T. Popoviciu, Sur quelques inegalités entre les fonctions convexes (II), Comptes Rendus de l’Instit. de Sci. de Roum., 2 (1938), pp. 454-458 (in French)
1938 d -Popoviciu- Reports of the meetings of the Romanian Academy of Sciences - On some inequalities
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
113. On SOME INEQUALITIES BETWEEN CONVEX FUNCTIONS
(SECOND NOTE)
By tiberiu popoviciu, Mc. ASR
(Session of March 4, 1938)
I. We have demonstrated in the first Note that the maximum ofA_(varphi)(f)\mathrm{A}_{\varphi}(f)In(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}, whenA(f)\mathrm{A}(f)is given, can only be reached by an elementary function of degreennat most i vertex. More precisely, there always exists an elementary functionh(x)h(x)of(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}, having at most I vertex, such thatA(h)=A(f),A_(varphi)(h) > A_(varphi)(f)\mathrm{A}(h)=\mathrm{A}(f), \mathrm{A}_{\varphi}(h)>\mathrm{A}_{\varphi}(f), equality not being possible ifffis not an elementary function at o or I vertex.
In particular, forn=1n=1, the maximum problem is completely solved since the value of the integralA(f)\mathrm{A}(f)completely determines the functionhh.
We now propose to examine the casen > 1n>1. It is then necessary to choose among the elementary functions at o or I vertex, the one (or ones) which gives the maximum ofA_(varphi)(f)A_{\varphi}(f).
We will use an auxiliary property, which we have already used in the previous note, and which we now state in the following form:
Eithervarphi\varphia function of the form indicated in the first note. Let thenf,f^(**)f, f^{*}two continuous, differentiable and increasing functions in the closed interval (o,I\mathrm{o}, \mathrm{I}). In addition, the functionsf,f^(**)f, f^{*}check the properties: I^(0).f(o)=f^(**)(o)=a >= o,f(I)=f^(**)(I)=b <= I,a >= b\mathrm{I}^{0} . f(\mathrm{o})=f^{*}(\mathrm{o})=a \geq \mathrm{o}, f(\mathrm{I})=f^{*}(\mathrm{I})=b \leqq \mathrm{I}, a \geq b. 2^(0)2^{0}. We haveA(f^(**))=A(f)\mathrm{A}\left(f^{*}\right)=\mathrm{A}(f).
3. There is a numberx_(0),0 < x_(0) < 1x_{0}, 0<x_{0}<1, such that we havef^(**)(x)⋚f(x)f^{*}(x) \lesseqgtr f(x), depending on whetherx⋚x_(0),0 < x < 1x \lesseqgtr x_{0}, 0<x<1.
More generally we can assume that f* is first constantly equal to a and then is increasing.
We then have the inequalityA_(varphi)(f^(**)) > A_(varphi)(f)^(1)\mathrm{A}_{\varphi}\left(f^{*}\right)>\mathrm{A}_{\varphi}(f){ }^{1}).
The demonstration is simple. According to the representation ofvarphi\varphiby a Stieltjes integral, it suffices to demonstrate the property for the functionsvarphi_(Lambda).^(2)\varphi_{\Lambda} .{ }^{2}). This amounts to demonstrating that
G(lambda)=int_(i^(**))^(1)f^(**)dx-int_(t)^(1)fdx+lambda(t^(**)-t) > 0,quad a < lambda < b\mathrm{G}(\lambda)=\int_{i^{*}}^{1} f^{*} d x-\int_{t}^{1} f d x+\lambda\left(t^{*}-t\right)>0, \quad a<\lambda<b
Orlambda=f(l)=f^(**)(t^(**))\lambda=f(l)=f^{*}\left(t^{*}\right). Gold,t,t^(**)t, t^{*}and the first member of this inequality are functions derivable fromlambda\lambda. We have
Ownership follows immediately from the fact thatt^(**)⋛tt^{*} \gtreqless tfollowing thatlambda⋚f(x_(0))\lambda \lesseqgtr f\left(x_{0}\right).
2. Now consider the function of(E_(n)^(b))_(n)\left(\mathrm{E}_{n}^{b}\right)_{n},
This is only a special case of an inequality which, for the finite case, has been given by Messrs. GH 'Hardy, JE Littlewood, G. Pólya, yoir: ,,Some simple inequalities satisfied by convex /unctions" Messenger of. math. 58 (1929) p. 145-152. See also J. Karamata ,On an inequality relating to convex functions', Publ. Math. Univ. Belgrade t. i (1932) p. 145-148. We will return to this inequality in another work.
I ask the reader to refer to the first note for the assumptions made on the functions and for the notations.
Ormu^(**)=mu-epsi(n-k+(k+1)mu)/((k+1)(b-a-sum_(i=1)^(k)a_(i)+epsi))\mu^{*}=\mu-\varepsilon \frac{n-k+(k+1) \mu}{(k+1)\left(b-a-\sum_{i=1}^{k} a_{i}+\varepsilon\right)}Andepsi\varepsilona positive number such thata_(k)-epsi > 0,b-a-Sigma^(k)a_(i)+epsi > 0,0 < mu^(**) < 1a_{k}-\varepsilon>0, b-a-\Sigma^{k} a_{i}+\varepsilon>0,0<\mu^{*}<1, which is quite feasible.
The functionh^(**^(**))h^{\stackrel{*}{*}}is still an elementary function with at most r vertices belonging(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}. We havemu^(**) < mu_(0)\mu^{*}<\mu_{0}AndA(h^(**))=A(h)\mathrm{A}\left(h^{*}\right)=\mathrm{A}(h). We also check that the differenceh^(**)-hh^{*}-his zero forx=0,Ix=0, \mathrm{I}, is negative in the neighborhood of o and can only be zero at a single point outside o and i. I, the property of the previous No. applies and we have
It immediately follows thatA_(varphi)(h^(**))\mathrm{A}_{\varphi}\left(h^{*}\right)grows whenepsi\varepsilongrows. Now,epsi\varepsiloncan grow until one of the equalitiesepsi=a_(k),mu^(**)=0\varepsilon=a_{k}, \mu^{*}=0takes place, therefore
When the functionvarphi\varphiAndA(f)\mathrm{A}(f)are given, the maximum ofA_(varphi)(f)A_{\varphi}(f)In(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}can only be achieved ifffis either a functionh_(lambda)(x)h_{\lambda}(x), or a polynomial of degree at most equal tonn.
Regardless offfIn(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}we havea <= A(f) <= (a+b)/(2)a \leqq \mathrm{~A}(f) \leqq \frac{a+b}{2}. For a functionh_(lambda)(x)h_{\lambda}(x)we have
SOa <= A(h_(lambda)) <= (na+b)/(n+I)a \leqq \mathrm{~A}\left(h_{\lambda}\right) \leqq \frac{n a+b}{n+\mathrm{I}}. It follows that a functionh_(lambda)h_{\lambda}can only be maximizing ifa <= A(f) <= (na+b)/(n+I)a \leqq \mathrm{~A}(f) \leqq \frac{n a+b}{n+\mathrm{I}}. It is clear that ifA(f) > (na+b)/(n+I)\mathrm{A}(f)>\frac{n a+b}{n+\mathrm{I}}The maximizing function (or functions) can only be a polynomial.
3. It remains to find the maximizing polynomials of(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}. Either
a_(i) >= 0,i=I,2dots,n,sum_(i=1)^(n)a_(i)=b-aa_{i} \geq 0, i=\mathrm{I}, 2 \ldots, n, \sum_{i=1}^{n} a_{i}=b-a, a polynomial of(E_(a)^(b))^(n)\left(\mathrm{E}_{a}^{b}\right)^{n}.
Suppose that the given value ofA=A(f)\mathrm{A}=\mathrm{A}(f)checks the inequalities
and thatA(P)=A\mathrm{A}(\mathrm{P})=\mathrm{A}. The polynomial of(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n},
But, the polynomialP^(**)-P\mathrm{P}^{*}-\mathrm{P}can only be cancelled at a single point different fromooAndIIand, moreover, this polynomial is negative in the neighborhood of 0. It follows thatA_(varphi)(P^(**)) > A_(varphi)(P)\mathrm{A}_{\varphi}\left(\mathrm{P}^{*}\right)>\mathrm{A}_{\varphi}(\mathrm{P}).
So finally if we have inequality (1), the (unique) maximizing function is the polynomial (2).
4. We can now state our final result:
Ifvarphi\varphiis a definite, non-decreasing, non-concave (or non-convex) function in the term interval(O,I)(\mathrm{O}, \mathrm{I})and ifffis a function of(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}, we have the inequality
{:[(3)int_(o)^(1)varphi(f)dx <= (ou >= )int_(o)^(1)varphi{a+j(j+1)[(A-(ja+b)/(j+1))+:}],[+(((j-1)a+b)/(j)-A)x]x^(j)}^(1)dx],[" si "(ja+b)/(j+I) <= A <= ((j-1)a+b)/(j)","quad2 <= j <= n]:}\begin{gather*}
\int_{o}^{1} \varphi(f) d x \leqq(o u \geq) \int_{o}^{1} \varphi\left\{a+j(j+1)\left[\left(\mathrm{A}-\frac{j a+b}{j+1}\right)+\right.\right. \tag{3}\\
\left.\left.+\left(\frac{(j-1) a+b}{j}-\mathrm{A}\right) x\right] x^{j}\right\}^{1} d x \\
\text { si } \frac{j a+b}{j+\mathrm{I}} \leqq \mathrm{~A} \leqq \frac{(j-1) a+b}{j}, \quad 2 \leqq j \leqq n
\end{gather*}
and inequality
{:[(4)int_(o)^(1)varphi(f)dx <= (ou >= )(b+na-(n+r)A)/(b-a)varphi(a)+],[+((n+1)(A-a))/(n(b-a)root(n)(b-a))int_(a)^(b)(varphi(x)dx)/(root(n)((x-a)^(n-1)))]:}\begin{align*}
& \int_{o}^{1} \varphi(f) d x \leqq(o u \geqq) \frac{b+n a-(n+\mathrm{r}) \mathrm{A}}{b-a} \varphi(a)+ \tag{4}\\
& +\frac{(n+1)(\mathrm{A}-a)}{n(b-a) \sqrt[n]{b-a}} \int_{a}^{b} \frac{\varphi(x) d x}{\sqrt[n]{(x-a)^{n-1}}}
\end{align*}
ifa <= A <= (na+b)/(n+I)a \leqq \mathrm{~A} \leqq \frac{n a+b}{n+\mathrm{I}}.
If in addition the functionvarphi\varphiis convex (or concave), the equality in (3) is only possible if
If we haveA=(ja+b)/(j+I)\mathrm{A}=\frac{j a+b}{j+\mathrm{I}}, formula (3) or (4) can also be written
int_(o)^(1)varphi(f)dx <= (ou >= )(1)/(jroot(j)(b-a))int_(n)^(b)(varphi(x)dx)/(root(j)((x-a)^(j-1)))\int_{o}^{1} \varphi(f) d x \leqq(o u \geqq) \frac{1}{j \sqrt[j]{b-a}} \int_{n}^{b} \frac{\varphi(x) d x}{\sqrt[j]{(x-a)^{j-1}}}
In the casen=0,fn=0, fis a continuous and non-decreasing function. The maximum ofA_(varphi)(f)\mathrm{A}_{\varphi}(f)is not affected by any functionff. We have
but equality cannot take place ifvarphi\varphiis convex andffcontinuous. The maximum is, in this case, reached by limit functions of(E_(a)^(b))_(0)\left(\mathrm{E}_{a}^{b}\right)_{0}. Such a maximizing function is, for example, the function
f(x)={[a",",0 <= x <= (b-A)/(b-a)],[b",",(b-A)/(b-a) <= x <= I]:}f(x)= \begin{cases}a, & 0 \leqq x \leqq \frac{b-\mathrm{A}}{b-a} \\ b, & \frac{b-\mathrm{A}}{b-a} \leqq x \leqq \mathrm{I}\end{cases}
Ifvarphi\varphiis a concave function we have the same property for the minimum of the integralA_(varphi)(f)\mathrm{A}_{\varphi}(f).