ε x μ + x μ 2 1 μ n {:[h^(**)(x)=a+a_(1)x+a_(2)x^(2)+dots+a_(k-1)x^(k-1)+(a_(k)-epsi)x^(k)+],[+(b-a-sum_(i=1)^(k)a_(i)+epsi)[(x-mu^(**)+|x-mu^(**)|)/(2(1-mu^(**)))]^(n)]:}\begin{aligned} h^{*}(x) & =a+a_{1} x+a_{2} x^{2}+\ldots+a_{k-1} x^{k-1}+\left(a_{k}-\varepsilon\right) x^{k}+ \\ & +\left(b-a-\sum_{i=1}^{k} a_{i}+\varepsilon\right)\left[\frac{x-\mu^{*}+\left|x-\mu^{*}\right|}{2\left(1-\mu^{*}\right)}\right]^{n} \end{aligned}h(x)=has+has1x+has2x2++hask1xk1+(haskε)xk++(bhasi=1khasi+ε)[xμ+|xμ|2(1μ)]n
Or μ = μ ε n k + ( k + 1 ) μ ( k + 1 ) ( b a i = 1 k a i + ε ) μ = μ ε n k + ( k + 1 ) μ ( k + 1 ) b a i = 1 k a i + ε mu^(**)=mu-epsi(n-k+(k+1)mu)/((k+1)(b-a-sum_(i=1)^(k)a_(i)+epsi))\mu^{*}=\mu-\varepsilon \frac{n-k+(k+1) \mu}{(k+1)\left(b-a-\sum_{i=1}^{k} a_{i}+\varepsilon\right)}μ=μεnk+(k+1)μ(k+1)(bhasi=1khasi+ε)And ε ε epsi\varepsilonεa positive number such that a k ε > 0 , b a Σ k a i + ε > 0 , 0 < μ < 1 a k ε > 0 , b a Σ k a i + ε > 0 , 0 < μ < 1 a_(k)-epsi > 0,b-a-Sigma^(k)a_(i)+epsi > 0,0 < mu^(**) < 1a_{k}-\varepsilon>0, b-a-\Sigma^{k} a_{i}+\varepsilon>0,0<\mu^{*}<1haskε>0,bhasΣkhasi+ε>0,0<μ<1, which is quite feasible.
The function h h h^(**^(**))h^{\stackrel{*}{*}}his still an elementary function with at most r vertices belonging ( E a b ) n E a b n (E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}(Ehasb)n. We have μ < μ 0 μ < μ 0 mu^(**) < mu_(0)\mu^{*}<\mu_{0}μ<μ0And A ( h ) = A ( h ) A h = A ( h ) A(h^(**))=A(h)\mathrm{A}\left(h^{*}\right)=\mathrm{A}(h)HAS(h)=HAS(h). We also check that the difference h h h h h^(**)-hh^{*}-hhhis zero for x = 0 , I x = 0 , I x=0,Ix=0, \mathrm{I}x=0,I, is negative in the neighborhood of o and can only be zero at a single point outside o and i. I, the property of the previous No. applies and we have
A φ ( h ) > A φ ( h ) . A φ h > A φ ( h ) . A_(varphi)(h^(**)) > A_(varphi)(h).\mathrm{A}_{\varphi}\left(h^{*}\right)>\mathrm{A}_{\varphi}(h) .HASφ(h)>HASφ(h).
It immediately follows that A φ ( h ) A φ h A_(varphi)(h^(**))\mathrm{A}_{\varphi}\left(h^{*}\right)HASφ(h)grows when ε ε epsi\varepsilonεgrows. Now, ε ε epsi\varepsilonεcan grow until one of the equalities ε = a k , μ = 0 ε = a k , μ = 0 epsi=a_(k),mu^(**)=0\varepsilon=a_{k}, \mu^{*}=0ε=hask,μ=0takes place, therefore
When the function φ φ varphi\varphiφAnd A ( f ) A ( f ) A(f)\mathrm{A}(f)HAS(f)are given, the maximum of A φ ( f ) A φ ( f ) A_(varphi)(f)A_{\varphi}(f)HASφ(f)In ( E a b ) n E a b n (E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}(Ehasb)ncan only be achieved if f f fffis either a function h λ ( x ) h λ ( x ) h_(lambda)(x)h_{\lambda}(x)hλ(x), or a polynomial of degree at most equal to n n nnn.
Regardless of f f fffIn ( E a b ) n E a b n (E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}(Ehasb)nwe have a A ( f ) a + b 2 a A ( f ) a + b 2 a <= A(f) <= (a+b)/(2)a \leqq \mathrm{~A}(f) \leqq \frac{a+b}{2}has HAS(f)has+b2. For a function h λ ( x ) h λ ( x ) h_(lambda)(x)h_{\lambda}(x)hλ(x)we have
A ( h λ ) = a + ( b a ) ( r λ ) n + I A h λ = a + ( b a ) ( r λ ) n + I A(h_(lambda))=a+((b-a)(r-lambda))/(n+I)\mathrm{A}\left(h_{\lambda}\right)=a+\frac{(b-a)(\mathrm{r}-\lambda)}{n+\mathrm{I}}HAS(hλ)=has+(bhas)(rλ)n+I
SO a A ( h λ ) n a + b n + I a A h λ n a + b n + I a <= A(h_(lambda)) <= (na+b)/(n+I)a \leqq \mathrm{~A}\left(h_{\lambda}\right) \leqq \frac{n a+b}{n+\mathrm{I}}has HAS(hλ)nhas+bn+I. It follows that a function h λ h λ h_(lambda)h_{\lambda}hλcan only be maximizing if a A ( f ) n a + b n + I a A ( f ) n a + b n + I a <= A(f) <= (na+b)/(n+I)a \leqq \mathrm{~A}(f) \leqq \frac{n a+b}{n+\mathrm{I}}has HAS(f)nhas+bn+I. It is clear that if A ( f ) > n a + b n + I A ( f ) > n a + b n + I A(f) > (na+b)/(n+I)\mathrm{A}(f)>\frac{n a+b}{n+\mathrm{I}}HAS(f)>nhas+bn+IThe maximizing function (or functions) can only be a polynomial.
3. It remains to find the maximizing polynomials of ( E a b ) n E a b n (E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}(Ehasb)n. Either
P ( x ) = a + a 1 x + a 2 x 2 + a n x n , P ( x ) = a + a 1 x + a 2 x 2 + a n x n , P(x)=a+a_(1)x+a_(2)x^(2)+dotsa_(n)x^(n),P(x)=a+a_{1} x+a_{2} x^{2}+\ldots \mathrm{a}_{n} x^{n},P(x)=has+has1x+has2x2+hasnxn,
a i 0 , i = I , 2 , n , i = 1 n a i = b a a i 0 , i = I , 2 , n , i = 1 n a i = b a a_(i) >= 0,i=I,2dots,n,sum_(i=1)^(n)a_(i)=b-aa_{i} \geq 0, i=\mathrm{I}, 2 \ldots, n, \sum_{i=1}^{n} a_{i}=b-ahasi0,i=I,2,n,i=1nhasi=bhas, a polynomial of ( E a b ) n E a b n (E_(a)^(b))^(n)\left(\mathrm{E}_{a}^{b}\right)^{n}(Ehasb)n.
Suppose that the given value of A = A ( f ) A = A ( f ) A=A(f)\mathrm{A}=\mathrm{A}(f)HAS=HAS(f)checks the inequalities
and that A ( P ) = A A ( P ) = A A(P)=A\mathrm{A}(\mathrm{P})=\mathrm{A}HAS(P)=HAS. The polynomial of ( E a b ) n E a b n (E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}(Ehasb)n,
(2) P ( x ) = a + α x i 1 + β x j (2) P ( x ) = a + α x i 1 + β x j {:(2)P^(**)(x)=a+alphax^(i)^(1)+betax^(j):}\begin{equation*} \mathrm{P}^{*}(x)=a+\alpha x^{i}{ }^{1}+\beta x^{j} \tag{2} \end{equation*}(2)P(x)=has+αxi1+βxI
is then completely determined by the condition A ( P ) = A ( P ) A P = A ( P ) A(P^(**))=A(P)\mathrm{A}\left(\mathrm{P}^{*}\right)=\mathrm{A}(\mathrm{P})HAS(P)=HAS(P). We have
α = j ( j + r ) ( A j a + b j + I ) , β = j ( j + r ) [ ( j I ) a + b j A ] . α = j ( j + r ) A j a + b j + I , β = j ( j + r ) ( j I ) a + b j A . alpha=j(j+r)(A-(ja+b)/(j+I)),quad beta=j(j+r)[((j-I)a+b)/(j)-A].\alpha=j(j+\mathrm{r})\left(\mathrm{A}-\frac{j a+b}{j+\mathrm{I}}\right), \quad \beta=j(j+\mathrm{r})\left[\frac{(j-\mathrm{I}) a+b}{j}-\mathrm{A}\right] .α=I(I+r)(HASIhas+bI+I),β=I(I+r)[(II)has+bIHAS].
But, the polynomial P P P P P^(**)-P\mathrm{P}^{*}-\mathrm{P}PPcan only be cancelled at a single point different from o o oooAnd I I IIIand, moreover, this polynomial is negative in the neighborhood of 0. It follows that A φ ( P ) > A φ ( P ) A φ P > A φ ( P ) A_(varphi)(P^(**)) > A_(varphi)(P)\mathrm{A}_{\varphi}\left(\mathrm{P}^{*}\right)>\mathrm{A}_{\varphi}(\mathrm{P})HASφ(P)>HASφ(P).
So finally if we have inequality (1), the (unique) maximizing function is the polynomial (2).
4. We can now state our final result:
If φ φ varphi\varphiφis a definite, non-decreasing, non-concave (or non-convex) function in the term interval ( O , I ) ( O , I ) (O,I)(\mathrm{O}, \mathrm{I})(O,I)and if f f fffis a function of ( E a b ) n E a b n (E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}(Ehasb)n, we have the inequality
(3) o 1 φ ( f ) d x ( o u ) o 1 φ { a + j ( j + 1 ) [ ( A j a + b j + 1 ) + + ( ( j 1 ) a + b j A ) x ] x j } 1 d x si j a + b j + I A ( j 1 ) a + b j , 2 j n (3) o 1 φ ( f ) d x ( o u ) o 1 φ a + j ( j + 1 ) A j a + b j + 1 + + ( j 1 ) a + b j A x x j 1 d x  si  j a + b j + I A ( j 1 ) a + b j , 2 j n {:[(3)int_(o)^(1)varphi(f)dx <= (ou >= )int_(o)^(1)varphi{a+j(j+1)[(A-(ja+b)/(j+1))+:}],[+(((j-1)a+b)/(j)-A)x]x^(j)}^(1)dx],[" si "(ja+b)/(j+I) <= A <= ((j-1)a+b)/(j)","quad2 <= j <= n]:}\begin{gather*} \int_{o}^{1} \varphi(f) d x \leqq(o u \geq) \int_{o}^{1} \varphi\left\{a+j(j+1)\left[\left(\mathrm{A}-\frac{j a+b}{j+1}\right)+\right.\right. \tag{3}\\ \left.\left.+\left(\frac{(j-1) a+b}{j}-\mathrm{A}\right) x\right] x^{j}\right\}^{1} d x \\ \text { si } \frac{j a+b}{j+\mathrm{I}} \leqq \mathrm{~A} \leqq \frac{(j-1) a+b}{j}, \quad 2 \leqq j \leqq n \end{gather*}(3)o1φ(f)dx(ou)o1φ{has+I(I+1)[(HASIhas+bI+1)++((I1)has+bIHAS)x]xI}1dx if Ihas+bI+I HAS(I1)has+bI,2In
and inequality
(4) o 1 φ ( f ) d x ( o u ) b + n a ( n + r ) A b a φ ( a ) + + ( n + 1 ) ( A a ) n ( b a ) b a n a b φ ( x ) d x ( x a ) n 1 n (4) o 1 φ ( f ) d x ( o u ) b + n a ( n + r ) A b a φ ( a ) + + ( n + 1 ) ( A a ) n ( b a ) b a n a b φ ( x ) d x ( x a ) n 1 n {:[(4)int_(o)^(1)varphi(f)dx <= (ou >= )(b+na-(n+r)A)/(b-a)varphi(a)+],[+((n+1)(A-a))/(n(b-a)root(n)(b-a))int_(a)^(b)(varphi(x)dx)/(root(n)((x-a)^(n-1)))]:}\begin{align*} & \int_{o}^{1} \varphi(f) d x \leqq(o u \geqq) \frac{b+n a-(n+\mathrm{r}) \mathrm{A}}{b-a} \varphi(a)+ \tag{4}\\ & +\frac{(n+1)(\mathrm{A}-a)}{n(b-a) \sqrt[n]{b-a}} \int_{a}^{b} \frac{\varphi(x) d x}{\sqrt[n]{(x-a)^{n-1}}} \end{align*}(4)o1φ(f)dx(ou)b+nhas(n+r)HASbhasφ(has)++(n+1)(HAShas)n(bhas)bhasnhasbφ(x)dx(xhas)n1n
if a A n a + b n + I a A n a + b n + I a <= A <= (na+b)/(n+I)a \leqq \mathrm{~A} \leqq \frac{n a+b}{n+\mathrm{I}}has HASnhas+bn+I.
If in addition the function φ φ varphi\varphiφis convex (or concave), the equality in (3) is only possible if
f ( x ) = a + j ( j + I ) [ ( A j a + b j + I ) + ( ( j I ) a + b j A ) x ] x j f ( x ) = a + j ( j + I ) A j a + b j + I + ( j I ) a + b j A x x j f(x)=a+j(j+I)[(A-(ja+b)/(j+I))+(((j-I)a+b)/(j)-A)x]x^(j)f(x)=a+j(j+\mathrm{I})\left[\left(\mathrm{A}-\frac{j a+b}{j+\mathrm{I}}\right)+\left(\frac{(j-\mathrm{I}) a+b}{j}-\mathrm{A}\right) x\right] x^{j}f(x)=has+I(I+I)[(HASIhas+bI+I)+((II)has+bIHAS)x]xI
and the equality in (4) that if
f ( x ) = a + ( b a ) [ x λ + x λ 2 ( I λ ) ] n , λ = b + n a ( n + 1 ) A b a . f ( x ) = a + ( b a ) x λ + x λ 2 ( I λ ) n , λ = b + n a ( n + 1 ) A b a . f(x)=a+(b-a)[(x-lambda+∣x-lambda)/(2(I-lambda))]^(n),quad lambda=(b+na-(n+1)A)/(b-a).f(x)=a+(b-a)\left[\frac{x-\lambda+\mid x-\lambda}{2(\mathrm{I}-\lambda)}\right]^{n}, \quad \lambda=\frac{b+n a-(n+1) \mathrm{A}}{b-a} .f(x)=has+(bhas)[xλ+xλ2(Iλ)]n,λ=b+nhas(n+1)HASbhas.
If we have A = j a + b j + I A = j a + b j + I A=(ja+b)/(j+I)\mathrm{A}=\frac{j a+b}{j+\mathrm{I}}HAS=Ihas+bI+I, formula (3) or (4) can also be written
o 1 φ ( f ) d x ( o u ) 1 j b a j n b φ ( x ) d x ( x a ) j 1 j o 1 φ ( f ) d x ( o u ) 1 j b a j n b φ ( x ) d x ( x a ) j 1 j int_(o)^(1)varphi(f)dx <= (ou >= )(1)/(jroot(j)(b-a))int_(n)^(b)(varphi(x)dx)/(root(j)((x-a)^(j-1)))\int_{o}^{1} \varphi(f) d x \leqq(o u \geqq) \frac{1}{j \sqrt[j]{b-a}} \int_{n}^{b} \frac{\varphi(x) d x}{\sqrt[j]{(x-a)^{j-1}}}o1φ(f)dx(ou)1IbhasInbφ(x)dx(xhas)I1I
  1. In the case n = 0 , f n = 0 , f n=0,fn=0, fn=0,fis a continuous and non-decreasing function. The maximum of A φ ( f ) A φ ( f ) A_(varphi)(f)\mathrm{A}_{\varphi}(f)HASφ(f)is not affected by any function f f fff. We have
max A φ ( f ) = ( b A ) φ ( a ) + ( A a ) φ ( b ) b a max A φ ( f ) = ( b A ) φ ( a ) + ( A a ) φ ( b ) b a maxA_(varphi)(f)=((b-A)varphi(a)+(A-a)varphi(b))/(b-a)\max \mathrm{A}_{\varphi}(f)=\frac{(b-\mathrm{A}) \varphi(a)+(\mathrm{A}-a) \varphi(b)}{b-a}maxHASφ(f)=(bHAS)φ(has)+(HAShas)φ(b)bhas
but equality cannot take place if φ φ varphi\varphiφis convex and f f fffcontinuous. The maximum is, in this case, reached by limit functions of ( E a b ) 0 E a b 0 (E_(a)^(b))_(0)\left(\mathrm{E}_{a}^{b}\right)_{0}(Ehasb)0. Such a maximizing function is, for example, the function
f ( x ) = { a , 0 x b A b a b , b A b a x I f ( x ) = a ,      0 x b A b a b ,      b A b a x I f(x)={[a",",0 <= x <= (b-A)/(b-a)],[b",",(b-A)/(b-a) <= x <= I]:}f(x)= \begin{cases}a, & 0 \leqq x \leqq \frac{b-\mathrm{A}}{b-a} \\ b, & \frac{b-\mathrm{A}}{b-a} \leqq x \leqq \mathrm{I}\end{cases}f(x)={has,0xbHASbhasb,bHASbhasxI
If φ φ varphi\varphiφis a concave function we have the same property for the minimum of the integral A φ ( f ) A φ ( f ) A_(varphi)(f)\mathrm{A}_{\varphi}(f)HASφ(f).
1938

Related Posts