Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur certaines polynômes minimisants, Bull. de la Sect. Sci. de L’Acad. Roumaine, 12 (1929) no. 6, pp. 133-136 (in French).

PDF

About this paper

Journal

Bulletin de la Section Scientifique de l’Académie Roumaine

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1929 a -Popoviciu- Bull. Sect. Sci. - On certain minimizing polynomials
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ROMANIAN ACADEMY

NEWSLETTER

Twelfth Year
Section of the Scientific Section,
Twelfth Year
1929,
No. 6

ON CERTAIN MINIMIZING POLYNOMIES

BY

TIBERIU POPOVICIU

(Note presented to the Romanian Academy by Mr. G. Țițeica, MAR
I. Definition of the function) F ( z 1 , z 2 , z n ) F z 1 , z 2 , z n F(z_(1),z_(2),dotsz_(n))F\left(z_{1}, z_{2}, \ldots z_{n}\right)F(z1,z2,zn)The real function F ( z 1 , z 2 , z n ) F z 1 , z 2 , z n F(z_(1),z_(2),dotsz_(n))F\left(z_{1}, z_{2}, \ldots z_{n}\right)F(z1,z2,zn)of n n nnnreal variables z 1 , z 2 , z n z 1 , z 2 , z n z_(1),z_(2),dotsz_(n)z_{1}, z_{2}, ... z_{n}z1,z2,znis determined as follows:
I. It is defined in the domain
( D ) z 1 , o , z 2 , 0 , z n 0 ( D ) z 1 , o , z 2 , 0 , z n 0 (D)quadz_(1) >= ,o,z_(2) >= ,0,dotsz_(n) >= 0(D) \quad z_{1} \geqslant, o, z_{2} \geqslant, 0, \ldots z_{n} \geqslant 0(D)z1,o,z2,0,zn0
and is positive in ( D ) ( D ) (D)(D)(D)2.
It is zero at the origin:
F ( 0 , 0 ) = 0 F ( 0 , 0 ) = 0 F(0,dots0)=0F(0, \ldots 0)=0F(0,0)=0
This assumption is by no means essential, but it is convenient and in no way restricts the generality of the problem.
3. It is convex in ( D ) ( D ) (D)(D)(D)4.
It is increasing in ( D ) 1 ( D ) 1 (D)^(1)(D)^{1}(D)1).
It follows that the function is continuous in ( D ) ( D ) (D)(D)(D)and that if a variable z i z i z_(i)z_{i}zitends towards infinity F F FFFalso tends towards infinity.
2. Definition and uniqueness of the minimizing polynomial. We now consider n n nnndistinct points on the real axis:
x < x 2 < < x n x < x 2 < < x n x < x_(2) < dots < x_(n)x < x_{2} < \ldots < x_{n}x<x2<<xn
and all polynomials of degree k < n k < n k < nk<nk<nwhose coefficient of the highest power of x x xxxis equal to I I III:
P ( x ) = x k + P ( x ) = x k + P(x) = x_(k) + dotsP(x) = x_{k} + ...P(x)=xk+
the function is non-concave, respectively non-decreasing.
Let 1' be the expression:
F ( P ( x ) ) = F ( | P ( x 1 ) | , | P ( x 2 ) | , | P ( x n ) | ) F ( P ( x ) ) = F P x 1 , P x 2 , P x n F(P(x))=F(|P(x_(1))|,|P(x_(2))|,dots|P(x_(n))|)F(P(x))=F\left(\left|P\left(x_{1}\right)\right|,\left|P\left(x_{2}\right)\right|, \ldots\left|P\left(x_{n}\right)\right|\right)F(P(x))=F(|P(x1)|,|P(x2)|,|P(xn)|)
We then have the following property.
There is one and only one polynomial of degree k < n k < n k < nk<nk<nfor which the expression F ( P ( x ) ) F ( P ( x ) ) F(P(x))F(P(x))F(P(x))reaches its minimum. This is the polynomial P k ( x ) P k ( x ) P_(k)(x)P_{k}(x)Pk(x).
The minimum found is zero if k = n k = n k=nk=nk=nbut not zero and therefore positive if k < n k < n k < nk<nk<n.
The roots of the equation:
(I) P k ( x ) = 0 (I) P k ( x ) = 0 {:(I)P_(k)(x)=0:}\begin{equation*} P_{k}(x)=0 \tag{I} \end{equation*}(I)Pk(x)=0
possess interesting properties. We find ϵ n ϵ n epsilonε<sub>n</sub>ϵneffect that:
I. All the roots of equation (I) are real and contained within the closed interval ( x 1 , x n x 1 , x n x_(1),x_(n)x_{1}, x_{n}x1,xn2.
In an open interval ( α , β α , β alpha, beta\alpha, \betaα,β) inside ( x 1 , x n x 1 , x n x_(1),x_(n)x_{1}, x_{n}x1,xn) and which contains i i iiipoints x i x i x_(i)x_{i}xithere is at most i + I i + I i+Ii+Ii+Iroots.
3. Any root that does not coincide with a point x i x i x_(i)x_{i}xiis simple.
4. The points x 1 , x n x 1 , x n x_(1),x_(n)x_{1}, x_{n}x1,xnpoints may possibly be roots, but only simple ones. x 2 , x 2 , x n 1 x 2 , x 2 , x n 1 x_(2),x_(2),dotsx_(n-)^(')_(1)x_{2}, x_{2}, \ldots x_{n-}{ }^{\prime}{ }_{1}x2,x2,xn1can be multiple roots but the order of multiplicity cannot exceed 2.
If the function F F FFFadmits a continuous partial derivative with respect to z i z i z_(i)z_{i}ziand which cancels itself out for z = 0 z = 0 z=0z=0z=0the point x i x i x_(i)x_{i}xicannot be a root if i = I , n i = I , n i=I,ni=I, ni=I,n, and can only be a simple root if i = 2 , 3 , n I i = 2 , 3 , n I i=2,3,dots nIi=2,3, \ldots nIi=2,3,nI3.
An important special case. Suppose that the function F F FFFadmits continuous second partial derivatives throughout the domain ( D D DDDIt follows that the first-order partial derivatives are all positive or zero, but they cannot all be zero at the origin. For the second derivatives, it follows that the quadratic form:
i , j = 1 n ξ i ξ j δ F δ z i δ z i i , j = 1 n ξ i ξ j δ F δ z i δ z i sum_(i,j=1)^(n)xi_(i)xi_(j)(delta F)/(deltaz_(i)deltaz_(i))\sum_{i, j=1}^{n} \xi_{i} \xi_{j} \frac{\delta F}{\delta z_{i} \delta z_{i}}i,j=1nξiξjδFδziδzi
is defined and positive. We now prove the following property: The minimizing polynomial P k ( x ) P k ( x ) P_(k)(x)P_{k}(x)Pk(x)satisfies the equations.
(2) i = 1 n x i s | P k ( x i ) | P k ( x i ) δ F δ z i = 0 s = 0 , I , 2 , k I i = 1 n x i s P k x i P k ( x i ) δ F δ z i = 0 s = 0 , I , 2 , k I quadsum_(i=1)^(n)x_(i)^(s)(|P_(k)(x_(i))|)/(P_(k)(xi))*(delta F)/(deltaz_(i))=0quad s=0,I,2,dots kI\quad \sum_{i=1}^{n} x_{i}^{s} \frac{\left|P_{k}\left(x_{i}\right)\right|}{P_{k}(xi)} \cdot \frac{\delta F}{\delta z_{i}}=0 \quad s=0, I, 2, \ldots kIi=1nxis|Pk(xi)|Pk(xi)δFδzi=0s=0,I,2,kI
the partial derivatives being taken at the point
| P k ( x 1 ) | , | P k ( x 2 ) | , | P k ( x n ) | . P k x 1 , P k x 2 , P k x n . |P_(k)(x_(1))|,|P_(k)(x_(2))|,dots|P_(k)(x_(n))|.\left|P_{k}\left(x_{1}\right)\right|,\left|P_{k}\left(x_{2}\right)\right|, \ldots\left|P_{k}\left(x_{n}\right)\right| .|Pk(x1)|,|Pk(x2)|,|Pk(xn)|.
It follows that Q k 1 ( x ) Q k 1 ( x ) Q_(k-1)(x)Q_{k-1}(x)Qk1(x)being an arbitrary polynomial of degree k I k I k-Ik-IkIwe have:
i = I n Q k 1 ( x i ) | P k ( x i ) | P k ( x i ) δ F δ z i = 0 i = I n Q k 1 x i P k ( x i ) P k x i δ F δ z i = 0 sum_(i=I)^(n)Q_(k-1)(x_(i))quad(|P_(k)(x-i)|)/(P_(k)(x_(i)))(delta F)/(deltaz_(i))=0\sum_{i=I}^{n} Q_{k-1}\left(x_{i}\right) \quad \frac{\left|P_{k}(x-i)\right|}{P_{k}\left(x_{i}\right)} \frac{\delta F}{\delta z_{i}}=0i=InQk1(xi)|Pk(xi)|Pk(xi)δFδzi=0
which is a kind of orthogonality property.
The polynomial P k ( x ) P k ( x ) P_(k)(x)P_{k}(x)Pk(x)is the only polynomial of degree k k kkksatisfying equations (2).
4. Properties analogous to mechanical quadrature. Let a polynomial G ( x ) G ( x ) G(x)\mathrm{G}(x)G(x)degree 2 k I 2 k I 2k-I2 k-I2kIat most. Let α 1 , α 2 , α k α 1 , α 2 , α k alpha_(1),alpha_(2),dotsalpha_(k)\alpha_{1}, \alpha_{2}, \ldots \alpha_{k}α1,α2,αkthe roots of equation (I). We have the formula:
(3) i = 1 n G ( x i ) | P k ( x i ) | δ F δ z i = j = 1 k A j G ( α j ) (3) i = 1 n G x i P k x i δ F δ z i = j = 1 k A j G α j {:(3)sum_(i=1)^(n)(G(x_(i)))/(|P_(k)(x_(i))|)(delta F)/(deltaz_(i))=sum_(j=1)^(k)A_(j)G(alpha_(j)):}\begin{equation*} \sum_{i=1}^{n} \frac{G\left(x_{i}\right)}{\left|P_{k}\left(x_{i}\right)\right|} \frac{\delta F}{\delta z_{i}}=\sum_{j=1}^{k} A_{j} G\left(\alpha_{j}\right) \tag{3} \end{equation*}(3)i=1nG(xi)|Pk(xi)|δFδzi=j=1kHASjG(αj)
Or:
A i = i = 1 n 1 ( x i a j ) P k ( a i ) | P k ( x i ) | P k ( x i ) δ F δ z i A i = i = 1 n 1 x i a j P k a i P k x i P k x i δ F δ z i A_(i)=sum_(i=1)^(n)(1)/((x_(i)-a_(j)))P_(k)^(')(a_(i))(|P_(k)(x_(i))|)/(P_(k)(x_(i)))*(delta F)/(deltaz_(i))A_{i}=\sum_{i=1}^{n} \frac{1}{\left(x_{i}-a_{j}\right)} P_{k}^{\prime}\left(a_{i}\right) \frac{\left|P_{k}\left(x_{i}\right)\right|}{P_{k}\left(x_{i}\right)} \cdot \frac{\delta F}{\delta z_{i}}HASi=i=1n1(xihasj)Pk(hasi)|Pk(xi)|Pk(xi)δFδzi
This formula is true if:
I. The polynomial P k P k P_(k)P_{k}Pkdoes not cancel itself out at any point x i x i x_(i)x_{i}xi2.
In every respect x i x i x_(i)x_{i}xiOr P k P k P_(k)P_{k}Pkcancels out we have
(4) F z i = o pour z i = o (4) F z i = o  pour  z i = o {:(4)(del F)/(delz_(i))=o" pour "z_(i)=o:}\begin{equation*} \frac{\partial F}{\partial z_{i}}=o \text { pour } z_{i}=o \tag{4} \end{equation*}(4)Fzi=o For zi=o
Indeed, in this case these points are excluded from formula (3).
3. At every point x i x i x_(i)x_{i}xiOr P k P k P_(k)P_{k}Pkcancels out, we have outside of (4).
lim z i 0 I z i δ F δ z i = A = bonné ( nécessairement 0 ) lim z i 0 I z i δ F δ z i = A =  bonné  (  nécessairement  0 ) lim_(z_(i)rarr0)(I)/(z_(i))*(delta F)/(deltaz_(i))=A=" bonné "quad(" nécessairement " >= 0)\lim _{z_{i} \rightarrow 0} \frac{\mathrm{I}}{z_{i}} \cdot \frac{\delta F}{\delta z_{i}}=A=\text { bonné } \quad(\text { nécessairement } \geqslant 0)limitzi0IziδFδzi=HAS= Good ( necessarily 0)
In this case, the formula retains a precise meaning.
The numbers A j A j A_(j)A_{j}HASjare positive and independent of G ( x ) G ( x ) G(x)G(x)G(x); we can write:
A j = I [ ( P k ( α j ) ] 2 i = I n | P k ( x i ) | ( x i α j 2 δ F δ z i A j = I P k α j 2 i = I n P k x i x i α j 2 δ F δ z i A_(j)=(I)/([(P_(k)^(')(alpha_(j))]^(2))sum_(i=I)^(n)(|P_(k)(x_(i))|)/((x_(i)-alpha_(j)^(2))*(delta F)/(deltaz_(i))A_{j}=\frac{I}{\left[\left(P_{k}^{\prime}\left(\alpha_{j}\right)\right]^{2}\right.} \sum_{i=I}^{n} \frac{\left|P_{k}\left(x_{i}\right)\right|}{\left(x_{i}-\alpha_{j}^{2}\right.} \cdot \frac{\delta F}{\delta z_{i}}HASj=I[(Pk(αj)]2i=In|Pk(xi)|(xiαj2δFδzi
If the preceding conditions are not met, formula (3) is no longer true for G ( x ) G ( x ) G(x)\mathrm{G}(x)G(x)arbitrary, or else loses its simplicity, the derivatives of G ( x ) G ( x ) G(x)G(x)G(x)introducing themselves. \square
5. Tchebyscheff-Jackson polynomials on n n nnnpoints. It is easily shown that there is one and only one polynomial of degree k k kkk
Π k ( x ) = x k + Π k ( x ) = x k + Pi_(k)(x)=x^(k)+dots\Pi_{k}(x)=x^{k}+\ldotsPik(x)=xk+
such as
Max ( λ 1 | Π k ( x 1 ) | , λ 2 | Π k ( x 2 ) | , λ n | Π k ( x n ) | 1 ) Max λ 1 Π k x 1 , λ 2 Π k x 2 , λ n Π k x n 1 Max(lambda_(1)|Pi_(k)(x_(1))|,lambda_(2)|Pi_(k)(x_(2))|,dotslambda_(n)|Pi_(k)(x_(n))|^(1))\operatorname{Max}\left(\lambda_{1}\left|\Pi_{k}\left(x_{1}\right)\right|, \lambda_{2}\left|\Pi_{k}\left(x_{2}\right)\right|, \ldots \lambda_{n}\left|\Pi_{k}\left(x_{n}\right)\right|{ }^{1}\right)Max(λ1|Pik(x1)|,λ2|Pik(x2)|,λn|Pik(xn)|1)or as small as possible.
Let's take:
F ( P ( x , m ) ; m ) = i = 1 n λ i m | P ( x i ) | m n | m > 1 , λ i < 0 F ( P ( x , m ) ; m ) = i = 1 n λ i m P x i m n m > 1 , λ i < 0 {:F(P(x,m);m)=sum_(i=1)^(n)(lambda_(i)^(m)|P(x_(i))|m)/(n)quad|m > 1,lambda_(i) < 0\left.F(P(x, m) ; m)=\sum_{i=1}^{n} \frac{\lambda_{i}^{m}\left|P\left(x_{i}\right)\right| m}{n} \quad \right\rvert\, m>1, \lambda_{i}<0F(P(x,m);m)=i=1nλim|P(xi)|mn|m>1,λi<0
Either P k , m P k , m P_(k,m)P_{k, m}Pk,mthe minimizing polynomial of this expression.
It is easily shown that:
The polynomial P k , m P k , m P_(k),mP_{k}, mPk,mtends uniformly towards Π k Π k Pi_(k)\Pi_{k}PikFor m m m rarr oom \rightarrow \inftym
It also follows that:
lim F ( P k , m ; m ) m = ϱ k lim F P k , m ; m m = ϱ k limroot(m)(F(P_(k),m;m))=ϱ_(k)\lim \sqrt[m]{F\left(P_{k}, m ; m\right)}=\varrho_{k}limitF(Pk,m;m)m=ϱk
Or: ϱ k = Max ( λ 1 , | Π k ( x 1 ) , λ 2 | Π k ( x 2 ) | λ n | Π k ( x n ) ) ϱ k = Max λ 1 , Π k x 1 , λ 2 Π k x 2 λ n Π k x n quadϱ_(k)=Max(lambda_(1),|Pi_(k)(x_(1)),lambda_(2)|Pi_(k)(x_(2))|dotslambda_(n)|Pi_(k)(x_(n))∣)\quad \varrho_{k}=\operatorname{Max}\left(\lambda_{1},\left|\Pi_{k}\left(x_{1}\right), \lambda_{2}\right| \Pi_{k}\left(x_{2}\right)\left|\ldots \lambda_{n}\right| \Pi_{k}\left(x_{n}\right) \mid\right)ϱk=Max(λ1,|Pik(x1),λ2|Pik(x2)|λn|Pik(xn)|)
Paris, June 20, 1929.
  1. Max ( a 2 , a 2 , a n a 2 , a 2 , a n a^(2),a^(2),dotsa_(n)a^{2}, a^{2}, \ldots a_{n}has2,has2,hasn) means the largest quantity ai.

  1. 1 1 ^(1){ }^{1}1That is to say that ( z 1 , , z n ) , ( z 1 , z 2 , z n ) z 1 , , z n , z 1 , z 2 , z n (z^(')_(1),dots,z^(')_(n)),(z^('')_(1),z^('')_(2),dotsz^('')_(n))\left(z^{\prime}{ }_{1}, \ldots, z^{\prime}{ }_{n}\right),\left(z^{\prime \prime}{ }_{1}, z^{\prime \prime}{ }_{2}, \ldots z^{\prime \prime}{ }_{n}\right)(z1,,zn),(z1,z2,zn)being two points of the domain ( D ) ( D ) (D)(D)(D)We have:
    F ( z 1 + z 1 2 , z 2 + z 2 2 , z n + z n 2 ) 1 2 ( F ( z 1 , z 2 , z n ) + F ( z 1 , z 2 , z n ) ) et F ( z 1 , z 2 , z n ) F ( z 1 , z 2 , z n ) si z i z i i = 1 , 2 , n F z 1 + z 1 2 , z 2 + z 2 2 , z n + z n 2 1 2 F z 1 , z 2 , z n + F z 1 , z 2 , z n  et  F z 1 , z 2 , z n F z 1 , z 2 , z n  si  z i z i i = 1 , 2 , n {:[F((z_(1)^(')+z_(1)^(''))/(2),(z_(2)^(')+z_(2)^(''))/(2),dots(z_(n)^(')+z_(n)^(''))/(2)) <= (1)/(2)(F(z_(1)^('),z_(2)^('),dotsz_(n)^('))+F(z_(1)^(''),z_(2)^(''),dotsz_(n)^('')))],[" et "quad F(z_(1)^('),z_(2)^('),dotsz_(n)^(')) <= F(z_(1)^(''),z_(2)^(''),dotsz_(n)^(''))" si "z_(i)^(') <= z_(i)^('')quad i=1","2","dots n]:}\begin{gathered} F\left(\frac{z_{1}^{\prime}+z_{1}^{\prime \prime}}{2}, \frac{z_{2}^{\prime}+z_{2}^{\prime \prime}}{2}, \ldots \frac{z_{n}^{\prime}+z_{n}^{\prime \prime}}{2}\right) \leqslant \frac{1}{2}\left(F\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots z_{n}^{\prime}\right)+F\left(z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \ldots z_{n}^{\prime \prime}\right)\right) \\ \text { et } \quad F\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots z_{n}^{\prime}\right) \leqslant F\left(z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \ldots z_{n}^{\prime \prime}\right) \text { si } z_{i}^{\prime} \leqslant z_{i}^{\prime \prime} \quad i=1,2, \ldots n \end{gathered}F(z1+z12,z2+z22,zn+zn2)12(F(z1,z2,zn)+F(z1,z2,zn)) And F(z1,z2,zn)F(z1,z2,zn) if zizii=1,2,n
    equality being possible only if z i = z i i = 1 , 2 , n z i = z i i = 1 , 2 , n z^(')_(i)=z^('')_(i)quad i=1,2,dots nz^{\prime}{ }_{i}=z^{\prime \prime}{ }_{i} \quad i=1,2, \ldots nzi=zii=1,2,nOtherwise
1929

Related Posts